Convergent plate boundary environments for formation of ≥ 3800 Ma mafic–ultramafic assemblages (Isua area, Greenland): Implications for early global geodynamics

Allen P. Nutman, Clark R.L. Friend, Vickie C. Bennett

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (3) : 101794.

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (3) : 101794. DOI: 10.1016/j.gsf.2024.101794

Convergent plate boundary environments for formation of ≥ 3800 Ma mafic–ultramafic assemblages (Isua area, Greenland): Implications for early global geodynamics

Author information +
History +

Abstract

In the gneiss terrane on the south side of the Eoarchean Isua supracrustal belt, ultramafic rocks with relict abyssal peridotite mineralogy (Bennett et al., 2002, Friend et al., 2002, Nutman et al., 2007, Rollinson, 2007, van de Löcht et al., 2020), layered gabbros with cumulate ultramafic rocks, basalts and associated siliceous sedimentary rocks were tectonically-imbricated, prior to and during intrusion of ca. 3800 Ma tonalites. Together with ≥ 3800 Ma basalts in the Outer Arc Group of the nearby Isua supracrustal belt, the composition of all these mafic rocks (e.g., Th–Hf–Nb systematics, high Th/Yb, Ba/Nb, Ba/Yb ratios and negative Nb and Ti anomalies) shows affinity with modern suprasubduction rocks whose genesis involved fluid fluxing of the upper mantle. However, the majority of these samples have Ba/Nb and Ba/Yb values less than in modern island arc magmas, but similar to many backarc basin magmas (e.g., Pearce and Stern, 2006). It is unknown whether these ca. 3800 Ma mafic rocks are, (i) arc rocks where the Ba/Nb and Ba/Yb signatures reflect lower surficial Ba in Eoarchean oceanic settings, or (ii) in direct comparison with Phanerozoic suites, these signatures reflect a back-arc setting with interplay between fluid fluxing and decompressional melting. The tectonic intercalation of upper mantle with lower and upper crustal rocks, combined with the fluid-fluxing influences seen in chemistry of all the mafic rocks is best accommodated in a compressional Eoarchean convergent plate boundary setting within a mobile-lid regime. Thus stagnant lid scenarios of crust formation, if operative, must have co-existed or alternated with mobile-lid regimes by  3800 Ma.

Keywords

Eoarchean / Fluid-fluxing / Plate tectonics / Suprasubduction / Crustal evolution

Cite this article

Download citation ▾
Allen P. Nutman, Clark R.L. Friend, Vickie C. Bennett. Convergent plate boundary environments for formation of ≥ 3800 Ma mafic–ultramafic assemblages (Isua area, Greenland): Implications for early global geodynamics. Geoscience Frontiers, 2024, 15(3): 101794 https://doi.org/10.1016/j.gsf.2024.101794

