Regional trends and petrologic factors inhibit global interpretations of zircon trace element compositions
Nick M.W. Roberts, Christopher J. Spencer, Stephen Puetz, C. Brenhin Keller, Simon Tapster
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101852.
Regional trends and petrologic factors inhibit global interpretations of zircon trace element compositions
The trace element composition of zircon reveals information about the melt that they are derived from, as such, detrital zircon trace element compositions can be used to interrogate melt compositions, and thus the evolution of the continental crust in time and space. Here, we present a global database of detrital zircon compositions and use it to test whether average global trends for five common petrogenetic proxies truly represent secular changes in continental evolution. We demonstrate that the secular trend is broadly comparable across continental regions for Ti-in-zircon temperatures, but for other trace element ratios interrogated, secular trends are highly variable between continental regions. Because trace element ratios result from multiple petrologic variables, we argue that these petrogenetic proxies can be overinterpreted if projected to global geologic processes. In particular, we caution against the interpretation of crustal thickness from trace elements in zircon, and we argue that our results negate current hypotheses concerning secular changes in crustal thickness.
Detrital zircon / Trace elements / Secular change / Eu anomaly / Crustal thickness
R. Alonso-Perez, O. Müntener, P. Ulmer. Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib. Mineral. Petrol., 157 (2009), p. 541
|
C. Balica, M.N. Ducea, G.E. Gehrels, J. Kirk, R.D. Roban, P. Luffi, J.B. Chapman, A. Triantafyllou, J. Guo, A.M. Stoica, J. Ruiz. A zircon petrochronologic view on granitoids and continental evolution. Earth Planet. Sci. Lett., 531 (2020), Article 116005
|
E.A. Bell, H.M. Kirkpatrick. Effects of crustal assimilation and magma mixing on zircon trace element relationships across the Peninsular Ranges Batholith. Chem. Geol., 586 (2021), Article 120616
|
E.M. Bloch, M.C. Jollands, P. Tollan, F. Plane, A.S. Bouvier, R. Hervig, A.J. Berry, C. Zaubitzer, S. Escrig, O. Müntener, M. Ibañez-Mejia. Diffusion anisotropy of Ti in zircon and implications for Ti-in-zircon thermometry. Earth Planet. Sci. Lett., 578 (2022), Article 117317
|
P. Boehnke, E.B. Watson, D. Trail, T.M. Harrison, A.K. Schmitt. Zircon saturation re-revisited. Chem. Geol., 351 (2013), pp. 324-334
|
A. Brudner, H. Jiang, X. Chu, M. Tang. Crustal thickness of the Grenville orogen: A Mesoproterozoic tibet?. Geology, 50 (2022), pp. 402-406
|
P. Castillo, H. Bahlburg, R. Fernandez, C.M. Fanning, J. Berndt. The European continental crust through detrital zircons from modern rivers: Testing representativity of detrital zircon U-Pb geochronology. Earth-Sci. Rev., 232 (2022), Article 104145
|
J.B. Chapman, M.N. Ducea, P.G. DeCelles, L. Profeta. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43 (2015), pp. 919-922
|
C. Cheng, S. Li, X. Xie, W. Xie, D. Yang, G. Chai, Y. Lu, X. Wei, M. Li, B. Hu, A.B. Busbey. Crustal thickness variation of the Dabie orogenic belt: Insights from detrital zircon evidence and geological significance. Gondwana Res., 129 (2024), pp. 355-366
