Telluric iron assemblages as a source of prebiotic phosphorus on the early Earth: Insights from Disko Island, Greenland
Oleg S. Vereshchagin, Maya O. Khmelnitskaya, Larisa V. Kamaeva, Natalia S. Vlasenko, Dmitrii V. Pankin, Vladimir N. Bocharov, Sergey N. Britvin
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101870.
Telluric iron assemblages as a source of prebiotic phosphorus on the early Earth: Insights from Disko Island, Greenland
Phosphorus is one of the key elements, which determined the emergence of primordial life on our planet. The source of prebiotic phosphorus was most likely to be easily soluble compounds containing phosphorus in the negative form of oxidation (e.g., phosphides). The present paper is the first thorough investigation of phosphide-bearing mineral assemblages confined to telluric (terrestrial) native iron from volcanic rocks of Disko Island, Greenland. Phosphorus speciation in given assemblages varies from the solid solution in native iron (up to 0.3 wt.% P), different phosphides – schreibersite Fe3P, nickelphosphide Ni3P, barringerite Fe2P, and phosphates, including fluorapatite, anhydrous Fe-Na phosphates, phosphoran olivine and pyroxene (up to 1 wt.% P). The diversity of observed phosphorus speciation can be explained by the steep changes of redox conditions during subsurface crystallization of iron-phosphide-bearing lavas. Based on the available data on likely redox conditions on the early Earth, we hypothesize that reactive prebiotic phosphorus may have originated from shallow crustal rocks.
Prebiotic phosphorus / Native iron / Phosphide / Reduced mineral assemblages
L.V. Agafonov, V.A. Popov, G.N. Anoshin, L.N. Pospelova, V.I. Zabelin, V.I. Kudryavtsev. The Cheder iron meteorite (Tuva): mineral composition, structure, and PGE and REE contents. Russ. Geol. Geophys., 52 (6) (2011), pp. 620-630
|
S.O. Agrell, N.R. Charnley, G.A. Chinner. Phosphoran olivine from Pine Canyon, Piute Co., Utah. Mineral. Mag., 62 (1998), pp. 265-269
|
S. Aulbach, A.B. Woodland, R.A. Stern, P. Vasilyev, L.M. Heaman, K.S. Viljoen. Evidence for a dominantly reducing Archaean ambient mantle from two redox proxies, and low oxygen fugacity of deeply subducted oceanic crust. Sci. Rep., 9 (2019), p. 20190
|
T. Bekker, K. Litasov, A. Shatskiy, N. Sagatov, I. Podborodnikov, P. Krinitsin. Experimental and ab initio investigation of the formation of phosphoran olivine. ACS Earth Space Chem., 5 (6) (2021), pp. 1373-1383
|
R.I. Bickley, H.G.M. Edwards, A. Knowles, J.K.F. Tait. Vibrational spectroscopic study of the hypophosphite and phosphite anions, H2PO2-2, and HPO2-3, and of their deuterated analogues in the solid state and in aqueous solution. Spectrochim. Acta, A50 (1994), pp. 1277-1285
|
L. Bindi, T. Feng, M.A. Pasek. Routes to reduction of phosphate by high-energy events. Com. Earth Env., 4 (2023), p. 70
|
S.N. Britvin, V.D. Kolomensky, M.M. Boldyreva, A.N. Bogdanova, Y.L. Kretser, O.N. Boldyreva, N.S. Rudashevskii. Nickelphosphide, (Ni, Fe)3P, the nickel analog of schreibersite. Zap. Vseross. Mineral. Obsh., 128 (3) (1999), pp. 64-72
|
S.N. Britvin, M.N. Murashko, Y. Vapnik, Y.S. Polekhovsky, S.V. Krivovichev. Earth’s phosphides in Levant and insights into the source of Archean prebiotic phosphorus. Sci. Rep., 5 (2015), pp. 10-14
|
S.N. Britvin, S.V. Krivovichev, E.V. Obolonskaya, N.S. Vlasenko, V.N. Bocharov, V.V. Bryukhanova. Xenophyllite, Na4Fe7(PO4)6, an exotic meteoritic phosphate: new mineral description, Na-ions mobility and electrochemical implications. Minerals, 10 (2020), p. 300
|
S.N. Britvin, M.N. Murashko, Y. Vapnik, N.S. Vlasenko, M.G. Krzhizhanovskaya, O.S. Vereshchagin, V.N. Bocharov, M.S. Lozhkin. Cyclophosphates, a new class of native phosphorus compounds, and some insights into prebiotic phosphorylation on early Earth. Geology, 49 (2021), pp. 382-386
|
J.D. Brown, M.E. Lipschutz. Electron-probe microanalysis of the Odessa iron meteorite. Icarus, 4 (4) (1965), pp. 436-441
|
V.F. Buchwald. Phosphate minerals in meteorites and lunar rocks. J.O. Nriagu, P.B. Moore (Eds.), Phosphate Minerals, Springer, Berlin, Heidelberg (1984), pp. 199-214
|
Buchwald, V.F., 1975. Handbook of Iron Meteorites, vol. 2. University of California Press, Berkeley, California, 490 p.
