Impacts and risks of “realistic” global warming projections for the 21st century

Nicola Scafetta

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (2) : 101774.

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (2) : 101774. DOI: 10.1016/j.gsf.2023.101774

Impacts and risks of “realistic” global warming projections for the 21st century

Author information +
History +

Abstract

The IPCC AR6 assessment of the impacts and risks associated with projected climate changes for the 21st century is both alarming and ambiguous. According to computer projections, global surface temperature may warm from 1.3 °C to 8.0 °C by 2100, depending on the global climate model (GCM) and the shared socioeconomic pathway (SSP) scenario used for the simulations. Actual climate-change hazards are estimated to be high and very high if the global surface temperature rises, respectively, more than 2.0 °C and 3.0 °C above pre-industrial levels. Recent studies, however, showed that a substantial number of CMIP6 GCMs run “too hot” because they appear to be too sensitive to radiative forcing, and that the high/extreme emission scenarios SSP3-7.0 and SSP5-8.5 are to be rejected because judged to be unlikely and highly unlikely, respectively. Yet, the IPCC AR6 mostly focused on such alarmistic scenarios for risk assessments. This paper examines the impacts and risks of “realistic” climate change projections for the 21st century generated by assessing the theoretical models and integrating them with the existing empirical knowledge on global warming and the various natural cycles of climate change that have been recorded by a variety of scientists and historians. This is achieved by combining the SSP2-4.5 scenario (which is the most likely SSP according to the current policies reported by the International Energy Agency) and empirically optimized climate modeling. According to recent research, the GCM macro-ensemble that best hindcast the global surface warming observed from 1980 to 1990 to 2012–2022 should be made up of models that are characterized by a low equilibrium climate sensitivity (ECS) (1.5 °C < ECS ≤ 3.0 °C), in contrast to the IPCC AR6 likely and very likely ECS ranges at 2.5–4.0 °C and 2.0–5.0 °C, respectively. I show that the low-ECS macro-GCM with the SSP2-4.5 scenario projects a global surface temperature warming of 1.68–3.09 °C by 2080–2100 instead of 1.98–3.82 °C obtained with the GCMs with ECS in the 2.5–4.0 °C range. However, if the global surface temperature records are affected by significant non-climatic warm biases — as suggested by satellite-based lower troposphere temperature records and current studies on urban heat island effects — the same climate simulations should be scaled down by about 30%, resulting in a warming of about 1.18–2.16 °C by 2080–2100. Furthermore, similar moderate warming estimates (1.15–2.52 °C) are also projected by alternative empirically derived models that aim to recreate the decadal-to-millennial natural climatic oscillations, which the GCMs do not reproduce. The proposed methodologies aim to simulate hypothetical models supposed to optimally hindcast the actual available data. The obtained climate projections show that the expected global surface warming for the 21st-century will likely be mild, that is, no more than 2.5–3.0 °C and, on average, likely below the 2.0 °C threshold. This should allow for the mitigation and management of the most dangerous climate-change related hazards through appropriate low-cost adaptation policies. In conclusion, enforcing expensive decarbonization and net-zero emission scenarios, such as SSP1-2.6, is not required because the Paris Agreement temperature target of keeping global warming < 2 °C throughout the 21st century should be compatible also with moderate and pragmatic shared socioeconomic pathways such as the SSP2-4.5.

Keywords

Climate change / Climate models / Shared socioeconomic pathways / 21st-century climate projections / Impacts and risks assessment

Cite this article

Download citation ▾
Nicola Scafetta. Impacts and risks of “realistic” global warming projections for the 21st century. Geoscience Frontiers, 2024, 15(2): 101774 https://doi.org/10.1016/j.gsf.2023.101774

