U-Pb dating of bastnäsite from the Vuoriyarvi massif: An example application for assessing the REE potential of carbonatite-related deposits

Evgeniy N. Kozlov, Ekaterina N. Fomina, Qiuli Li, Jiao Li

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101875.

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101875. DOI: 10.1016/j.gsf.2024.101875

U-Pb dating of bastnäsite from the Vuoriyarvi massif: An example application for assessing the REE potential of carbonatite-related deposits

Author information +
History +

Abstract

The Vuoriyarvi massif is a Devonian multistage alkaline-ultrabasic carbonatite complex within the Kola alkaline province. Dolomite carbonatites of the Vuoriyarvi massif contain abundant rare-earth mineralization mainly represented by ancylite-(Ce) and bastnäsite-(Ce). Ancylite was previously shown to have probably formed in the Devonian (ca. 365 Ma) during an early postmagmatic overprint. Previous geological observations have revealed a much later crystallization of bastnäsite but have not been able to specify the exact age of the mineralization. The in situ U-Pb dating of bastnäsite allowed us to constrain its genesis. Bastnäsite for this study was extracted from two varieties of dolomite carbonatite breccias cemented by (1) quartz-bastnäsite and (2) strontianite aggregates (hereafter bastnäsite-rich and strontianite-rich carbonatites – BRC and SRC, respectively). The obtained age estimations (237.7 ± 9.8 Ma and 239.9 ± 4.1 Ma, respectively) indicate that both studied rocks were formed during a single event. The revealed age difference (∼125 Ma) excludes the genetic link between the bastnäsite origin and regional alkaline magmatism, pointing out an additional source for the Vuoriyarvi bastnäsite-bearing rocks. Moreover, the obtained U-Pb ages provide strong evidence that a Triassic event is responsible for the occurrence of bastnäsite mineralization due to hydrothermal REE redistribution from the Devonian ancylite-rich carbonatites. Most of the REEs released during this process via dissolution of ancylite were precipitated in situ as bastnäsite, while strontium was transported and incorporated into strontianite. The Pb isotopic characteristics of bastnäsite (206Pb/204Pb = 18.1 ± 0.1, 207Pb/204Pb = 15.3 ± 0.1, and 207Pb/206Pb = 0.84 ± 0.01) are most probably inherited from the Devonian host rocks of the Vuoriyarvi massif involved in the Triassic overprint. Isotopic signatures of Pb, Sr, and Nd show that the depleted mantle and lower crust played the leading role in formation of the Vuoriyarvi alkaline complex. Taken together, the results of the present study negate the supergene origin of the Vuoriyarvi bastnäsite, implying that the bastnäsite mineralization is not confined to near-surface layers and, therefore, may be dispersed more broadly throughout the complex. These findings raise the question on underestimation of the probable REE reserves and lay the groundwork for a reassessment of the economic potential of the Vuoriyarvi complex.

Keywords

Bastnäsite / REE / Carbonatites / U-Pb dating / Vuoriyarvi / Kola alkaline province

Cite this article

Download citation ▾
Evgeniy N. Kozlov, Ekaterina N. Fomina, Qiuli Li, Jiao Li. U-Pb dating of bastnäsite from the Vuoriyarvi massif: An example application for assessing the REE potential of carbonatite-related deposits. Geoscience Frontiers, 2024, 15(5): 101875 https://doi.org/10.1016/j.gsf.2024.101875