|
P.R. Buseck. Pallasite meteorites mineralogy, petrology and geochemistry. Geochim. Cosmochim. Acta, 41 (1977), pp. 711-740
|
D. Canil. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet. Sci. Lett., 195 (2002), pp. 75-90
|
E.C.T. Chao, E.J. Dwoenik, J. Littler. New data on the nickel-iron spherufes from Southeast Asian tektites and their implications. Geochim. Cosmochim. Acta, 28 (1964), pp. 971-980
|
Y.Z. Chen, G.C. Yang, F. Liu, N. Liu, H. Xie, Y.H. Zhou. Microstructure evolution in undercooled Fe-7.5 at% Ni alloys. J. Cryst. Growth, 282 (2005), pp. 490-497
|
D.B. Clarke, A.K. Pedersen. Tertiary volcanic province of West Greenland. A. Escher, W.S. Watt (Eds.), Geology of Greenland, Geological Survey of Greenland, Copenhagen (1976), pp. 364-385
|
G. Dam, G.K. Pedersen, M.S. Sønderholm, H.H. Midtgaard, L.M. Larsen, H. Nøhr-Hansen, A.K. Pedersen. Lithostratigraphy of the Cretaceous-Paleocene Nuussuaq Group, Nuussuaq Basin, West Greenland. Geol. Surv. Denmark Greenland Bull., 19 (2009), p. 171
|
H.I. Drever. The origin of some ultramafic rocks: a preliminary survey of the evidence for and against gravitative accumulation of olivine. Meddelelser Fra Dansk Geologisk Forening, 12 (1953), pp. 227-229
|
D.J. Frost, C.A. McCammon. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci., 36 (2008), pp. 389-420
|
R.L. Frost, Y. Xi, G. Millar, K. Tan, S.J. Palmer. Vibrational spectroscopy of natural cave mineral monetite CaHPO4 and the synthetic analog. Spectr. Letters, 46 (1) (2013), pp. 54-59
|
L.H. Fuchs, E. Olsen, E.P. Henderson. On the occurrence of brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochim. Cosmochim. Acta, 31 (1967), pp. 1711-1719
|
E. Fundal. Det vestgrønlandske jern – geologiens arbejdsfelt og eskimoens værktøj. Tidsskriftet Grønland, 1972 (4) (1972), pp. 97-110
|
Galuskin, E., Galuskina, I., Vapnik, Y., 2022. Natural sulfide FeMo2S4 – a potentially new mineral from the Hatrurim Complex, Jordan. Abstract of the 23rd General Meeting of the International Mineralogy Association, IMA2022-1375.
