Modeling hydrological consequences of 21st-Century climate and land use/land cover changes in a mid-high latitude watershed

Chuanqi Liu, Chi Xu, Zhijie Zhang, Shengqing Xiong, Wanchang Zhang, Bo Zhang, Hao Chen, Yongxin Xu, Shuhang Wang

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101819.

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101819. DOI: 10.1016/j.gsf.2024.101819

Modeling hydrological consequences of 21st-Century climate and land use/land cover changes in a mid-high latitude watershed

Author information +
History +

Abstract

The Naoli River Basin (NRB), a pivotal agricultural production area in China, is poised to undergo substantial impacts on water resources due to projected climate and land use/cover (LULC) changes. Despite its significance in the context of China's expanding farmland construction in the NRB, there exists limited research on the potential repercussions of future shifts in runoff, soil water content (SWC), and evapotranspiration (ET) on crop productivity and water availability (both in terms of quantity and timing). This study employs future LULC maps and an ensemble of ten CMIP6 Global Climate Models (GCMs) across three scenarios to drive the well-calibrated distributed hydrological model, ESSI-3. The objective of present study is aimed on projecting hydrological consequences under climate and land use/land cover changes in near-term (2026–2050), middle-term (2051–2075), and far-term (2076–2100) future in comparison to the baseline period of 1990–2014. Results consistently indicate an increase trend in annual average ET, runoff, and SWC in the NRB across all three future periods under the three SSP scenarios. LULC changes emerge as the primary driver influencing regional hydrological processes in the near future. Notably, under high-emission scenarios, monthly runoff and SWC are projected to significantly increase in March but decrease in April during the middle and far future periods compared to the baseline. This shift is attributed to the anticipated warming of winter and spring, leading to a transition in peak snowmelt from April to March. Concurrently, the expansion of cropland intensifies crop evapotranspiration demand, potentially exacerbating water stress during the early stages of crop growth in April. The findings underscore the importance of addressing the substantial impacts of climate change and land use planning on regional water cycling processes. Early planning to mitigate water shortages during the initial stage of future crop growth is crucial for ensuring food security and managing water-related challenges in the NRB and neighboring mid-high latitude regions.

Keywords

Climate and LULC changes / ESSI-3 / Hydrological modeling / Snowmelt / Naoli River Basin

Cite this article

Download citation ▾
Chuanqi Liu, Chi Xu, Zhijie Zhang, Shengqing Xiong, Wanchang Zhang, Bo Zhang, Hao Chen, Yongxin Xu, Shuhang Wang. Modeling hydrological consequences of 21st-Century climate and land use/land cover changes in a mid-high latitude watershed. Geoscience Frontiers, 2024, 15(5): 101819 https://doi.org/10.1016/j.gsf.2024.101819