References

R.B. Alley. The Younger Dryas cold interval as viewed from central Greenland. Quat. Sci. Rev., 19 (2000), pp. 213-226
S. Arrenius. On the influence of carbonic acid in the air upon the temperature of the ground. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41 (1896), pp. 237-275
S. Arrenius. Die vermutliche ursache der klimaschwankungen (the probable cause of climate fluctuations). Meddelanden Fran k. Vetenskapsakademiens Nobelinstitut, 1 (1906), pp. 1-10
L. Atwoli, A.H. Baqui, T. Benfield, R. Bosurgi, F. Godlee, S. Hancocks, R. Horton, L. Laybourn-Langton, C.A. Monteiro, I. Norman, K. Patrick, N. Praities, M.G.M. Olde Rikkert, E.J. Rubin, P. Sahni, R. Smith, N. Talley, S. Turale, D. Vàzquez. Call for Emergency Action to Limit Global Temperature Increases, Restore Biodiversity, and Protect Health. N. Engl. J. Med., 385 (2021), pp. 1134-1137
J.R. Bates. Estimating climate sensitivity using two-zone energy balance models. Earth Space Sci., 3 (2016), pp. 207-225
G. Bond, B. Kromer, J. Beer, R. Muscheler, M.N. Evans, W. Showers, S. Hoffmann, R. Lotti-Bond, I. Hajdas, G. Bonani. Persistent solar influence on north atlantic climate during the holocene. Science, 294 (5549) (2001), pp. 2130-2136
U. Büntgen, K. Allen, K.J. Anchukaitis, D. Arseneault, É. Boucher, A. Bräuning, S. Chatterjee, P. Cherubini, O.V. Churakova, C. Corona, F. Gennaretti, J. Grießinger, S. Guillet, J. Guiot, B. Gunnarson, S. Helama, P. Hochreuther, M.K. Hughes, P. Huybers, A.V. Kirdyanov, P.J. Krusic, J. Ludescher, W.-J.-H. Meier, V.S. Myglan, K. Nicolussi, C. Oppenheimer, F. Reinig, M.W. Salzer, K. Seftigen, A.R. Stine, M. Stoffel, S.S. George, E. Tejedor, A. Trevino, V. Trouet, J. Wang, R. Wilson, B. Yang, G. Xu, J. Esper. The influence of decision-making in tree ring-based climate reconstructions. Nat. Commun., 12 (1) (2021), Article 3411
M.G. Burgess, J. Ritchie, J. Shapland, R. Pielke. IPCC baseline scenarios have over-projected CO2 emissions and economic growth. Environ. Res. Lett., 16 (1) (2020), Article 014016
M.G. Burgess, S.L. Becker, R.E. Langendorf, A. Fredston, C.M. Brooks. Climate change scenarios in fisheries and aquatic conservation research. ICES J. Mar. Sci., 80 (2023), pp. 1163-1178
Charney, J.G., Arakawa, A., Baker, D.J., Bolin, B., Dickinson, R.E., Goody, R.M., Leith, C.E., Stommel, H.M., Wunsch, C.I., 1979. Carbon Dioxide and Climate: A Scientific Assessment. National Research Council. Washington, DC: The National Academies Press. doi: 10.17226/12181.
E. Chavez, I. de Pater, E. Redwing, E.M. Molter, M.T. Roman, A. Zorzi, C. Alvarez, R. Campbell, K. de Kleer, R. Hueso, M.H. Wong, E. Gates, P.D. Lynam, A.G. Davies, J. Aycock, J. Mcilroy, J. Pelletier, A. Ridenour, T. Stickel. Evolution of Neptune at near-infrared wavelengths from 1994 through 2022. Icarus, 404 (2023), Article 115667
B. Christiansen, F.C. Ljungqvist. The extra-tropical Northern Hemisphere temperature in the last two millennia: Reconstructions of low-frequency variability. Clim. Past, 8 (2012), pp. 765-786
Climate Action Tracker, 2022. The CAT Thermometer. https://climateactiontracker.org/global/cat-thermometer/ (access November 2022).
R. Connolly, W. Soon, M. Connolly, S. Baliunas, J. Berglund, C.J. Butler, R.G. Cionco, A.G. Elias, V.M. Fedorov, H. Harde, G.W. Henry, D.V. Hoyt, O. Humlum, D.R. Legates, S. Lüning, N. Scafetta, J.-E. Solheim, L. Szarka, H. van Loon, V.M.V. Herrera, R.C. Willson, H. Yan, W. Zhang. How much has the sun influenced northern hemisphere temperature trends? an ongoing debate. Res. Astron. Astrophys., 21 (6) (2021), p. 131