|
K.L. Giesecke. Mineralogy of Disko Island. Transactions of the Royal Society of Edinburgh, 9 (1821), pp. 263-272
|
C.A. Goodrich. Phosphoran pyroxene and olivine in silicate inclusions in natural iron-carbon alloy, Disko Island, Greenland. Geochim. Cosmochim. Acta, 48 (5) (1984), pp. 1115-1126
|
C.A. Goodrich. Petrogenesis of olivine-phyric shergottites Sayh al Uhaymir 005 and Elephant Moraine A79001 lithology A. Geochim. Cosmochim. Acta, 67 (19) (2003), pp. 3735-3772
|
E.S. Grew, M.G. Yates, R.J. Beane, C. Floss, C. Gerbi. Chopinite-sarcopside solid solution, [(Mg, Fe)3](PO4)2, in GRA95209, a transitional acapulcoite: Implications for phosphate genesis in meteorites. Am. Mineral., 95 (2010), pp. 260-272
|
W.L. Griffin, L. Bindi, F. Camara, C. Ma, S.E.M. Gain, M. Saunders, O. Alard, J.-X. Huang, J. Shaw, C. Meredith, V. Toledo, S.Y. O.Reilly. Interactions of magmas and highly reduced fluids during intraplate volcanism, Mt Carmel, Israel: Implications for mantle redox states and global carbon cycles. Gondwana Res., 128 (2024), pp. 14-54
|
R.M. Hazen, S.M. Morrison. On the paragenetic modes of minerals: A mineral evolution perspective. Am. Mineral., 107 (7) (2022), pp. 1262-1287
|
R.M. Hazen, G. Hystad, J.J. Golden, D.R. Hummer, C. Liu, R.T. Downs, S.M. Morrison, J. Ralph, E.S. Grew. Cobalt mineral ecology. Am. Mineral., 102 (2017), pp. 108-116
|
C.D.K. Herd, C. Ma, R. Saini, A.J. Locock, E.L. Walton. Elaliite, IMA 2022087. CNMNC Newsletter 70. Eur. J. Mineral., 34 (2022)
|
B.L. Hess, S. Piazolo, J. Harvey. Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth. Nat. Commun., 12 (2021), p. 1535
|
G.H. Howarth, J.M.D. Day, J.F. Pernet-Fisher, C.A. Goodrich, D.G. Pearson, Y. Luo, V.V. Ryabov, L.A. Taylor. Precious metal enrichment at low-redox in terrestrial native Fe-bearing basalts investigated using laser-ablation ICP-MS. Geochim. Cosmochim. Acta, 203 (2017), pp. 343-363
|
J.F. Kasting. Atmospheric composition of Hadean–early Archean Earth: the importance of CO. Geol. Soc. Am. Spec. Pap., 504 (2014), pp. 19-28
|
W. Klöck, H. Palme, H.J. Tobschall. Trace elements in natural metallic iron from Disko Island, Greenland. Contrib. Mineral. Petrol., 93 (1986), pp. 273-282
|
A. Kracher. Notes on the evolution of the IIIAB / pallasite parent body. Lun. Planet. Sci., 14 (1983), pp. 405-406
|
L.M. Larsen, A.K. Pedersen. Petrology of the Paleocene picrites and flood basalts on Disko and Nuussuaq, West Greenland. J. Petrol., 50 (2009), pp. 1667-1711
|
C.-T. Lee, C. Sun, E. Sharton-Bierig, P. Phelps, J. Borchardt, B. Liu, G. Costin, A.D. Johnston. Widespread phosphorous excess in olivine, rapid crystal growth, and implications for magma dynamics. Volcanica, 5 (2) (2022), pp. 433-450
|
K.D. Litasov, N.M. Podgornykh. Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. J. Raman Spectrosc., 48 (2017), pp. 1518-1527
|
J.F. Lovering. Electron microprobe analysis of terrestrial and meteoritic cohenite. Geochim. Cosmochim. Acta, 28 (1964), pp. 1745-1756
|
D.A. Minin, A.F. Shatskiy, K.D. Litasov, H. Ohfuji. The Fe–Fe2P phase diagram at 6 GPa. High Press Res., 39 (2019), pp. 50-68
|
W.P. Nash. Phosphate Minerals in Terrestrial Igneous and Metamorphic Rocks. J.O. Nriagu, P.B. Moore (Eds.), Phosphate Minerals, Springer, Berlin, Heidelberg (1984)
|
N.A.E. Nordenskiöld. Redogorelse for en expedition till Gronland ar 1870. Ofversigt af Kungl. Vetenskapsakademiens Forhandlingar, Stockholm, 27 (10) (1871), pp. 923-1082
|
Oleinikov, B.V., Okrugin, A.V., Tomshin, M.D., Levashov, V.K., Varganov, A.S., Kopylova, A.G., Pankov, Y.U., 1985. Native iron formation in platform basic rocks, Yakutian Scientific Center, Siberian Branch of the Russian Academy of Sciences, Yakutsk, 285 pp. (in Russian).