References

L. Alfieri, P. Burek, L. Feyen, G. Forzieri. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci., 19 (2015), pp. 2247-2260,
CrossRef Google scholar
A. Aryal, S. Shrestha, M.S. Babel. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theor. Appl. Climatol., 135 (2019), pp. 193-209,
CrossRef Google scholar
Y. Bai, J. Zhang, S. Zhang, F. Yao, V. Magliulo. A remote sensing-based two-leaf canopy conductance model: global optimization and applications in modeling gross primary productivity and evapotranspiration of crops. Remote Sens. Environ., 215 (2018), pp. 411-437,
CrossRef Google scholar
E. Beaulieu, Y. Goddéris, Y. Donnadieu, D. Labat, C. Roelandt. High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nat. Clim. Chang., 2 (2012), pp. 346-349,
CrossRef Google scholar
M.L. Berihun, A. Tsunekawa, N. Haregeweyn, D.T. Meshesha, E. Adgo, M. Tsubo, T. Masunaga, A.A. Fenta, D. Sultan, M. Yibeltal, K. Ebabu. Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the upper Blue Nile basin. Ethiopia. Sci. Total Environ., 689 (2019), pp. 347-365
T. Chanapathi, S. Thatikonda. Investigating the impact of climate and land-use land cover changes on hydrological predictions over the krishna river basin under present and future scenarios. Sci. Total Environ., 721 (2020), Article 137736
J. Chen, F.P. Brissette, A. Poulin, R. Leconte. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res., 47 (12) (2011), p. W12509,
CrossRef Google scholar
H. Chen, W. Zhang, N. Nie, Y. Guo. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations. Sci. Total Environ., 649 (2019), pp. 372-387,
CrossRef Google scholar
H. Chen, W. Zhang. Variations of simulated water use efficiency over 2000–2016 and its driving forces in Northeast China. Proc. SPIE., 2019 (2019),
CrossRef Google scholar
Chong, L. U. O., LIU, H. J., Qiang, F. U., GUAN, H. X., Qiang, Y. E., ZHANG, X. L., KONG, F. C., 2021. Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments. Journal of Integrative Agriculture19(7):,1885-1896.
Y. Dai, W. Shangguan, Q. Duan, B. Liu, S. Fu, G. Niu. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeorol., 14 (2013), pp. 869-887,
CrossRef Google scholar
W.T. Dibaba, T.A. Demissie, K. Miegel. Watershed hydrological response to combined land use/land cover and climate change in highland Ethiopia: finchaa catchment. Water, 12 (6) (2020), p. 1801
T.G. Farr, P.A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, D. Alsdorf. The shuttle radar topography Mission. Rev. Geophys., 45 (2007),
CrossRef Google scholar
S. Fatichi, V.Y. Ivanov, A. Paschalis, N. Peleg, P. Molnar, S. Rimkus, J. Kim, P. Burlando, E. Caporali. Uncertainty partition challenges the predictability of vital details of climate change. Earth's Future, 4 (2016), pp. 240-251,
CrossRef Google scholar
J. Fu, J. Liu, X. Wang, M. Zhang, W. Chen, B. Chen. Ecological risk assessment of wetland vegetation under projected climate scenarios in the sanjiang plain. China. Journal of Environmental Management, 273 (2020), Article 111108,
CrossRef Google scholar
Golub, M., Thiery, W., Marcé, R., Pierson, D., Vanderkelen, I., Mercado-Bettin, D., Woolway, R., Grant, L., Jennings, E., M. Kraemer, B., Schewe, J., Zhao, F., Frieler, K., Mengel, M., Y. Bogomolov, V., Bouffard, D., Côté, M., Couture, Raoul-Marie., V. Debolskiy, A., Droppers, B., Gal, G., Guo, M., B. G. Janssen, A., Kirillin, G., Ladwig, R., Magee, M., Moore, T., Perroud, M., Piccolroaz, S., Vinnaa, L. R., Schmid, M., Shatwell, T., M. Stepanenko, V., Tan, Z., Woodward, B., Yao, H., Adrian, R., Allan, M., Anneville, O., Arvola, L., Atkins, K., Boegman, L., Carey, C., Christianson, K., Eyto, E., DeGasperi, C., Grechushnikova, M., Hejzlar, J., Joehnk, K., D. Jones, L., Laas, A., B. Mackay, E., Mammarella, L., Markensten, H., McBride, C., Özkundakci, D., Potes, M., Rinke, K., Robertson, D., A. Rusak, J., Salgado, R., Linden, L., Verburg, P., Wain, D., K. Ward, N., Wollrab, S., Zdorovennova, G., 2022. A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector. Geosci. Model Dev., 15, 4597-4623. doi: https://doi.org/10.5194/gmd-15-4597-2022.