R. Connolly, W. Soon, M. Connolly, S. Baliunas, J. Berglund, C.J. Butler, R.G. Cionco, A.G. Elias, V.M. Fedorov, H. Harde, G.W. Henry, D.V. Hoyt, O. Humlum, D.R. Legates, N. Scafetta, J.-E. Solheim, L. Szarka, V.M.V. Herrera, H. Yan, W. Zhang. Challenges in the detection and attribution of Northern Hemisphere surface temperature trends since 1850. Res. Astron. Astrophys., 23 (2023), Article 105015
M. Crippa, D. Guizzardi, F. Pagani, M. Banja, M. Muntean, E. Schaaf, W. Becker, F. Monforti-Ferrario, R. Quadrelli, A. Risquez Martin, P. Taghavi-Moharamli, J. Köykkä, G. Grassi, S. Rossi, J. Brandao De Melo, D. Oom, A. Branco, J. San-Miguel, E. Vignati. GHG emissions of all world countries. Publications Office of the European Union, Luxembourg (2023)
M. Czymzik, R. Muscheler, A. Brauer. Solar modulation of flood frequency in central Europe during spring and summer on interannual to multi-centennial timescales. Clim. Past, 12 (799–805) (2016), p. 2016
J.A. Eddy. The Maunder Minimum. Science, 192 (1976), pp. 1189-1202
T. Egorova, W. Schmutz, E. Rozanov, A.I. Shapiro, I. Usoskin, J. Beer, R.V. Tagirov, T. Peter. Revised historical solar irradiance forcing. A & A, 615 (2018), p. A85
V. Eyring, S. Bony, G.A. Meehl, C.A. Senior, B. Stevens, R.J. Stouffer, K.E. Taylor. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9 (5) (2016), pp. 1937-1958
European Commission, 2023. Climate Action, 2050 long-term strategy. https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en. (access December 7 2023).
Filippelli, G., Beal, L., Rajaram, H., AghaKouchak, A., Balikhin, M. A., Destouni, G., East, A., Faccenna, C., Florindo, F., Frost, C., Griffies, S., Huber11, M., Lugaz, N., Manighetti, I, Montesi, L., Pirenne, B., Raymond, P., Salous, S., Schildgen, T., Trumbore, S., Wysession, M., Xenopoulos, M., Zhang, M., 2021. Geoscientists, who have documented the rapid and accelerating climate crisis for decades, are now pleading for immediate collective action. Geophysical Research Letters, 48, e2021GL096644.
Y. Gao, X. Gao, X. Zhang. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering, 3 (2017), pp. 272-278
Q.S. Ge, H.L. Liu, X. Ma, J.Y. Zheng, Z.X. Hao. Characteristics of temperature change in China over the last 2000 years and spatial patterns of dryness/wetness during cold and warm periods. Adv. Atmos. Sci., 34 (2017), pp. 941-951
GEM, 2023. Global energy monitor: global coal plant tracker. Accessed on December 7, 2023. https://globalenergymonitor.org/projects/global-coal-plant-tracker/tracker/.
D.I. Groves, M. Santosh, L. Zhang. Net Zero climate remediations and potential terminal depletion of global critical metal resources: A synoptic geological perspective. Geosystems and Geoenvironment, 2 (1) (2023), Article 100136
Z. Hausfather, K. Marvel, G.A. Schmidt, J.W. Nielsen-Gammon, M. Zelinka. Climate simulations: recognize the ’hot model’ problem. Nature, 605 (7908) (2022), pp. 26-29
Z. Hausfather, F.C. Moore. Net-zero commitments could limit warming to below 2 °C. Nature, 604 (2022), pp. 247-248
Z. Hausfather, G.P. Peters. Emissions – the ’business as usual’ story is misleading. Nature, 577 (7792) (2020), pp. 618-620
H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R.J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. Rosnay, I. Rozum, F. Vamborg, S. Villaume, J.-N. Thépaut. The ERA5 global reanalysis. Q. J. R. Meteorolog. Soc., 146 (730) (2020), pp. 1999-2049
D.V. Hoyt, K.H. Schatten. A discussion of plausible solar irradiance variations, 1700–1992. J. Geophys. Res. Space Phys., 98 (A11) (1993), pp. 18895-18906
IEA, 2020: World Energy Outlook 2020. International Energy Agency (IEA), Paris, France, https://www.iea.org/reports/world-energy-outlook-2020.
IEA, 2021: World Energy Outlook 2021. International Energy Agency (IEA), Paris, France, https://www.iea.org/reports/world-energy-outlook-2021.
K. Ishihara. Calculation of global surface temperature anomalies with cobe-sst. Weather Service Bulletin, 73 (2006), pp. S19-S25