|
E.J. Olsen, I.M. Steele. Galileiite: A new meteoritic phosphate mineral. Meteor. Planet. Sci., 32 (1997), pp. A155-A156
|
M.A. Pasek. Schreibersite on the early Earth: scenarios for prebiotic phosphorylation. Geosci. Front., 8 (2017), pp. 329-335
|
M.A. Pasek. Phosphorus volatility in the early Solar nebula. Icarus, 317 (2019), pp. 59-65
|
M.A. Pasek, J.P. Harnmeijer, R. Buick, M. Gull, Z. Atlas. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 10089-10094
|
P. Pauliš, D. Černý, T. Malý, Z. Dolníček, M. Bohatý, J. Ulmanová, O. Pour, J. Plášil, O. Malina, P. Bohdálek, I. Sýkora, P.P. Povinec. Meteorit potůčky (Steinbach): historie a nové nálezy (Česká Republika). Bull. Mineral. Petrol., 28 (2020), pp. 179-202
|
A.K. Pedersen, L.M. Larsen, G.K. Pedersen. Lithostratigraphy, geology and geochemistry of the volcanic rocks of the Vaigat Formation on Disko and Nuussuaq, Paleocene of West Greenland. Geol. Surv. Denmark Greenland Bull., 39 (2017), p. 244
|
A.K. Pedersen, L.M. Larsen, G.K. Pedersen. Lithostratigraphy, geology and geochemistry of the volcanic rocks of the Maligât Formation and associated intrusions on Disko and Nuussuaq, Paleocene of West Greenland. Geol. Surv. Denmark Greenland Bull., 40 (2018), p. 242
|
E.S. Persikov, P.G. Bukhtiyarov, L.Y. Aranovich, A.N. Nekrasov, O.Y. Shaposhnikov. Experimental modeling of formation of native metals (Fe, Ni, Co) in the Earth’s crust by the interaction of hydrogen with basaltic melts. Geochem. Int., 57 (2019), pp. 1035-1044
|
E.S. Persikov, P. Bukhtiyarov, L.Y. Aranovich, M.D. Shchekleina. Features of basaltic melt-hydrogen interaction at hydrogen pressure 10–100 MPa and temperature 1100–1250 °C. Chem. Geol., 556 (2020), Article 119829
|
V. Raghavan. C-Fe-P (Carbon-Iron-Phosphorus). J. Phase Equil. Diff., 25 (6) (2004), pp. 541-542
|
M. Santosh, T. Arai, S. Maruyama. Hadean Earth and primordial continents: The cradle of prebiotic life. Geosc. Front., 8 (2) (2017), pp. 309-327
|
Saunders, A.D., Fitton, J.G., Kerr, A.C., Norry, M.J., Kent, R.W., 1997. The North Atlantic Igneous Province. In: Mahoney, J.J., Coffin, M.L. (Eds.), Large Igneous Provinces. Geophysical Monograph 100, 45–93. American Geophysical Union, Washington, D.C.
|
P. Schneider, P. Tropper, R. Kaindl. The formation of phosphoran olivine and stanfieldite from the pyrometamorphic breakdown of apatite in slags from a prehistoric ritual immolation site (Goldbichl, Igls, Tyrol, Austria). Mineral. Petrol., 107 (2013), pp. 327-340
|
V.V. Sharygin. Sodium-rich phosphate and silicate inclusions in troilite nodule in Darinskoe iron meteorite (IIC). Meteor. Planet Sci. (2019), p. 54
|
Sharygin, V.V., Karmanov, N.S., Podgornykh, N.M., 2016. Na-Fe-Phosphate Globules in Impact Metal-Troilite Associations of Chelyabinsk Meteorite. In: 79th Annual Meeting of the Meteoritical Society. Vol. 79, No. 1921, p. 6052.
|
Sharygin, V.V., 2016. Phosphate inclusions in cohenite from “black blocks” of the 45 mine burned dump, Kopeisk, Chelyabinsk Coal Basin. In: Proceedings of the Mineralogy of Technogenesis, Miass, Russia, 23-26 June 2016, pp. 34-49.
|
T. Shibuya, M. Yoshizaki, M. Sato, K. Shimizu, K. Nakamura, S. Omori, K. Suzuki, K. Takai, H. Tsunakawa, S. Maruyama. Hydrogen-rich hydrothermal environments in the Hadean ocean inferred from serpentinization of komatiites at 300 °C and 500 bar. Prog. Earth Planet. Sci., 2 (2015), p. 46
|
J.-H. Shim, C.-S. Oh, D.N. Lee. Thermodinamic assessment of the Fe-C-P system. Zeit. Metall., 91 (2) (2000), pp. 114-120
|
I.P. Solovova, A.A. Averin, L.O. Magazina. Reduced fluids and sulfide–metal alloy in the magnesian basalts of Disko Island, west Greenland. Petrology, 26 (6) (2018), pp. 640-649
|
Sonzogni, Y., Devouard, B., Provost, A., Devidal, J., 2009. Evidence for two-stage melting in the Brahin pallasite parent body. American Geophysical Union Fall Meeting, San Francisco, p P12B-01.