References

S.M. Aarons, J.R. Reimink, N.D. Greber, A.W. Heard, Z. Zhang, N. Dauphas. Titanium isotopes constrain a magmatic transition at the Hadean-Archean boundary in the Acasta Gneiss Complex. Sci. Adv., 6 (2020), p. eabc9959,
CrossRef Google scholar
P.W.U. Appel, A. Polat, R. Frei. Dacitic ocelli in mafic lavas, 3.8-3.7 Ga Isua greenstone belt, West Greenland: Geochemical evidence for partial melting of oceanic crust and magma mixing. Chem. Geol., 258 (2009), pp. 105-124
N. Arndt. How and when did the continental crust form? Goldschmidt Conference 2023. Lyon, France (2023)
N.D. Barber, M. Edmonds, F. Jenner, H. Williams. Global Ba/Nb systematics in arc magmas reflects depth of mineral dehydration in subducted slabs. Geology, 50 (2022), pp. 1438-1442
V.C. Bennett, A.P. Nutman, T.M. Esat. Constraints on mantle evolution and differentiation from 187Os/188Os isotopic compositions of Archaean ultramafic rocks from southern West Greenland (3.8 Ga) and Western Australia (3.45 Ga). Geochim. Cosmochim. Acta, 66 (2002), pp. 2615-2630
L.P. Black, S.L. Kamo, C.M. Allen, J.M. Aleinikoff, D.W. Davis, R.J. Korsch, C. Foudoulis. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol., 200 (2003), pp. 155-170,
CrossRef Google scholar
R. Bolhar, B.S. Kamber, S. Moorbath, M.J. Whitehouse, K.D. Collerson. Chemical characterization of Earth’s most ancient clastic metasediments from the Isua Greenstone Belt, southern West Greenland. Geochim. Cosmochim. Acta, 69 (2005), pp. 1553-1573
D. Bridgwater, V.R. McGregor. Field work on the very early Precambrian rocks of the Isua area, southern West Greenland. Rapp. Grønl. Geol. Unders., 65 (1974), pp. 49-54
I.H. Campbell, S.R. Taylor. No water, no granites - no oceans, no continents. J. Geophys. Res., 10 (1983), pp. 1061-1064
B. Chadwick. Contrasting styles of tectonism and magmatism in the late Archaean crustal evolution of the northeastern part of the Ivisârtoq region, inner Godthåbsfjord, southern West Greenland. Precambr. Res., 27 (1985), pp. 215-238
J.L. Crowley. U-Pb geochronology of 3810–3630 Ma granitoid rocks south of the Isua greenstone belt, southern West Greenland. Precambr. Res., 126 (2003), pp. 235-257
J.L. Crowley, J.S. Myers, G.R. Dunning. The timing and nature of multiple 3700–3600 Ma tectonic events in granitoid rocks north of the Isua greenstone belt, southern West Greenland. Geol. Soc. Am. Bull., 114 (2002), pp. 1311-1325
J. D'Andres, M.A. Kendrik, V.C. Bennett, A.P. Nutman. Halogens in serpentinites from the Isua supracrustal belt, Greenland: An Eoarchaean seawater and biomass proxy?. Geochim. Cosmochim. Acta, 262 (2020), pp. 31-59,
CrossRef Google scholar
M.J. de Wit. On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict?. Precambr. Res., 91 (1998), pp. 181-226
Drabon, N., Byerly, B.L., Byerly, G.R., Wooden, J.L., Wiedenbeck, M., Valley, J.E., Kitajima, Bauer, A.M., Lowe, D.R., 2022. Destabilization of long-lived Hadean protocrust and the onset of pervasive hydrous melting at 3.8 Ga. AGU Advances 3, e2021AV000520.
S.M. Eggins, J.D. Woodhead, L.P.J. Kinsley, G.E. Mortimer, P. Sylvester, M.T. McCulloch, J.M. Hergt, M.R. Handler. A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem. Geol., 134 (1997), pp. 311-326
C.R.L. Friend, A.P. Nutman. New pieces to the Archaean terrane jigsaw puzzle in the Nuuk region, southern West Greenland: steps in transforming a simple insight into a complex regional tectonothermal model. J. Geol. Soc. Lond., 162 (2005), pp. 147-162
C.R.L. Friend, A.P. Nutman. Dunites from Isua, southern West Greenland: A ca. 3720 Ma window into subcrustal metasomatism of depleted mantle. Geology, 39 (2011), pp. 663-666
C.R.L. Friend, V.C. Bennett, A.P. Nutman. Abyssal peridotites >3,800 Ma from southern West Greenland: field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex. Contrib. Miner. Petrol., 143 (2002), pp. 71-92