G. Katata, R. Connolly, P. O’Neill. Evidence of Urban Blending in Homogenized Temperature Records in Japan and in the United States: Implications for the Reliability of Global Land Surface Air Temperature Data. J. Appl. Meteorol. Climatol., 62 (2023), pp. 1095-1114
D.S. Kaufman, E. Broadman. Revisiting the Holocene global temperature conundrum. Nature, 614 (2023), pp. 425-435
R.A. Kerr. A variable sun paces millennial climate. Science, 294 (5546) (2001), pp. 1431-1433
J. Kirkby. Cosmic rays and climate. Surv. Geophys., 28 (5–6) (2007), pp. 333-375
M. Knudsen, M.S. Seidenkrantz, B. Jacobsen, A. Kuijpers. Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nature Commun., 2 (2011), p. 178
R. Knutti, M. Rugenstein, G. Hegerl. Beyond equilibrium climate sensitivity. Nat. Geosci., 10 (2017), pp. 727-736
W. Kutschera, G. Patzelt, P. Steier, E.M. Wild. The tyrolean iceman and his glacial environment during the holocene. Radiocarbon, 59 (2017), pp. 395-405
G.E. Lasher, Y. Axford. Medieval warmth confirmed at the Norse Eastern Settlement in Greenland. Geology, 47 (3) (2019), pp. 267-270
N.J.L. Lenssen, G.A. Schmidt, J.E. Hansen, M.J. Menne, A. Persin, R. Ruedy, D. Zyss. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos., 124 (12) (2019), pp. 6307-6326
N. Lewis. Objectively combining climate sensitivity evidence. Clim. Dyn., 60 (2023), pp. 3139-3165
R.S. Lindzen, Y.-S. Choi. On the observational determination of climate sensitivity and its implications. Asia-Pacific J. Atmos. Sci., 47 (2011), pp. 377-390
F.C. Ljungqvist. A new reconstruction of temperature variability in the extra-tropical northern hemisphere during the last two millennia. Geogr. Ann. Ser. A, 92 (2010), pp. 339-351
C. Loehle, J.H. McCulloch. Correction to: A 2000-year global temperature reconstruction based on non-tree ring proxies. Energy Environ., 19 (1) (2008), pp. 93-100
S. Lüning, M. Gałka, F.P. Bamonte, F.G. Rodríguez, F. Vahrenholt. The Medieval Climate Anomaly in South America. Quat. Int., 508 (2019), pp. 70-87
J. Luterbacher, J.P. Werner, J.E. Smerdon, et al.. European summer temperatures since Roman times. Environ. Res. Lett., 11 (2016), Article 024001
S. Manabe, R. Wetherald. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24 (1967), pp. 241-259
S. Manabe, R. Wetherald. The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32 (1975), pp. 3-15
M.E. Mann, Z. Zhang, M.K. Hughes, R.S. Bradley, S.K. Miller, S. Rutherford, F. Ni. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci., 105 (36) (2008), pp. 13252-13257
Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J., Chen, Y., X.Zhou, M.G., Lonnoy, E., Maycock, T., Tignor, M., , (eds.), T.W., 2018. IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekci, O., Yu, R., (eds.), B.Z., 2021. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
K. Matthes, B. Funke, M.E. Andersson, L. Barnard, J. Beer, P. Charbonneau, M.A. Clilverd, T.D. deWit, M. Haberreiter, A. Hendry, C.H. Jackman, M. Kretzschmar, T. Kruschke, M. Kunze, U. Langematz, D.R. Marsh, A.C. Maycock, S. Misios, C.J. Rodger, A.A. Scaife, A. Seppälä, M. Shangguan, M. Sinnhuber, K. Tourpali, I. Usoskin, M. vande Kamp, P.T. Verronen, S. Versick. Solar forcing for CMIP6 (v3.2). Geosci. Model Dev., 10 (2017), pp. 2247-2302
Mauritsen, T., Roeckner, E. (2020). Tuning the MPI-ESM1.2 global climate model to improve the match with instrumental record warming by lowering its climate sensitivity. Journal of Advances in Modeling Earth Systems, 12, e2019MS002037.
T. Mauritsen, J. Bader, T. Becker, J. Behrens, M. Bittner, R. Brokopf, et al.. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst., 11 (2019), pp. 998-1038