|
K.J.V. Steenstrup. On the non-meteoric origin of the masses of metallic iron in the basalt of Disko in Greenland. Min. Mag., 1 (1877), pp. 143-148
|
K.J.V. Steenstrup. Bidrag til Kjendskab til de geognostiske og geographiske Forhold i en Del af Nord-Grønland. Meddelelser Om Grønland, 4 (5) (1883), pp. 173-242
|
A. Takeuchi, A. Inoue. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans., 46 (2005), pp. 2817-2829
|
S.N. Teplyakova, C.A. Lorenz. Crystallisation of the metal in IIe irons and possible meteorite analog. Geochemistry, 64 (8) (2019), pp. 826-836
|
F. Tian, O.B. Toon, A.A. Pavlov, H. De Sterck. A hydrogen rich early Earth atmosphere. Science, 308 (2005), pp. 1014-1017
|
Törnebohm, A.E., 1878. Ueber die Eisenführenden Gesteine von Ovifak und Assuk in Grønland, Svenska vetenskaps-akademiens handlingar, 230 pages (in German).
|
D. Trail, E.B. Watson, N.D. Tailby. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature, 480 (2011), pp. 79-82
|
F. Ulff-Møller. Solidification history of the Kitdlît lens: immiscible metal and sulphide liquids from a basaltic dyke on Disko, central West Greenland. J. Petrol., 26 (1985), pp. 64-91
|
F. Ulff-Møller. Formation of native iron in sediment-contaminated magma. I. A case study of the Hanekammen Complex on Disko Island, West Greenland. Geochim. Cosmochim. Acta, 54 (1990), pp. 57-70
|
O.S. Vereshchagin, M.O. Khmelnitskaya, M.N. Murashko, Y. Vapnik, A.N. Zaitsev, N.S. Vlasenko, V.V. Shilovskikh, S.N. Britvin. Reduced mineral assemblages of superficial origin in west-central Jordan. Mineral. Petrol. (2024),
CrossRef
Google scholar
|
C.R. Walton, S. Ewens, J.D. Coates, R.E. Blake, N.J. Planavsky, C. Reinhard, P. Ju, J. Hao, M.A. Pasek. Phosphorus availability on the early Earth and the impacts of life. Nat. Geosci., 16 (2023), pp. 399-409
|
F.H. Westheimer. Why nature chose phosphates. Science, 235 (1987), pp. 1173-1178
|
R. Willnecker, D.M. Herlach, B. Feuerbacher. Containerless undercooling of bulk Fe-Ni melts. Appl. Phys. Lett., 49 (1965), p. 1339
|
X. Xie, M. Chen, S. Zhai, F. Wang. Eutectic metal+ troilite+ Fe-Mn-Na phosphate+ Al-free chromite assemblage in shock-produced chondritic melt of the Yanzhuang chondrite. Meteor. Planet. Sci., 49 (12) (2014), pp. 2290-2304
|
X. Yang, F. Gaillard, B. Scaillet. A relatively reduced Hadean continental crust and implications for the early atmosphere and crustal rheology. Earth Planet. Sci. Lett., 393 (2014), pp. 210-219
|
Y. Yin, Z. Li, S. Zhai. The phase diagram of the Fe-P binary system at 3 GPa and implications for phosphorus in the lunar core. Geochim. Cosmochim. Acta, 254 (2019), pp. 54-66
|
Z. You, I.H. Jung. Critical evaluation and thermodynamic optimization of the Fe-P System. Metall. Mater. Trans. B, 51 (2020), pp. 3108-3129
|
K.J. Zahnle, M. Gacesa, D.C. Catling. Strange messenger: a new history of hydrogen on Earth, as told by Xenon. Geochim. Cosmochim. Acta, 244 (2019), pp. 56-85
|
K.J. Zahnle, R. Lupu, D.C. Catling, N. Wogan. Creation and evolution of impact-generated reduced atmospheres of early Earth. Planet. Sci. J., 1 (2020), p. 11
|
/
〈 |
|
〉 |