References

B.V. Afanasyev. Mineral Resources of the Alkaline-Ultramafic Massifs of the Kola Peninsula. Roza Vetrov, St. Petersburg, Russia (in Russian) (2011)
J.N. Aleinikoff, R.P. Wintsch, C.M. Fanning, M.J. Dorais. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: an integrated SEM, EMPA, TIMS, and SHRIMP study. Chem. Geol., 188 (2002), pp. 125-147,
CrossRef Google scholar
Y. Amelin, A.N. Zaitsev. Precise geochronology of phoscorites and carbonatites. Geochim. Cosmochim. Acta, 66 (2002), pp. 2399-2419,
CrossRef Google scholar
A.K. Andersen, J.G. Clark, P.B. Larson, J.J. Donovan. REE fractionation, mineral speciation, and supergene enrichment of the Bear Lodge carbonatites, Wyoming, USA. Ore Geol. Rev., 89 (2017), pp. 780-807,
CrossRef Google scholar
A.K. Andersen, P.B. Larson, M.A. Cosca. C-O stable isotope geochemistry and 40Ar/39Ar geochronology of the Bear Lodge carbonatite stockwork, Wyoming, USA. Lithos, 324–325 (2019), pp. 640-660,
CrossRef Google scholar
M. Anenburg, J.A. Mavrogenes, C. Frigo, F. Wall. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Sci. Adv., 6 (2020), p. eabb6570,
CrossRef Google scholar
M. Anenburg, S. Broom-Fendley, W. Chen. Formation of rare earth deposits in carbonatites. Elements, 17 (2021), pp. 327-332,
CrossRef Google scholar
K. Bell, A.N. Zaitsev, J. Spratt, S. Fröjdö, A.S. Rukhlov. Elemental, lead and sulfur isotopic compositions of galena from Kola carbonatites, Russia – implications for melt and mantle evolution. Mineral. Mag., 79 (2015), pp. 219-241,
CrossRef Google scholar
K. Binnemans, P.T. Jones, K. Van Acker, B. Blanpain, B. Mishra, D. Apelian. Rare-earth economics: The balance problem. JOM, 65 (2013), pp. 846-848,
CrossRef Google scholar
A.G. Bulakh, A.R. Nesterov, A.N. Zaitsev, A.N. Pilipiuk, F. Wall, A.S. Kirillov. Sulfur-containing monazite-(Ce) from late-stage mineral assemblages at the Kandaguba and Vuoriyarvi carbonatite complexes, Kola peninsula, Russia. Neues Jahrb. Fur Mineral., 5 (2000), pp. 217-233 (in Russian)
S.B. Castor. The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. Can. Mineral., 46 (2008), pp. 779-806,
CrossRef Google scholar
T. Cerva-Alves, M.V.D. Remus, N. Dani, M.A.S. Basei. Integrated field, mineralogical and geochemical characteristics of Caçapava do Sul alvikite and beforsite intrusions: A new Ediacaran carbonatite complex in southernmost Brazil. Ore Geol. Rev., 88 (2017), pp. 352-369,
CrossRef Google scholar
A.R. Chakhmouradian, F. Wall. Rare earth elements: Minerals, mines, magnets (and more). Elements, 8 (2012), pp. 333-340,
CrossRef Google scholar
N.D. Chau, P. Jadwiga, P. Adam, D.V. Hao, L.K. Phon, J. Paweł. General characteristics of rare earth and radioactive elements in Dong Pao deposit, Lai Chau, Vietnam. Vietnam J. Earth Sci., 39 (2017), pp. 14-26, 10.15625/0866-7187/39/1/9181
D.M. Chew, P.J. Sylvester, M.N. Tubrett. U-Pb and Th–Pb dating of apatite by LA-ICPMS. Chem. Geol., 280 (2011), pp. 200-216,
CrossRef Google scholar
C.A.F. Dietzel, T. Kristandt, S. Dahlgren, R.J. Giebel, M.A.W. Marks, T. Wenzel, G. Markl. Hydrothermal processes in the Fen alkaline-carbonatite complex, southern Norway. Ore Geol. Rev., 111 (2019), Article 102969,
CrossRef Google scholar