McCarthy, G.D., Caesar, L., 2023. Can we trust projections of AMOC weakening based on climate models that cannot reproduce the past? Philosophical Transaction of the Royal Society A 381: 20220193.
R. McKitrick, J. Christy. Pervasive warming bias in CMIP6 tropospheric layers. Earth Space Sci., 7 (9) (2020)
M. McNutt. The beyond-two-degree inferno. Science, 349 (2015), p. 7
C.A. Mears, F.J. Wentz. Sensitivity of satellite-derived tropospheric temperature trends to the diurnal cycle adjustment. J. Clim., 29 (10) (2016), pp. 3629-3646
M. Meinshausen, Z.R.J. Nicholls, J. Lewis, M.J. Gidden, E. Vogel, M. Freund, U. Beyerle, C. Gessner, A. Nauels, N. Bauer, J.G. Canadell, J.S. Daniel, A. John, P.B. Krummel, G. Luderer, N. Meinshausen, S.A. Montzka, P.J. Rayner, S. Reimann, S.J. Smith, M. van den Berg, G.J.M. Velders, M.K. Vollmer, R.H.J. Wang. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev., 13 (2020), pp. 3571-3605
M. Meinshausen, J. Lewis, C. McGlade, J. Gütschow, Z. Nicholls, R. Burdon, L. Cozzi, B. Hackmann. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature, 604 (2022), pp. 304-309
M. Meinshausen, C.-F. Schleussner, K. Beyer, G. Bodeker, O. Boucher, J.G. Canadell, J.S. Daniel, A. Diongue-Niang, F. Driouech, E. Fischer, P. Forster, M. Grose, G. Hansen, Z. Hausfather, T. Ilyina, J.S. Kikstra, J. Kimutai, A. King, J.-Y. Lee, C. Lennard, T. Lissner, A. Nauels, G.P. Peters, A. Pirani, G.-K. Plattner, H. Pörtner, J. Rogelj, M. Rojas, J. Roy, B.H. Samset, B.M. Sanderson, R. Séférian, S. Seneviratne, C.J. Smith, S. Szopa, A. Thomas, D. Urge-Vorsatz, G.J.M. Velders, T. Yokohata, T. Ziehn, Z. Nicholls. A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs). Geosci. Model Dev. Discuss. [preprint] (2023),
CrossRef Google scholar
Mignot, J., Hourdin, F., Deshayes, J., Boucher, O., Gastineau, G., Musat, I., et al. (2021). The tuning strategy of IPSL-CM6A-LR. Journal of Advances in Modeling Earth Systems, 13, e2020MS002340.
D. Mitchell, Y.E. Lo, W. Seviour, L. Haimberger, L. Polvani. The vertical profile of recent tropical temperature trends: Persistent model biases in the context of internal variability. Environ. Res. Lett., 15 (10) (2020), p. 1040b4
A. Moberg, D. Sonechkin, K. Holmgren, N.D. Datsenko, W. Karlén. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433 (2005), pp. 613-617
F. Möller. On the influence of changes in the CO2 concentration in air on the radiation balance of the earth’s surface and on the climate. J. Geophys. Res., 68 (1963), pp. 3877-3886
C. Monckton, W.-H. Soon, D.R. Legates, W.M. Briggs. Why models run hot: Results from an irreducibly simple model. Science Bulletin, 60 (2015), pp. 122-135
Morice, C.P., Kennedy, J.J., Rayner, N.A., Winn, J.P., Hogan, E., Killick, R.E., Dunn, R. J.H., Osborn, T.J., Jones, P.D., Simpson, I.R., 2021. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. Journal of Geophysical Research: Atmospheres 126(3), e2019JD032361.
C.P. Morice, J.J. Kennedy, N.A. Rayner, P.D. Jones. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J. Geophys. Res., 117 (2012), p. D08101
U. Neff, S.J. Burns, A. Mangini, M. Mudelsee, D. Fleitmann, A. Matter. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature, 411 (2001), pp. 290-293
F.J.M.M. Nijsse, P.M. Cox, M.S. Williamson. Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models. Earth Syst. Dyn., 11 (3) (2020), pp. 737-750
P. O’Neill, R. Connolly, M. Connolly, W. Soon, B. Chimani, M. Crok, R. de Vos, H. Harde, P. Kajaba, P. Nojarov, R. Przybylak, D. Rasol, O. Skrynyk, O. Skrynyk, P. Štěpánek, A. Wypych, P. Zahradníček. Evaluation of the Homogenization Adjustments Applied to European Temperature Records in the Global Historical Climatology Network Dataset. Atmos., 13 (2022), p. 285
PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data, 4 (2017), Article 170088