|
L.L. Claiborne, C.F. Miller, G.A. Gualda, T.L. Carley, A.K. Covey, J.L. Wooden, M.A. Fleming. Zircon as magma monitor: Robust, temperature-dependent partition coefficients from glass and zircon surface and rim measurements from natural systems. Microstruct. Geochronol.: Planet. Rec. Atom Scale (2018), pp. 1-33
|
K.C. Condie, S.J. Puetz, C.J. Spencer, N.M.W. Roberts. Four billion years of secular compositional change in granitoids. Chem. Geol., 644 (2024), Article 121868
|
L.J. Crisp, A.J. Berry, A.D. Burnham, L.A. Miller, M. Newville. The Ti-in-zircon thermometer revised: The effect of pressure on the Ti site in zircon. Geochim. Cosmochim. Acta, 360 (2023), pp. 241-258,
CrossRef
Google scholar
|
B. Dhuime, C.J. Hawkesworth, P.A. Cawood, C.D. Storey. A change in the geodynamics of continental growth 3 billion years ago. Science, 335 (6074) (2012), pp. 1334-1336
|
L. Dong, X. Bai, M. Song, R. Wang. Crustal thickness of the Jiaodong Peninsula in the Mesozoic: Implications for the destruction of the North China Craton. Front. Earth Sci., 11 (2023), p. 1171456
|
Y. Dong, S. Cao, L. Zhan, W. Li, F. Neubauer, J. Genser. Tectono-magmatism evolution in the Gaoligong orogen belt during Neoproterozoic to Paleozoic: Significance for assembly of East Gondwana. Precambrian Res., 378 (2022), Article 106776
|
J.M. Ferry, E.B. Watson. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol., 154 (4) (2007), pp. 429-437
|
M. Gard, D. Hasterok, J.A. Halpin. Global whole-rock geochemical database compilation. Earth Syst. Sci. Data, 11 (2019), pp. 1553-1566
|
C.B. Grimes, B.E. John, P.B. Kelemen, F.K. Mazdab, J.L. Wooden, M.J. Cheadle, K. Hanghøj, J.J. Schwartz. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35 (2007), pp. 643-646
|
R.B. Ickert, I.S. Williams, D. Wyborn. Ti in zircon from the Boggy Plain zoned pluton: implications for zircon petrology and Hadean tectonics. Contrib. Mineral. Petrol., 162 (2011), pp. 447-461
|
J.S. Jaramillo, S. Zapata, M. Carvalho, A. Cardona, C. Jaramillo, J.L. Crowley, G. Bayona, D. Caballero-Rodriguez. Diverse magmatic evolutionary trends of the Northern Andes unraveled by Paleocene to early Eocene detrital zircon geochemistry. Geochem. Geophys. Geosyst., 23 (9) (2022), Article 2021GC010113
|
C.B. Keller, B. Schoene. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature, 485 (2012), pp. 490-493
|
B. Keller, B. Schoene. Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth Planet. Sci. Lett., 481 (2018), pp. 290-304
|
O. Laurent, J.F. Moyen, J.F. Wotzlaw, J. Björnsen, O. Bachmann. Early Earth zircons formed in residual granitic melts produced by tonalite differentiation. Geology, 50 (4) (2022), pp. 437-441
|
M. Lei, J. Chen, C. Li. Geochemical evidence for the Eocene surface uplift of the southern Lhasa subterrane, southern Tibet and the implications. Lithos, 434 (2022), Article 106919
|
Y. Li, C. Gong, G. Peng, X. Qiu, R.J. Steel, Z. Xiao, Y. He, K. Qi, Y. Yu. Detrital zircon signals of the late Eocene provenance change of the Pearl River Mouth Basin, northern South China Sea. Sediment. Geol., 451 (2023), Article 106409
|
X. Liu, R. Gao, X. Guo, L. Ding. Detrital zircon U-Pb geochronology of the Lunpola basin strata constrains the Cenozoic tectonic evolution of central Tibet. Gondwana Res., 113 (2023), pp. 179-193