A.G. Doroshkevich, S.G. Viladkar, G.S. Ripp, M.V. Burtseva. Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. Can. Mineral., 47 (2009), pp. 1105-1116,
CrossRef Google scholar
H. Downes, E. Balaganskaya, A. Beard, R. Liferovich, D. Demaiffe. Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review. Lithos, 85 (2005), pp. 48-75,
CrossRef Google scholar
J.-Y. Feng, L. Tang, B.-C. Yang, M. Santosh, S.-T. Zhang, B. Xu, S. Won Kim, Y.-M. Sheng. Bastnäsite U-Th-Pb age, sulfur isotope and trace elements of the Huangshui’an deposit: Implications for carbonatite-hosted Mo-Pb-REE mineralization in the Qinling Orogenic Belt, China. Ore Geol. Rev., 143 (2022), Article 104790,
CrossRef Google scholar
E.N. Fomina, E.N. Kozlov. Stable (C, O) and radiogenic (Sr, Nd) isotopic evidence for REE-carbonatite formation processes in Petyayan-Vara (Vuoriyarvi massif, NW Russia). Lithos, 398–399 (2021), Article 106282,
CrossRef Google scholar
A.L. Giovannini, R.H. Mitchell, A.C. Bastos Neto, C.A.V. Moura, V.P. Pereira, C.G. Porto. Mineralogy and geochemistry of the Morro dos Seis Lagos siderite carbonatite, Amazonas, Brazil. Lithos, 360–361 (2020), Article 105433,
CrossRef Google scholar
D. Guo, Y. Liu. Occurrence and geochemistry of bastnäsite in carbonatite-related REE deposits, Mianning–Dechang REE belt, Sichuan Province, SW China. Ore Geol. Rev., 107 (2019), pp. 266-282,
CrossRef Google scholar
J. Hong, W. Ji, X. Yang, T. Khan, R. Wang, W. Li, H. Zhang. Origin of a Miocene alkaline–carbonatite complex in the Dunkeldik area of Pamir, Tajikistan: Petrology, geochemistry, LA–ICP–MS zircon U-Pb dating, and Hf isotope analysis. Ore Geol. Rev., 107 (2019), pp. 820-836,
CrossRef Google scholar
A. Jordens, Y.P. Cheng, K.E. Waters. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng., 41 (2013), pp. 97-114,
CrossRef Google scholar
Y.L. Kapustin. Structure of the Vuoriyarvi carbonatite complex. Int. Geol. Rev., 18 (1976), pp. 1296-1304,
CrossRef Google scholar
Karchevsky, P.I., Moutte, J., 2004. The phoscorite-carbonatite complex of Vuoriyarvi, northern Karelia, in: Phoscorites and Carbonatites from Mantle to Mine. Mineralogical Society of Great Britain and Ireland, pp. 163–199. Doi:
CrossRef Google scholar
E. Kozlov, E. Fomina, M. Sidorov, V. Shilovskikh, V. Bocharov, A. Chernyavsky, M. Huber. The Petyayan-Vara carbonatite-hosted rare earth deposit (Vuoriyarvi, NW Russia): Mineralogy and geochemistry. Minerals, 10 (2020), p. 73,
CrossRef Google scholar
E.N. Kozlov, E.N. Fomina. Mass balance of complementary metasomatic processes using isocon analysis. MethodsX, 9 (2022), Article 101609,
CrossRef Google scholar
U. Kramm, L.N. Kogarko, V.A. Kononova, H. Vartiainen. The Kola Alkaline Province of the CIS and Finland: Precise Rb-Sr ages define 380–360 Ma age range for all magmatism. Lithos, 30 (1993), pp. 33-44,
CrossRef Google scholar
M. Lee, J. Lee, S. Hur, Y. Kim, J. Moutte, E. Balaganskaya. Sr–Nd–Pb isotopic compositions of the Kovdor phoscorite–carbonatite complex, Kola Peninsula, NW Russia. Lithos, 91 (2006), pp. 250-261,
CrossRef Google scholar
B. Lehmann, S. Nakai, A. Höhndorf, J. Brinckmann, P. Dulski, U.F. Hein, A. Masuda. REE mineralization at Gakara, Burundi: Evidence for anomalous upper mantle in the western Rift Valley. Geochim. Cosmochim. Acta, 58 (1994), pp. 985-992,
