Using adjacency matrix to explore remarkable associations in big and small mineral data
Xiang Que, Jingyi Huang, Jolyon Ralph, Jiyin Zhang, Anirudh Prabhu, Shaunna Morrison, Robert Hazen, Xiaogang Ma
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101823.
Using adjacency matrix to explore remarkable associations in big and small mineral data
Data exploration, usually the first step in data analysis, is a useful method to tackle challenges caused by big geoscience data. It conducts quick analysis of data, investigates the patterns, and generates/refines research questions to guide advanced statistics and machine learning algorithms. The background of this work is the open mineral data provided by several sources, and the focus is different types of associations in mineral properties and occurrences. Researchers in mineralogy have been applying different techniques for exploring such associations. Although the explored associations can lead to new scientific insights that contribute to crystallography, mineralogy, and geochemistry, the exploration process is often daunting due to the wide range and complexity of factors involved. In this study, our purpose is implementing a visualization tool based on the adjacency matrix for a variety of datasets and testing its utility for quick exploration of association patterns in mineral data. Algorithms, software packages, and use cases have been developed to process a variety of mineral data. The results demonstrate the efficiency of adjacency matrix in real-world usage. All the developed works of this study are open source and open access.
Adjacency matrix / Association analysis / Data exploration / Mineral informatics / Open data
A. Bavelas. Communication patterns in task-oriented groups. J. Acoust. Soc. Am., 22 (6) (1950), pp. 725-730
|
N. Biggs, N.L. Biggs, B. Norman. Algebraic Graph Theory (2nd Edition). Cambridge University Press, New York (1993), p. 216
|
V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre. Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp., 2008 (10) (2008), p. P10008
|
Bradley, D.C., McCauley, A.D., Stillings, L.M., 2017. Mineral-deposit model for lithium-cesium-tantalum pegmatites. U.S. Geological Survey Scientific Investigations Report 2010–5070–O, Reston, VA, 48 p. doi:
CrossRef
Google scholar
|
U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, D. Wagner. On modularity clustering. IEEE Trans. Knowl. Data Eng., 20 (2) (2007), pp. 172-188
|
A.E. Brouwer, W.H. Haemers. Spectra of Graphs. Springer, New York (2012), p. 245
|
M. Chen, F. Xiao. Projection pursuit random forest for mineral prospectivity mapping. Math. Geosci., 55 (7) (2023), pp. 963-987
|
A. Clauset, M.E. Newman, C. Moore. Finding community structure in very large networks. Phys. Rev. E, 70 (6) (2004), Article 066111
|
D.M. Cvetković, M. Doob, H. Sachs. Spectra of Graphs. Johann Ambrosius Barth Verlag, Heidelberg-Leipzig (1995), p. 447
|
R. Diestel. Graph Theory (5th Edition). Springer, Berlin (2017), p. 446
|
I. Farkas, I. Derényi, H. Jeong, Z. Neda, Z.N. Oltvai, E. Ravasz, A. Schubert, A.L. Barabási, T. Vicsek. Networks in life: scaling properties and eigenvalue spectra. Physica A, 314 (1–4) (2002), pp. 25-34
|
Fekete, J.D., 2009. Visualizing networks using adjacency matrices: Progresses and challenges. In: Proceedings of the 11th IEEE International Conference on Computer-Aided Design and Computer Graphics, Huangshan, China, pp. 636-638. Doi:
CrossRef
Google scholar
|
M. Field, J. Stiefenhofer, J. Robey, S. Kurszlaukis. Kimberlite-hosted diamond deposits of southern Africa: a review. Ore Geol. Rev., 34 (1–2) (2008), pp. 33-75
|
L.C. Freeman. Centrality in social networks: conceptual clarification. J. Scott (Ed.), Social Network: Critical Concepts in Sociology, Routledge, New York (2002), pp. 238-263
|
M. Girvan, M.E. Newman. Community structure in social and biological networks. Proc. Nat. Acad. Sci., 99 (12) (2002), pp. 7821-7826
|
J.J. Golden, R.T. Downs, R.M. Hazen, A.J. Pires, J. Ralph. Mineral evolution database: data-driven age assignment, how does a mineral get an age?. In GSA Annual Meeting, Phoenix, Arizona, USA (2019),
CrossRef
Google scholar
|
R.M. Hazen. Data-driven abductive discovery in mineralogy. Am. Mineral., 99 (11–12) (2014), pp. 2165-2170
|
R.M. Hazen, R.T. Downs, A. Elesish, P. Fox, O. Gagné, J.J. Golden, E.S. Grew, D.R. Hummer, G. Hystad, S.V. Krivovichev, C. Li, C. Liu, X. Ma, S.M. Morrison, F. Pan, A.J. Pires, A. Prab-hu, J. Ralph, S.E. Runyon, H. Zhong. Data-driven discovery in mineralogy: recent advances in data resources, analysis, and visualization. Engineering, 5 (2019), pp. 397-405
|
Hazen, R.M., Morrison, S., Williams, J., Prabhu, A., Eleish, A., Fox, P., 2021. Mineral Informatics: Analysis and Visualization of Minerals through Time and Space. AGU Fall Meeting 2021, New Orleans, LA, IN13A-01.