J. Gomis-Cebolla, A. Garcia-Arias, M. Perpinyà-Vallès, F. Francés. Evaluation of Sentinel-1, SMAP and SMOS surface soil moisture products for distributed eco-hydrological modelling in Mediterranean forest basins. J. Hydrol., 608 (2022), Article 127569,
CrossRef Google scholar
L. Gudmundsson, J.B. Bremnes, J.E. Haugen, T. Engen-Skaugen. Downscaling RCM precipitation to the station scale using statistical transformations–a comparison of methods. Hydrol. Earth Syst. Sci., 16 (2012), pp. 3383-3390,
CrossRef Google scholar
J. He, K. Yang, W. Tang, H. Lu, J. Qin, Y. Chen, X. Li. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data, 7 (2020), p. 25,
CrossRef Google scholar
T. Hengl, J. Mendes de Jesus, G.B. Heuvelink, M. Ruiperez Gonzalez, M. Kilibarda, A. Blagotić, S. Wei, M.N. Wright, X. Geng, B. Bauer-Marschallinger, M.A. Guevara, R. Vargas, R.A. MacMillan, N.H. Batjes, J.G. Leenaars, E. Ribeiro, I. Wheeler, S. Mantel, B. Kempen. SoilGrids250m: global gridded soil information based on machine learning. PLoS One, 12 (2017), p. e0169748
M.R. Herman, A.P. Nejadhashemi, M. Abouali, J.S. Hernandez-Suarez, F. Daneshvar, Z. Zhang, M.C. Anderson, A.M. Sadeghi, C.R. Hain, A. Sharifi. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. J. Hydrol., 556 (2018), pp. 39-49,
CrossRef Google scholar
L.P. Hoang, H. Lauri, M. Kummu, J. Koponen, M.T. Van Vliet, I. Supit, R. Leemans, P. Kabat, F. Ludwig. Mekong River flow and hydrological extremes under climate change. Hydrol. Earth Syst. Sci., 20 (2016), pp. 3027-3041,
CrossRef Google scholar
R. Knutti, R. Furrer, C. Tebaldi, J. Cermak, G.A. Meehl. Challenges in combining projections from multiple climate models. J. Clim., 23 (2010), pp. 2739-2758,
CrossRef Google scholar
L. Koot, O.D. Viron, V. Dehant. Atmospheric angular momentum time-series: characterization of their internal noise and creation of a combined series. J. Geod., 79 (2006), pp. 663-674,
CrossRef Google scholar
E. Kriegler, J. Edmonds, S. Hallegatte, K.L. Ebi, T. Kram, K. Riahi, H. Winkler, D.P. Van Vuuren. A new scenario framework for climate change research: the concept of shared climate policy assumptions. Clim. Change, 122 (2014), pp. 401-414,
CrossRef Google scholar
Y. Liu, W. Zhang, Z. Zhang. A conceptual data model coupling with physically-based distributed hydrological models based on catchment discretization schemas. J. Hydrol., 530 (2015), pp. 206-215,
CrossRef Google scholar
D. Long, Y. Pan, J. Zhou, Y. Chen, X. Hou, Y. Hong, B.R. Scanlon, L. Longuevergne. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ., 192 (2017), pp. 198-216,
CrossRef Google scholar
N. Luo, Y. Guo, J. Chou, Z. Gao. Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in China. Int. J. Climatol., 42 (2022), pp. 1148-1164,
CrossRef Google scholar
R. Ma, C. Cai, J. Wang, T. Wang, Z. Li, T. Xiao, G. Peng. Partial least squares regression for linking aggregate pore characteristics to the detachment of undisturbed soil by simulating concentrated flow in ultisols (subtropical China). J. Hydrol., 524 (2015), pp. 44-52,
CrossRef Google scholar
B. Martens, D. Miralles, H. Lievens, D. Fernández-Prieto, N.E. Verhoest. Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture. Int. J. Appl. Earth Obs. Geoinf., 48 (2016), pp. 146-162,