CrossRef Google scholar
Q.-L. Li, X.-H. Li, F.-Y. Wu, Q.-Z. Yin, H.-M. Ye, Y. Liu, G.-Q. Tang, C.-L. Zhang. In-situ SIMS U-Pb dating of phanerozoic apatite with low U and high common Pb. Gondwana Res., 21 (2012), pp. 745-756,
CrossRef Google scholar
Q.-L. Li, M.H. Huyskens, Y. Yue-Heng, X.-X. Ling, Q.-Z. Yin, A.V. Nikiforov, X.-H. Li. Bastnaesite K-9: A homogenous natural reference material for in-situ U-Pb and Th–Pb dating. At. Spectrosc., 41 (2020), 10.46770/AS.2020.06.001
X.-C. Li, K.-F. Yang, C. Spandler, H.-R. Fan, M.-F. Zhou, J.-L. Hao, Y.-H. Yang. The effect of fluid-aided modification on the Sm-Nd and Th-Pb geochronology of monazite and bastnäsite: Implication for resolving complex isotopic age data in REE ore systems. Geochim. Cosmochim. Acta, 300 (2021), pp. 1-24,
CrossRef Google scholar
X.X. Ling, Q.L. Li, Y. Liu, Y.H. Yang, Y. Liu, G.Q. Tang, X.H. Li. In situ SIMS Th–Pb dating of bastnaesite: constraint on the mineralization time of the Himalayan Mianning–Dechang rare earth element deposits. J. Anal. At. Spectrom., 31 (2016), pp. 1680-1687,
CrossRef Google scholar
Linnen, R.L., Samson, I.M., Williams-Jones, A.E., Chakhmouradian, A.R., 2014. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. Elsevier, pp. 543–568. Doi:
CrossRef Google scholar
S. Liu, H.-R. Fan, Q.-W. Wang, Y.-J. Liu, W. Wei. Carbonatite-related delicate REE mineralization processes revealed by fluorocarbonates and monazite: Insights from the giant Bayan Obo REE-Nb-Fe deposit, China. Ore Geol. Rev., 157 (2023), Article 105443,
CrossRef Google scholar
Y. Liu, Z. Hou. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. J. Asian Earth Sci., 137 (2017), pp. 35-79,
CrossRef Google scholar
M. Louvel, B. Etschmann, Q. Guan, D. Testemale, J. Brugger. Carbonate complexation enhances hydrothermal transport of rare earth elements in alkaline fluids. Nat. Commun., 13 (2022), p. 1456,
CrossRef Google scholar
R.H. Mitchell, D.L. Smith. Geology and mineralogy of the Ashram Zone carbonatite, Eldor Complex, Québec. Ore Geol. Rev., 86 (2017), pp. 784-806,
CrossRef Google scholar
V. Mollé, F. Gaillard, Z. Nabyl, J. Tuduri, I. Di Carlo, S. Erdmann. Crystallisation sequence of a REE-rich carbonate melt: an experimental approach. Comptes Rendus. Géoscience, 353 (2022), pp. 217-231,
CrossRef Google scholar
M. Moore, A.R. Chakhmouradian, A.N. Mariano, R. Sidhu. Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: Mineralogical and isotopic evidence. Ore Geol. Rev., 64 (2015), pp. 499-521,
CrossRef Google scholar
A. Néron, L. Bédard, D. Gaboury. The Saint-Honoré Carbonatite REE Zone, Québec, Canada: Combined magmatic and hydrothermal processes. Minerals, 8 (2018), p. 397,
CrossRef Google scholar
B.T. Ngwenya. Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: Processes at the fluid/rock interface. Geochim. Cosmochim. Acta, 58 (1994), pp. 2061-2072,
CrossRef Google scholar
A.M. Nikolenko, K.M. Stepanov, V. Roddatis, I.V. Veksler. Crystallization of bastnäsite and burbankite from carbonatite melt in the system La(CO3)F-CaCO3-Na2CO3 at 100 MPa. Am. Mineral., 107 (2022), pp. 2242-2250,
CrossRef Google scholar