T.V. Gerya, R.J. Stern, M. Baes, S.V. Sobolev, S.A. Whattam. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527 (2015), pp. 221-225
T. Grocolas, P. Bouilhol, G. Caro1, S.J. Mojzsis. Eoarchean subduction like magmatism recorded in 3750 Ma mafic-ultramafic rocks of the Ukaliq supracrustal belt (Québec). Contrib. Miner. Petrol., 177 (2022), p. 39
Guotana, J.M., Morishita, T., Nishio, I., Tamura, A., Mizukami, T., Tani, K., Harigane, Y., Szilas, K., Pearson, D.G., 2022. Deserpentinization and high-pressure (eclogitefacies) metamorphic features in the Eoarchean ultramafic body from Isua, Greenland. Geosci. Front. 13, 101298. doi:
CrossRef Google scholar
Hastie et al., 2023. Hastie, A.R., Law, S., Bromiley, G.D., Fitton, J.D., Harley, S.L., Muir, J.D., 2023. Deep formation of Earth’s earliest continental crust consistent with subduction. Nat. Geosci. 16, 816–821
F.E. Jenner, V.C. Bennett, A.P. Nutman, C.R.L. Friend, M.D. Norman, G. Yaxley. Evidence for subduction at 3.8 Ga: Geochemistry of arc-like metabasalts from the southern edge of the Isua Supracrustal belt. Chem. Geol., 261 (2009), pp. 82-99
M.A. Kaczmarek, S. Reddy, C.R.L. Friend, A.P. Nutman, V.C. Bennett. Earth's oldest mantle fabrics indicate Eoarchaean subduction. Nat. Commun., 7 (2016), p. 10665,
CrossRef Google scholar
B.S. Kamber, G.E. Webb, M. Gallagher. The rare earth element signal in Archaean microbial carbonate: information on cean redox and biogenicity. J. Geol. Soc. Lond., 171 (2014), pp. 745-763
A. Kloppenburg, S.H. White, T.E. Zegers. Structural evolution of the Warrawoona greenstone belt and adjoining granitoids complexes, Pilbara Craton, Australia: Implications for Archaean tectonic processes. Precambr. Res., 112 (2001), pp. 107-147
J. Korenaga. Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics?. J. Geophys. Res., 112 (2007), p. B05408
J. Korenaga. Pitfalls in modelling mantle convection with internal heat production. J. Geophys. Res. Solid Earth, 122 (2017), pp. 4065-4085
J. Korenaga. Hadean geodynamics and the nature of early continental crust. Precambr. Res., 359 (2021), Article 106178
Korenaga, J., Planavsky, N.J., 2, David A D Evans, D.A.D., 2016. Global water cycle and the coevolution of the Earth's interior and surface environment. Philosoph. Trans. Royal Soc. 375, 20150393.
J.A. Lewis, J.E. Hoffmann, E.M. Schwarzenbach, H. Strauss, M. Liesegang, M.T. Rosing. Sulfur isotope evidence for surface-derived sulfur in Eoarchean TTGs. Earth Planet. Sci. Lett., 576 (2021), Article 117218,
CrossRef Google scholar
J.A. Lewis, J.E. Hoffmann, E.M. Schwarzenbach, H. Strauss, C. Li, C. Münker, M.T. Rosing. Sulfur isotope evidence from peridotite enclaves in southern West Greenland for recycling of surface material into Eoarchean depleted mantle domains. Chem. Geol., 633 (2023), Article 121568,
CrossRef Google scholar
Ludwig, K.R., 2003. Isoplot 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication 4. Berkeley Geochronological Center, Berkeley, California, 70 p.
H. Martin. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14 (1986), pp. 753-756
A.P. Nutman, V.C. Bennett, C.R.L. Friend, H. Hidaka, K. Yi, S.R. Lee, T. Kamiichi. The Itsaq Gneiss Complex of Greenland: Episodic 3900 to 3660 Ma juvenile crust formation and recycling in the 3660 to 3600 Ma Isukasian orogeny. Am. J. Sci., 313 (2013), pp. 877-911
A.P. Nutman, V.C. Bennett, C.R.L. Friend, K. Yi, S.R. Lee. Architecture of an Archaean orogen marking collision of Kapisilik terrane 3070 Ma juvenile arc rocks and >3600 Ma Isukasia terrane continental crust (Greenland). Precambr. Res., 258 (2015), pp. 146-160
A.P. Nutman, J.H. Allaart, D. Bridgwater, E. Dimroth, M.T. Rosing. Stratigraphic and geochemical evidence for the depositional environment of the early Archaean Isua supracrustal belt, southern West Greenland. Precambr. Res., 25 (1984), pp. 365-396