|
H. Liu, N.R. McKenzie, C.L. Colleps, W. Chen, Y. Ying, L. Stockli, A. Sardsud, D.F. Stockli. Zircon isotope–trace element compositions track Paleozoic-Mesozoic slab dynamics and terrane accretion in Southeast Asia. Earth Planet. Sci. Lett., 578 (2022), Article 117298
|
R.R. Loucks, M.L. Fiorentini, B.D. Rohrlach. Divergent T–ƒO2 paths during crystallisation of H2O-rich and H2O-poor magmas as recorded by Ce and U in zircon, with implications for TitaniQ and TitaniZ geothermometry. Contrib. Mineral. Petrol., 173 (2018), pp. 1-21
|
P. Luffi, M.N. Ducea. Chemical mohometry: Assessing crustal thickness of ancient orogens using geochemical and isotopic data. Rev. Geophys., 60 (2022), Article 2021RG000753
|
W.F. McDonough, S.S. Sun. The composition of the Earth. Chem. Geol., 120 (3–4) (1995), pp. 223-253
|
N.R. McKenzie, A.J. Smye, V.S. Hegde, D.F. Stockli. Continental growth histories revealed by detrital zircon trace elements: A case study from India. Geology, 46 (2018), pp. 275-278
|
H.S. Moghadam, Q.L. Li, W.L. Griffin, R.J. Stern, J.F. Santos, M.N. Ducea, C.J. Ottley, O. Karsli, F. Sepidbar, S.Y. O'Reilly. Temporal changes in subduction-to collision-related magmatism in the Neotethyan orogen: The Southeast Iran example. Earth-Sci. Rev., 226 (2022), Article 103930
|
H. Moreira, A. Buzenchi, C.J. Hawkesworth, B. Dhuime. Plumbing the depths of magma crystallization using 176Lu/177Hf in zircon as a pressure proxy. Geology, 51 (3) (2023), pp. 233-237,
CrossRef
Google scholar
|
T. Paulsen, C. Deering, J. Sliwinski, S. Chatterjee, O. Bachmann, M. Guillong. Crustal thickness, rift-drift and potential links to key global events. Terra Nova, 33 (2021), pp. 12-20
|
T. Paulsen, C. Deering, J. Sliwinski, S. Chatterjee, O. Bachmann. Continental magmatism and uplift as the primary driver for first-order oceanic 87Sr/86Sr variability with implications for global climate and atmospheric oxygenation. GSA Today, 32 (2022), pp. 4-10
|
I. Pereira, V. van Schijndel, M. Tedeschi, K. Cutts, M. Guitreau. A review of detrital heavy mineral contributions to furthering our understanding of continental crust formation and evolution. Geol. Soc. Lond. Special Publ., 537 (1) (2024), pp. 9-55
|
L. Profeta, M.N. Ducea, J.B. Chapman, S.R. Paterson, S.M.H. Gonzales, M. Kirsch, L. Petrescu, P.G. DeCelles. Quantifying crustal thickness over time in magmatic arcs. Sci. Rep., 5 (2015), pp. 1-7
|
S.J. Puetz, C.J. Spencer, C.E. Ganade. Analyses from a validated global UPb detrital zircon database: enhanced methods for filtering discordant UPb zircon analyses and optimizing crystallization age estimates. Earth-Sci. Rev., 220 (2021), Article 103745
|
J.R. Reimink, J.H. Davies, A.M. Bauer, T. Chacko. A comparison between zircons from the Acasta Gneiss Complex and the Jack Hills region. Earth Planet. Sci. Lett., 531 (2020), Article 115975
|
N.M.W. Roberts, K.C. Condie, R.M. Palin, C.J. Spencer. Hot, wide, continental back-arcs explain Earth’s enigmatic mid-Proterozoic magmatic and metamorphic record. Tektonika, 1 (1) (2023), pp. 67-75, 10.55575/tektonika2023.1.1.32
|
N.M.W. Roberts, J.D. Hernández-Montenegro, R.M. Palin. Garnet stability during crustal melting: Implications for chemical mohometry and secular change in arc magmatism and continent formation. Chem. Geol., 659 (2024), p. 122142,