S. Ntiharirizwa, P. Boulvais, M. Poujol, Y. Branquet, C. Morelli, J. Ntungwanayo, G. Midende. Geology and U-Th-Pb dating of the Gakara REE deposit, Burundi. Minerals, 8 (2018), p. 394,
CrossRef Google scholar
I. Prokopyev, E. Kozlov, E. Fomina, A. Doroshkevich, M. Dyomkin. Mineralogy and fluid regime of formation of the REE-Late-Stage hydrothermal mineralization of Petyayan-Vara carbonatites (Vuoriyarvi, Kola Region, NW Russia). Minerals, 10 (2020), p. 405,
CrossRef Google scholar
I. Prokopyev, A. Doroshkevich, D. Zhumadilova, A. Starikova, Y.N. Nugumanova, N. Vladykin. Petrogenesis of Zr–Nb (REE) carbonatites from the Arbarastakh complex (Aldan Shield, Russia): Mineralogy and inclusion data. Ore Geol. Rev., 131 (2021), Article 104042,
CrossRef Google scholar
I.R. Prokopyev, A.G. Doroshkevich, A.E. Starikova, Y. Yang, V.O. Goryunova, N.A. Tomoshevich, V.F. Proskurnin, V.A. Saltanov, E.A. Kukharenko. Geochronology and origin of the carbonatites of the Central Taimyr Region, Russia (Arctica): Constraints on the F-Ba-REE mineralization and the Siberian Large Igneous Province. Lithos, 440–441 (2023), Article 107045,
CrossRef Google scholar
J.J.W. Rogers, M. Santosh. Continents and Supercontinents. Oxford University Press, Oxford (2004)
E. Ruberti, G.E.R. Enrich, C.B. Gomes, P. Comin-Chiaramonti. Hydrothermal REE fluorocarbonate mineralization at Barra do Itapirapuã, a multiple stockwork carbonate, southern Brazil. Can. Mineral., 46 (2008), pp. 901-914,
CrossRef Google scholar
E.B. Sal’nikova, S.Z. Yakovleva, A.V. Nikiforov, A.B. Kotov, V.V. Yarmolyuk, I.V. Anisimova, A.M. Sugorakova, Y.V. Plotkina. Bastnaesite: a promising U-Pb geochronological tool. Dokl. Earth Sci., 430 (2010), pp. 134-136,
CrossRef Google scholar
H.-D. She, H.-R. Fan, K.-F. Yang, X.-H. Li, Z.-Y. Wang. REEs upgrading by post-carbonatite fluids in the Huangshui’an Mo-REE deposit, eastern Qinling Orogen (central China). Ore Geol. Rev., 150 (2022), Article 105177,
CrossRef Google scholar
X. Shu, Y. Liu. Fluid inclusion constraints on the hydrothermal evolution of the Dalucao carbonatite-related REE deposit, Sichuan Province, China. Ore Geol. Rev., 107 (2019), pp. 41-57,
CrossRef Google scholar
M.P. Smith, K. Moore, D. Kavecsánszki, A.A. Finch, J. Kynicky, F. Wall. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements. Geosci. Front., 7 (2016), pp. 315-334,
CrossRef Google scholar
W. Song, C. Xu, M.P. Smith, A.R. Chakhmouradian, M. Brenna, J. Kynický, W. Chen, Y. Yang, M. Deng, H. Tang. Genesis of the world’s largest rare earth element deposit, Bayan Obo, China: Protracted mineralization evolution over ∼1 b.y. Geology, 46 (4) (2018), pp. 323-326,
CrossRef Google scholar
N.O. Sorokhtin, S.L. Nikiforov, R.A. Ananiev, N.N. Dmitrevskiy, E.A. Moroz, E.A. Sukhih, N.E. Kozlov, I.V. Chikirev, A.I. Fridenberg, A.A. Koluibakin. Geodynamics of the Russian Arctic Shelf and relief-forming processes in the central Kara Basin. Oceanology, 62 (2022), pp. 540-549,
CrossRef Google scholar
J.S. Stacey, J.D. Kramers. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26 (1975), pp. 207-221,
CrossRef Google scholar
R.H. Steiger, E. Jäger. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36 (1977), pp. 359-362,
CrossRef Google scholar