CrossRef Google scholar
B. Martens, D.G. Miralles, H. Lievens, R. Van Der Schalie, R.A. De Jeu, D. Fernández-Prieto, H.E. Beck, W.A. Dorigo, N.E. Verhoest. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10 (2017), pp. 1903-1925,
CrossRef Google scholar
M. Osuch, D. Lawrence, H.K. Meresa, J.J. Napiorkowski, R.J. Romanowicz. Projected changes in flood indices in selected catchments in Poland in the 21st century. Stoch. Env. Res. Risk A., 31 (2017), pp. 2435-2457,
CrossRef Google scholar
L. Pagliero, F. Bouraoui, J. Diels, P. Willems, N. McIntyre. Investigating regionalization techniques for large-scale hydrological modelling. J. Hydrol., 570 (2019), pp. 220-235
C. Piani, G.P. Weedon, M. Best, S.M. Gomes, P. Viterbo, S. Hagemann, J.O. Haerter. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol., 395 (2010), pp. 199-215,
CrossRef Google scholar
C. Puertes, A. Lidón, C. Echeverria, I. Bautista, M. González-Sanchis, A.D. del Campo, F. Francés. Explaining the hydrological behaviour of facultative phreatophytes using a multi-variable and multi-objective modelling approach. J. Hydrol., 575 (2019), pp. 395-407,
CrossRef Google scholar
W. Qi, L. Feng, J. Liu, H. Yang. Snow as an important natural reservoir for runoff and soil moisture in Northeast China. J. Geophys. Res. Atmos., 125 (2020),
CrossRef Google scholar
W. Qi, L. Feng, H. Yang, J. Liu. Warming winter, drying spring and shifting hydrological regimes in Northeast China under climate change. J. Hydrol., 606 (2022), Article 127390,
CrossRef Google scholar
P. Qi, G. Zhang, Y.J. Xu, Z. Xia, M. Wang. Response of water resources to future climate change in a high-Latitude River basin. Sustainability, 11 (20) (2019), p. 5619,
CrossRef Google scholar
B. Renard, D. Kavetski, G. Kuczera, M. Thyer, S.W. Franks. Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors. Water Resour. Res., 46 (2010),
CrossRef Google scholar
Z. Sang, G. Zhang, H. Wang, W. Zhang, Y. Chen, M. Han, K. Yang. Effective solutions to ecological and water environment problems in the sanjiang plain: utilization of farmland drainage resources. Sustainability, 15 (23) (2023), p. 16329
W. Shi, X. Yu, W. Liao, Y. Wang, B. Jia. Spatial and temporal variability of daily precipitation concentration in the Lancang River basin, China. J. Hydrol., 495 (2013), pp. 197-207,
CrossRef Google scholar
B. Su, J. Huang, X. Zeng, C. Gao, T. Jiang. Impacts of climate change on streamflow in the upper Yangtze River basin. Clim. Change, 141 (2017), pp. 533-546,
CrossRef Google scholar
Q. Sun, C. Xu, X. Gao, C. Lu, B. Cao, H. Guo, L. Yan, C. Wu, X. He. Response of groundwater to different water resource allocation patterns in the sanjiang plain, Northeast China. J. Hydrol.: Reg. Stud., 42 (2022), Article 101156,
CrossRef Google scholar
Y. Tian, M.J. Booij, Y.P. Xu. Uncertainty in high and low flows due to model structure and parameter errors. Stoch. Env. Res. Risk A., 28 (2014), pp. 319-332,
CrossRef Google scholar
D.P. Van Vuuren, J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V. Krey, J.-F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S.J. Smith, S.K. Rose. The representative concentration pathways: an overview. Clim. Change, 109 (2011), p. 5,
CrossRef Google scholar
T. Vetter, S.H. Huang, V. Aich, T. Yang, X. Wang, V. Krysanova, F. Hattermann. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth Syst. Dynam., 6 (2015), pp. 17-43,
CrossRef Google scholar