|
R.M. Hazen, S.M. Morrison. On the paragenetic modes of minerals: a mineral evolution perspective. Am. Mineral., 107 (7) (2022), pp. 1262-1287
|
T. Hey, S. Tansley, K. Tolle. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Corporation, Redmond, WA (2009), p. 252
|
P. Jahoda, I. Drozdovskiy, S.J. Payler, L. Turchi, L. Bessone, F. Sauro. Machine learning for recognizing minerals from multispectral data. Analyst, 146 (1) (2021), pp. 184-195
|
S.M. Jowitt, G.M. Mudd, Z. Weng. Hidden mineral deposits in Cu-dominated porphyry-skarn systems: how resource reporting can occlude important mineralization types within mining camps. Econ. Geol., 108 (5) (2013), pp. 1185-1193
|
Karl, N.A., Mauk, J.L., Reyes, T.A., Scott, P.C., 2019. Lithium Deposits in the United States. U.S. Geological Survey Data Release. Reston, VA.
CrossRef
Google scholar
|
R. Keskinen, S. Hillier, E. Liski, V. Nuutinen, M. Nyambura, M. Tiljander. Mineral composition and its relations to readily available element concentrations in cultivated soils of Finland. Acta Agriculturae Scandinavica, Section B—Soil & Plant. Science, 72 (1) (2022), pp. 751-760
|
B. Lafuente, R.T. Downs, H. Yang, N. Stone. The power of databases: the RRUFF project. T. Armbruster, R.M. Danisi (Eds.), Highlights in Mineralogical Crystallography, De Gruyter, Berlin and Boston (2015), pp. 1-30
|
X. Ma, D. Hummer, J.J. Golden, P.A. Fox, R.M. Hazen, S.M. Morrison, R.T. Downs, B.L. Madhikarmi, C. Wang, M.B. Meyer. Using visual exploratory data analysis to facilitate collaboration and hypothesis generation in cross-disciplinary research. ISPRS Int. J. Geo Inf., 6 (11) (2017), p. 368,
CrossRef
Google scholar
|
X. Ma, J. Ralph, J. Zhang, X. Que, A. Prabhu, S.M. Morrison, R.M. Hazen, L. Wyborn, K. Lehnert. OpenMindat: open and FAIR mineralogy data from the Mindat database. Geosci. Data J., 11 (1) (2024), pp. 94-104,
CrossRef
Google scholar
|
Ma, X., 2023. Data Science for Geoscience: Recent Progress and Future Trends from the Perspective of a Data Life Cycle. In: Ma, X., Mookerjee, M., Hsu, L., Hills, D. (Eds.), Recent Advancement in Geoinformatics and Data Science. Geological Society of America Special Paper V. 558, Boulder, CO, pp. 57-69.