A.P. Nutman, C.R.L. Friend, P.D. Kinny, V.R. McGregor. Anatomy of an Early Archaean gneiss complex: 3900 to 3600 Ma crustal evolution in southern West Greenland. Geology, 21 (1993), pp. 415-418
A.P. Nutman, V.R. McGregor, C.R.L. Friend, V.C. Bennett, P.D. Kinny. The Itsaq Gneiss Complex of southern West Greenland; the world’s most extensive record of early crustal evolution (3900–3600 Ma). Precambr. Res., 78 (1996), pp. 1-39
A.P. Nutman, V.C. Bennett, C.R.L. Friend, M. Norman. Meta-igneous (non-gneissic) tonalites and quartz-diorites from an extensive ca. 3800 Ma terrain south of the Isua supracrustal belt, southern West Greenland: constraints on early crust formation. Contrib. Miner. Petrol., 137 (1999), pp. 364-388
A.P. Nutman, C.R.L. Friend, V.C. Bennett. Evidence for 3650–3600 Ma assembly of the northern end of the Itsaq Gneiss Complex, Greenland: Implication for early Archean tectonics. Tectonics, 21 (2002), p. 1005,
CrossRef Google scholar
A.P. Nutman, C.R.L. Friend, V.C. Bennett. Dating of the Ameralik dyke swarms of the Nuuk district, southern West Greenland: Mafic intrusion events starting from c. 3510 Ma. J. Geol. Soc. Lond., 161 (2004), pp. 421-430
A.P. Nutman, C.R.L. Friend, H. Horie, H. Hidaka. Construction of pre-3600 Ma crust at convergent plate boundaries, exemplified by the Itsaq Gneiss Complex of southern West Greenland. M.J. Van Kranendonk, R.H. Smithies, V.C. Bennett (Eds.), Earth’s Oldest Rocks (first Edition), Elsevier (2007), pp. 187-218
A.P. Nutman, C.R.L. Friend, V.C. Bennett, D. Wright, M.D. Norman. ≥3700 Ma pre-metamorphic dolomite formed by microbial mediation in the Isua supracrustal belt (W. Greenland): Simple evidence for early life?. Precambr. Res., 183 (2010), pp. 725-737
A.P. Nutman, C.R.L. Friend, V.C. Bennett, K. Yi, H. Van Kranendonk. Review of the Isua supracrustal belt area (Greenland) Eoarchean geology from integrated 1: 20,000 scale maps, field observations and laboratory data: Constraints on early geodynamics. Precambr. Res., 379, 106785 (2022),
CrossRef Google scholar
C. O’Neill, S. Marchi, S. Zhang, W. Bottke. Impact-driven subduction on the Hadean earth. Nat. Geosci., 10 (2017), pp. 793-797
T.C. O’Reilly, G.F. Davies. Magma transport of heat on Io: A mechanism allowing a thick lithosphere. Geophys. Res. Lett., 8 (1981), pp. 313-316
T. Ohata, H. Arai. Statistical empirical index to chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chem. Geol., 240 (2007), pp. 280-297
J.A. Pearce. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100 (2008), pp. 14-48
J.A. Pearce, D.W. Peate. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci., 23 (1995), pp. 251-285
J.A. Pearce, R. Stern. Origin of Back-Arc Basin Magmas: Trace Element and isotope perspectives. Geophys. Monogr. Ser., 166 (2006), pp. 63-86
A. Polat, A.W. Hofmann. Alteration and geochemical patterns in the 3.7-3.8 Ga Isua greenstone belt. West Greenland. Precambrian Research, 126 (2003), pp. 197-218
A. Polat, A.W. Hofmann, M.T. Rosing. Boninite-like volcanic rocks in the 3.7-3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem. Geol., 184 (2002), pp. 231-254
A. Polat, L. Wang, P.W.U. Appel. review of structural patterns and melting processes in the Archean craton of West Greenland: evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models. Tectonophysics, 662 (2015.A.), pp. 67-94,
CrossRef Google scholar
Ramírez-Salazar, A., Müller, T., Piazolo, S., Webb, A. A. G., Hauzenberger, C., Zuo, J., 2021. Tectonics of the Isua supracrustal belt 1: P-T-X-d constraints of a polymetamorphic terrane. Tectonics 40, e2020TC006516, Doi:
CrossRef Google scholar
H. Rizo, M. Boyet, J. Blichert-Toft, M.T. Rosing. Early mantle dynamics inferred from 142Nd variations in Archean rocks from southwest Greenland. Earth Planet. Sci. Lett., 377–378 (324–335) (2013), pp. 324-335