CrossRef
Google scholar
|
N.M.W. Roberts, C.J. Spencer. The zircon archive of continent formation through time. Geol. Soc. Lond. Special Publ., 389 (2015), pp. 197-225,
CrossRef
Google scholar
|
D. Schiller, F. Finger. Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions. Contrib. Mineral. Petrol., 174 (2019), pp. 1-16
|
C.J. Spencer, C. Hawkesworth, P.A. Cawood, B. Dhuime. Not all supercontinents are created equal: Gondwana-Rodinia case study. Geology, 41 (2013), pp. 795-798
|
K.E. Sundell, A.K. Laskowski, C. Howlett, P. Kapp, M. Ducea, J.B. Chapman, L. Ding. Episodic Late Cretaceous to Neogene crustal thickness variation in southern Tibet. Terra Nova, 36 (1) (2024), pp. 45-52
|
K.E. Sundell, F.A. Macdonald. The tectonic context of hafnium isotopes in zircon. Earth Planet. Sci. Lett., 584 (2022), Article 117426
|
R. Tamblyn, D. Hasterok, M. Hand, M. Gard. Mantle heating at ca. 2 Ga by continental insulation: Evidence from granites and eclogites. Geology, 50 (2022), pp. 91-95
|
D. Trail, E.B. Watson, N.D. Tailby. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta, 97 (2012), pp. 70-87
|
A. Triantafyllou, M.N. Ducea, G. Jepson, J.D. Hernández-Montenegro, A. Bisch, J. Ganne. Europium anomalies in detrital zircons record major transitions in Earth geodynamics at 2.5 Ga and 0.9 Ga. Geology, 51 (2) (2023), pp. 141-145,
CrossRef
Google scholar
|
C. Verdel, M.J. Campbell, C.M. Allen. Detrital zircon petrochronology of central Australia, and implications for the secular record of zircon trace element composition. Geosphere, 17 (2021), pp. 538-560
|
Z. Wang, Z. Wang, Y. Zhang, B. Xu, Y. Li, Y. Tian, Y. Wang, J. Peng. Linking ∼1.4–0.8 Ga volcano-sedimentary records in eastern Central Asian orogenic belt with southern Laurentia in supercontinent cycles. Gondwana Res., 105 (2022), pp. 416-431
|
E.B. Watson, D.A. Wark, J.B. Thomas. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol., 151 (4) (2006), pp. 413-433
|
G.H. Wu, X. Chu, M. Tang, W. Li, F. Chen. Distinct tectono-magmatism on the margins of Rodinia and Gondwana. Earth Planet. Sci. Lett., 609 (2023), Article 118099
|
L. Xiong, S. Song, L. Su, G. Zhang, M.B. Allen, D. Feng, S. Yang. Detrital zircons from high-pressure trench sediments (Qilian Orogen): constraints on continental-arc accretion, subduction initiation and polarity of the Proto-Tethys Ocean. Gondwana Res., 113 (2023), pp. 194-209
|
C. Yakymchuk, R.M. Holder, J. Kendrick, J.F. Moyen. Europium anomalies in zircon: A signal of crustal depth?. Earth Planet. Sci. Lett., 622 (2023), Article 118405
|
Y.C. Zeng, J.F. Xu, J.L. Chen, B.D. Wang, F. Huang. How and how much did Western Central Tibet raise by India-Asia collision?. Geophys. Res. Lett., 49 (20) (2022), Article 2022GL101206
|
Z.J. Zhang, T. Kusky, M. Gao, Q.M. Cheng. Spatio-temporal analysis of big data sets of detrital zircon U-Pb geochronology and Hf isotope data: Tests of tectonic models for the Precambrian evolution of the North China Craton. Earth-Sci. Rev., 239 (2023), Article 104372,
CrossRef
Google scholar
|
S. Zhong, S. Li, R. Seltmann, Z. Lai, J. Zhou. The influence of fractionation of REE-enriched minerals on the zircon partition coefficients. Geosci. Front., 12 (2021), Article 101094
|
/
〈 |
|
〉 |