|
S.M. Morrison, C. Liu, A. Eleish, A. Prabhu, C. Li, J. Ralph, R.T. Downs, J.J. Golden, P. Fox, D.R. Hummer, M.B. Meyer. Network analysis of mineralogical systems. Am. Mineral., 102 (8) (2017), pp. 1588-1596
|
S.M. Morrison, A. Prabhu, A. Eleish, R.M. Hazen, J.J. Golden, R.T. Downs, S. Perry, P.C. Burns, J. Ralph, P. Fox. Predicting new mineral occurrences and planetary analog environments via mineral association analysis. PNAS Nexus, 2 (5) (2023), p. pgad110
|
M. Okoe, R. Jianu, S. Kobourov. Node-link or adjacency matrices: old question, new insights. IEEE Trans. Vis. Comput. Graph., 25 (10) (2019), pp. 2940-2952,
CrossRef
Google scholar
|
G. Palla, I. Derényi, I. Farkas, T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435 (7043) (2005), pp. 814-818
|
P.J. Pollard, R.G. Taylor, L. Peters. Ages of intrusion, alteration, and mineralization at the Grasberg Cu-Au deposit, Papua, Indonesia. Econ. Geol., 100 (5) (2005), pp. 1005-1020
|
P. Pons, M. Latapy. Computing communities in large networks using random walks. J. Graph Algorithms Appl., 10 (2) (2006), pp. 191-218
|
A. Prabhu, S.M. Morrison, P. Fox, X. Ma, M.L. Wong, J. Williams, K.N. McGuinness, S. Krivovichev, K.A. Lehnert, J.P. Ralph, B. Lafuente. What is mineral informatics?. Am. Mineral., 108 (7) (2023), pp. 1242-1257,
CrossRef
Google scholar
|
U.N. Raghavan, R. Albert, S. Kumara. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E, 76 (3) (2007), Article 036106
|
Ralph, J., Ma, X., Prabhu, A., Martynov, P., 2022. Building OpenMindat for FAIR mineralogical data access. EarthCube 2022 Annual Meeting, San Diego, CA. Poster.
|
V.L. Rayzman, A.V. Aturin, I.Z. Pevzner, V.M. Sizyakov, L.P. Ni, I.K. Filipovich. Extracting silica and alumina from low-grade bauxite. J. Metals, 55 (2003), pp. 47-50
|
J. Reichardt, S. Bornholdt. Statistical mechanics of community detection. Phys. Rev. E, 74 (1) (2006), Article 016110
|
M. Rosvall, C.T. Bergstrom. Maps of random walks on complex networks reveal community structure. Proc. Nat. Acad. Sci., 105 (4) (2008), pp. 1118-1123
|
B. Sadeghi. Concentration-concentration fractal modelling: a novel insight for correlation between variables in response to changes in the underlying controlling geological-geochemical processes. Ore Geol. Rev., 128 (2021), Article 103875
|
J.W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, PA (1977), p. 688
|
C. Wang, R.M. Hazen, Q. Cheng, M.H. Stephenson, C. Zhou, P. Fox, S. Shen, R. Oberhansli, Z. Hou, X. Ma, Z. Feng, J. Fan, C. Ma, X. Hu, B. Luo, J. Wang. The deep-time digital Earth program: data-driven discovery in the geosciences. Natl. Sci. Rev., 8 (9) (2021), p. nwab027,
CrossRef
Google scholar
|
B. Wang, K. Ma, L. Wu, Q. Qiu, Z. Xie, L. Tao. Visual analytics and information extraction of geological content for text-based mineral exploration reports. Ore Geol. Rev., 144 (2022), Article 104818
|
F. Xiao, J.G. Chen. Fractal projection pursuit classification model applied to geochemical survey data. Comput. & Geosci., 45 (2012), pp. 75-81
|
M. Yousefi, E.J.M. Carranza, O.P. Kreuzer, V. Nykänen, J.M. Hronsky, M.J. Mihalasky. Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: state-of-the-art and outlook. J. Geochem. Explor., 229 (2021), Article 106839
|
J. Zhang, X. Que, B. Madhikarmi, R.M. Hazen, J. Ralph, A. Prabhu, S.M. Morrison, X. Ma. Using a 3D heat map to explore the diverse correlations among elements and mineral species. Applied Computing & Geosciences, 21 (2024), Article 100154
|
R. Zuo, J. Wang, Y. Xiong, Z. Wang. The processing methods of geochemical exploration data: past, present, and future. Appl. Geochem., 132 (2021), Article 105072
|
/
〈 |
|
〉 |