H. Rollinson. Metamorphic history suggested by garnet-growth chronologies in the Isua Greenstone Belt, West Greenland. Precambr. Res., 126 (2003), pp. 181-196
H. Rollinson. Recognising early Archaean mantle: a reappraisal. Contrib. Miner. Petrol., 154 (2007), pp. 241-252
N.S. Saji, K. Larsen, D. Wielandt, M. Schiller, M.M. Costa, M.J. Whitehouse, M.T. Rosing, M. Bizzarro. Hadean geodynamics inferred from time-varying 142Nd/144Nd in the early Earth rock record. Geochem. Perspect. Lettt., 7 (2018), pp. 43-48,
CrossRef Google scholar
W. Saktura, S. Buckman, A.P. Nutman, V.C. Bennett. The Jurassic Skuru Complex from the Shyok Suture Zone: Initiation of the intra-oceanic Ladakh Arc, Himalaya. Geol. Mag., 158 (2021), pp. 239-260,
CrossRef Google scholar
M.S. Sambridge, W. Compston. Mixture modelling of multi-component data sets with application to ion-probe zircon ages. Earth Planet. Sci., 128 (1994), pp. 373-390
M.W. Schmidt, S. Poli. Devolitization during subduction. R.L. Rudnick (Ed.), Treatise on Geochemistry (2nd Edition), Volume 4: the Crust, Elsevier, Oxford, U.K. (2014)
R.J. Stern, T. Gerya, P.J. Tackley. Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geosci. Front., 9 (2018), pp. 103-119
S.M. Straub, G.D. Layne, A. Schmidt, C.H. Langmuir. Volcanic glasses at the Izu arc volcanic front: New perspectives on fluid and sediment melt recycling in subduction zones. Geochem. Geophys. Geosyst., 5 (2004), p. Q01007
K. Ueda, T. Gerya, S.V. Sobolev. Subduction initiation by thermal–chemical plumes: numerical studies. Phys. Earth Planet. Inter., 171 (2008), pp. 296-312
J. Valley, W.H. Peck, E.M. King, S.A. Wilde. A cool early Earth. Geology, 30 (2001), pp. 351-354
J. van de Löcht, J.E. Hoffmann, M.T. Rosing, P. Sprung, C. Münker. Preservation of Eoarchean mantle processes in ∼3.8 Ga peridotite enclaves in the Itsaq Gneiss Complex, southern West Greenland. Geochim. Cosmochim. Acta, 280 (2020), pp. 1-25
M.J. Van Kranendonk. Two types of Archean continental crust: plume and plate tectonics on early Earth. Am. J. Sci., 310 (2010), pp. 1187-1209
A.A.G. Webb, T. Müller, J.W. Zuo, P.J. Haproff, A. Ramirez-Salazar. A non-plate tectonic model for the Eoarchean Isua supracrustal belt. Lithosphere, 12 (2020), pp. 116-179
R.V. White, J.L. Crowley, J.S. Myers. Earth’s oldest well-preserved mafic dyke swarms in the vicinity of the Isua greenstone belt, southern West Greenland. Geol. Greenl. Surv. Bull., 186 (2000), pp. 65-72
S.A. Wilde, J.W. Valley, W.H. Peck, C.M. Graham. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409 (2001), pp. 175-178
Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In Applications of microanalytical techniques to understanding mineralizing processes. In: M.A. McKibben, W.C.P. Shanks III and W.I. Ridley (Eds.). Society of Economic Geology Short Course 7, pp. 1–35.
B.F. Windley, T. Kusky, A. Polat. Onset of plate tectonics by the Eoarchean. Precambr. Res., 352 (2021), Article 105980
P.J. Wyllie. Crustal anataxis: An experimental review. Tectonophysics, 43 (1977), pp. 41-71
Z. Yu, M.D. Norman, P. Robinson. Major and Trace Element Analysis of Silicate Rocks by XRF and Laser Ablation ICP-MS Using Lithium Borate Fused Glasses: Matrix Effects, Instrument Response and Results for International Reference Materials. Geostand. Newslett., 27 (2003), pp. 67-89
Y.F. Zheng. Subduction zone geochemistry. Geosci. Front., 10 (2019), pp. 1223-1254,
CrossRef Google scholar
Zuo, J.W., Webb, A.A.G., Piazolo, S., Wang, Q., Müller, T., Ramiraz-Salazar, A., Haproff, P.J., 2021. Tectonics of the Isua supracrustal belt 2: Microstructures reveal distributed strain in the absence of major fault structures. Tectonics 40, e2020TC006514.

Accesses

Citations

Detail

Sections
Recommended

/