V. Penza, F. Berrilli, L. Bertello, M. Cantoresi, S. Criscuoli, P. Giobbi. Total solar irradiance during the last five centuries. Astrophys. J., 937 (2) (2022), p. 84
S. Piao, X. Wang, T. Park, C. Chen, X. Lian, Y. He, J.W. Bjerke, A. Chen, P. Ciais, H. Tømmervik, R.R. Nemani, R.B. Myneni. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 1 (1) (2019), pp. 14-27
R. Pielke, M.G. Burgess, J. Ritchie. Plausible 2005–2050 emissions scenarios project between 2 °C and 3 °C of warming by 2100. Environ. Res. Lett., 17 (2022), Article 024027
Pielke, R., 2021. How to Understand the New IPCC Report: Part 1, Scenarios. The Honest Broker. https://rogerpielkejr.substack.com/p/how-to-understand-the-new-ipcc-report.
Pörtner, H.-O., Roberts, D., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., (eds.), B.R., 2022. IPCC, 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Rahmstorf, S., 2008. Anthropogenic climate change: Revisiting the facts. In: Zedillo, E. (Ed.), Global Warming: Looking Beyond Kyoto. Brookings Institution Press, Washington, Ch.3, pp. 34–53.
K. Riahi, D.P. van Vuuren, E. Kriegler, J. Edmonds, B.C. O’Neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko, W. Lutz, A. Popp, J.C. Cuaresma, M. Leimbach, L. Jiang, T. Kram, S. Rao, J. Emmerling, K. Ebi, T. Hasegawa, P. Havlik, F. Humpenöder, L.A.D. Silva, S. Smith, E. Stehfest, V. Bosetti, J. Eom, D. Gernaat, T. Masui, J. Rogelj, J. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen, K. Takahashi, L. Baumstark, J.C. Doelman, M. Kainuma, Z. Klimont, G. Marangoni, H. Lotze-Campen, M. Obersteiner, A. Tabeau, M. Tavoni. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang., 42 (2017), pp. 153-168
J. Ritchie, H. Dowlatabadi. Why do climate change scenarios return to coal?. Energy, 140 (P1) (2017), pp. 1276-1291
R.J. Rocque, C. Beaudoin, R. Ndjaboue, L. Cameron, L. Poirier-Bergeron, R.-A. Poulin-Rheault, C. Fallon, A.C. Tricco, H.O. Witteman. Health effects of climate change: an overview of systematic reviews. BMJ Open, 11 (6) (2021), p. e046333
G. Roe. Feedbacks, timescales, and seeing red. Annu. Rev. Earth Planet. Sci., 37 (1) (2009), pp. 93-115
R.A. Rohde, Z. Hausfather. The Berkeley earth land/ocean temperature record. Earth Syst. Sci. Data, 12 (4) (2020), pp. 3469-3479
M. Rugenstein, M. Zelinka, K.B. Karnauskas, P. Ceppi, T. Andrews. Patterns of surface warming matter for climate sensitivity. EOS, 104 (2023),
CrossRef Google scholar
B. Santer, J. Fyfe, G. Pallotta, G. Pallotta, G.M. Flato, G.A. Meehl, M.H. England, E. Hawkins, M.E. Mann, J.F. Painter, C. Bonfils, I. Cvijanovic, C. Mears, F.J. Wentz, S. Po-Chedley, Q. Fu, C.-Z. Zou. Causes of differences in model and satellite tropospheric warming rates. Nature Geoscience, 10 (2017), pp. 478-485
N. Scafetta. Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Sol. Terr. Phys., 72 (2010), pp. 951-970
N. Scafetta. Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth Sci. Rev., 126 (2013), pp. 321-357
N. Scafetta. Solar Oscillations and the Orbital Invariant Inequalities of the Solar System. Sol. Phys., 295 (2) (2020), p. 33
N. Scafetta, A. Bianchini. Overview of the spectral coherence between planetary resonances and solar and climate oscillations. Climate, 11 (4) (2023), p. 77
Scafetta, N., Milani, F., Bianchini, A., 2020. A 60-Year cycle in the meteorite fall frequency suggests a possible interplanetary dust forcing of the Earth's climate driven by planetary oscillations. Geophysical Research Letters 47(18), e2020GL089954.
N. Scafetta, S. Ouyang. Detection of UHI bias in China climate network using Tmin and Tmax surface temperature divergence. Global Planet. Change, 181 (2019), Article 102989