F. Tera, G.J. Wasserburg. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet. Sci. Lett., 14 (1972), pp. 281-304,
CrossRef Google scholar
P. Vermeesch. IsoplotR: A free and open toolbox for geochronology. Geosci. Front., 9 (2018), pp. 1479-1493,
CrossRef Google scholar
R.V. Veselovskiy, S.N. Thomson, A.A. Arzamastsev, V.S. Zakharov. Apatite fission track thermochronology of Khibina Massif (Kola Peninsula, Russia): Implications for post-Devonian Tectonics of the NE Fennoscandia. Tectonophysics, 665 (2015), pp. 157-163,
CrossRef Google scholar
C. Wang, J. Liu, H. Zhang, X. Zhang, D. Zhang, Z. Xi, Z. Wang. Geochronology and mineralogy of the Weishan carbonatite in Shandong province, eastern China. Geosci. Front., 10 (2019), pp. 769-785,
CrossRef Google scholar
Z. Weng, S.M. Jowitt, G.M. Mudd, N. Haque. A detailed assessment of global rare earth element resources: Opportunities and challenges. Econ. Geol., 110 (2015), pp. 1925-1952,
CrossRef Google scholar
Q. Weng, W.-B. Yang, H.-C. Niu, N.-B. Li, R.H. Mitchell, S. Zurevinski, D. Wu. Formation of the Maoniuping giant REE deposit: Constraints from mineralogy and in situ bastnäsite U-Pb geochronology. Am. Mineral., 107 (2022), pp. 282-293,
CrossRef Google scholar
A.E. Williams-Jones, S.A. Wood. A preliminary petrogenetic grid for REE fluorocarbonates and associated minerals. Geochim. Cosmochim. Acta, 56 (1992), pp. 725-738,
CrossRef Google scholar
W.K. Witt, D.P. Hammond, M. Hughes. Geology of the Ngualla carbonatite complex, Tanzania, and origin of the Weathered Bastnaesite Zone REE ore. Ore Geol. Rev., 105 (2019), pp. 28-54,
CrossRef Google scholar
X.-M. Yang, M.J. Le Bas. Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: implications for petrogenesis. Lithos, 72 (2004), pp. 97-116,
CrossRef Google scholar
Y.-H. Yang, F.-Y. Wu, Y. Li, J.-H. Yang, L.-W. Xie, Y. Liu, Y.-B. Zhang, C. Huang. In situ U-Pb dating of bastnaesite by LA-ICP-MS. J. Anal. at. Spectrom., 29 (2014), pp. 1017-1023,
CrossRef Google scholar
Y. Yang, F. Wu, Q. Li, Y. Rojas-Agramonte, J. Yang, Y. Li, Q. Ma, L. Xie, C. Huang, H. Fan, Z. Zhao, C. Xu. In situ U-Th-Pb dating and Sr-Nd isotope analysis of bastnäsite by LA-(MC)-ICP-MS. Geostand. Geoanalytical Res., 43 (2019), pp. 543-565,
CrossRef Google scholar
G.M. Yaxley, M. Anenburg, S. Tappe, S. Decree, T. Guzmics. Carbonatites: classification, sources, evolution, and emplacement. Annu. Rev. Earth Planet. Sci., 50 (2022), pp. 261-293,
CrossRef Google scholar
R.E. Zartman, S.M. Haines. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs—A case for bi-directional transport. Geochim. Cosmochim. Acta, 52 (1988), pp. 1327-1339,
CrossRef Google scholar
R.E. Zartman, L.N. Kogarko. Lead isotopic evidence for interaction between plume and lower crust during emplacement of peralkaline Lovozero rocks and related rare-metal deposits, East Fennoscandia, Kola Peninsula, Russia. Contrib. Mineral. Petrol., 172 (2017), p. 32,
CrossRef Google scholar
W. Zhang, W.T. Chen, J.-F. Gao, H.-K. Chen, J.-H. Li. Two episodes of REE mineralization in the Qinling Orogenic Belt, Central China: in-situ U-Th-Pb dating of bastnäsite and monazite. Miner. Depos., 54 (2019), pp. 1265-1280,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/