T. Vetter, J. Reinhardt, M. Flörke, A. Van Griensven, F. Hattermann, S. Huang, H. Koch, I.G. Pechlivanidis, S. Plötner, O. Seidou, B. Su, R.W. Vervoort, V. Krysanova. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Clim. Change, 141 (2017), pp. 419-433,
CrossRef Google scholar
S. Wang, C. Xu, W. Zhang, H. Chen, B. Zhang. Human-induced water loss from closed inland lakes: hydrological simulations in China’s daihai lake. J. Hydrol., 607 (2022), Article 127552,
CrossRef Google scholar
S. Wen, B. Su, Y. Wang, J. Zhai, H. Sun, Z. Chen, J. Huang, A. Wang, T. Jiang. Comprehensive evaluation of hydrological models for climate change impact assessment in the upper Yangtze River basin, China. Clim. Change, 163 (2020), pp. 1207-1226,
CrossRef Google scholar
C. Wu, B.X. Hu, G. Huang, P. Wang, K. Xu. Responses of runoff to historical and future climate variability over China. Hydrol. Earth Syst. Sci., 22 (2018), pp. 1971-1991,
CrossRef Google scholar
X. Wu, L. Marshall, A. Sharma. Quantifying input error in hydrologic modeling using the bayesian error analysis with reordering (BEAR) approach. J. Hydrol., 598 (2021), Article 126202,
CrossRef Google scholar
C. Xu, W. Zhang, S. Wang, H. Chen, A. Azzam, B. Zhang, Y. Xu, N. Nie. Spatiotemporal green water dynamics and their responses to variations of climatic and underlying surface factors: a case study in the sanjiang plain, China. J. Hydrol: Regional Studies, 45 (2023), Article 101303,
CrossRef Google scholar
B. Yan, N.F. Fang, P.C. Zhang, Z.H. Shi. Impacts of land use change on watershed streamflow and sediment yield: an assessment using hydrologic modelling and partial least squares regression. J. Hydrol., 484 (2013), pp. 26-37,
CrossRef Google scholar
K. Yang, J. He, W. Tang, J. Qin, C.C. Cheng. On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the tibetan plateau. Agric. For. Meteorol., 150 (2010), pp. 38-46,
CrossRef Google scholar
S. Yang, J. Zhang, S. Zhang, J. Wang, Y. Bai, F. Yao, H. Guo. The potential of remote sensing-based models on global water-use efficiency estimation: an evaluation and intercomparison of an ecosystem model (BESS) and algorithm (MODIS) using site level and upscaled eddy covariance data. Agric. For. Meteorol., 287 (2020), Article 107959
X. Yun, Q. Tang, J. Li, H. Lu, L. Zhang, D. Chen. Can reservoir regulation mitigate future climate change induced hydrological extremes in the lancang-Mekong River basin?. Sci. Total Environ., 785 (2021), Article 147322,
CrossRef Google scholar
G. Zhang, X. Su, V.P. Singh, O.O. Ayantobo. Appraising standardized moisture anomaly index (SZI) in drought projection across China under CMIP6 forcing scenarios. J. Hydrol.: Reg. Stud., 37 (2021), Article 100898,
CrossRef Google scholar
T. Zhang, X. Su, G. Zhang, H. Wu, Y. Liu. Projections of the characteristics and probability of spatially concurrent hydrological drought in a cascade reservoirs area under CMIP6. J. Hydrol., 613 (2022), Article 128472,
CrossRef Google scholar
D. Zhang, W. Zhang. Distributed hydrological modeling study with the dynamic water yielding mechanism and RS/GIS techniques. Proc. SPIE., 2006 (2006),
CrossRef Google scholar
S. Zhou, W. Zhang, S. Wang, B. Zhang, Q. Xu. Spatial-temporal vegetation dynamics and their relationships with climatic, anthropogenic, and hydrological factors in the Amur River basin. Remote Sens. (Basel), 13 (2021),
CrossRef Google scholar
H. Zhu, Z. Jiang, J. Li, W. Li, C. Sun, L. Li. Does CMIP6 inspire more confidence in simulating climate extremes over China?. Adv. Atmos. Sci., 37 (2020), pp. 1119-1132,
CrossRef Google scholar
H. Zhu, Z. Jiang, L. Li. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci. Bull., 66 (2021), pp. 2528-2537,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/