N. Scafetta, O. Humlum, J.-E. Solheim, K. Stordahl. Comment on “The influence of planetary attractions on the solar tachocline” by Callebaut, de Jager and Duhau. J. Atmos. Sol. Terr. Phys., 102 (2013), pp. 368-371
N. Scafetta, F. Milani, A. Bianchini, S. Ortolani. On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene. Earth Sci. Rev., 162 (2016), pp. 24-43
N. Scafetta, R. Willson, J. Lee, D. Wu. Modeling quiet solar luminosity variability from TSI satellite measurements and proxy models during 1980–2018. Remote Sens. (Basel), 11 (2019), p. 2569
Scafetta, N., 2022. Advanced testing of low, medium, and high ECS CMIP6 GCM simulations versus ERA5-T2m. Geophysical Research Letters 49(6), e2022GL097716.
Schmidt, G.A., Jones, G.S., Kennedy, J.J., 2023. Comment on “Advanced testing of low, medium, and high ECS CMIP6 GCM simulations versus ERA5-T2m” by N. Scafetta (2022). Geophysical Research Letters 50, e2022GL102530.
W.K. Schmutz. Changes in the total solar irradiance and climatic effects. J. Space Weather Space Clim., 11 (2021), p. 40
N.J. Shaviv. Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climatic connection. Phys. Rev. Lett., 89 (5) (2002), Article 051102
Sherwood, S., Webb, M., Annan, J., Armour, K., Forster, P., Hargreaves, J., Hegerl, G., Klein, S., Marvel, K., Rohling, E., Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C., Foster, G., Hausfather, Z., von der Heydt, A., Knutti, R., Mauritsen, T., Norris, J., Proistosescu, C., Rugenstein, M., Schmidt, G., Tokarska, K., Zelinka, M., 2020. An assessment of earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics 58, e2019RG000678.
Shukla, P., Skea, J., Reisinger, A., Slade, R., Fradera, R., Pathak, M., Khourdajie, A., Belkacemi, M., van Diemen, R., Hasija, A., Lisboa, G., Luz, S., Malley, J., McCollum, D., Some, S., (eds.), P.V., 2022. IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
W. Soon, R. Connolly, M. Connolly, S.-I. Akasofu, S. Baliunas, J. Berglund, A. Bianchini, W.M. Briggs, C.J. Butler, R.G. Cionco, et al.. The Detection and Attribution of Northern Hemisphere Land Surface Warming (1850–2018) in Terms of Human and Natural Factors: Challenges of Inadequate Data. Climate, 11 (2023), p. 179
R.W. Spencer, J.R. Christy. Effective climate sensitivity distributions from a 1D model of global ocean and land temperature trends, 1970–2021. Theor. Appl. Climatol. (2023),
CrossRef Google scholar
R.W. Spencer, J.R. Christy, W.D. Braswell. UAH version 6 global satellite temperature products: Methodology and results. Asia-Pac. J. Atmos. Sci., 53 (1) (2017), pp. 121-130
Spencer, R.W., 2023. Examples from our New UAH Urban Heat Island Dataset. https://www.drroyspencer.com/2023/11/examples-from-our-new-uah-urban-heat-island-dataset/. (access December 7 2023).
F. Stefani. Solar and Anthropogenic Influences on Climate: Regression Analysis and Tentative Predictions. Climate, 9 (2021), p. 163
F. Steinhilber, J.A. Abreu, J. Beer, I. Brunner, M. Christl, H. Fischer, U. Heikkilä, P.W. Kubik, M. Mann, K.G. McCracken, H. Miller, H. Miyahara, H. Oerter, F. Wilhelms. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci., 109 (16) (2012), pp. 5967-5971
Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
J. Svensmark, M.B. Enghoff, N.J. Shaviv, H. Svensmark. The response of clouds and aerosols to cosmic ray decreases. J. Geophys. Res. Space Phys., 121 (9) (2016), pp. 8152-8181
Svensmark, H., 2022. Supernova rates and burial of organic matter. Geophysical Research Letters 49(1), e2021GL096376.
R.S.J. Tol. Who benefits and who loses from climate change?. Handbook of Climate Change Mitigation and Adaptation, Springer, New York (2015), pp. 1-12
UNFCCC, 2023. The Paris Agreement: What is the Paris Agreement? https://unfccc.int/process-and-meetings/the-paris-agreement. (access 10 June 2023).
van Oldenborgh, G., 2020. The knmi climate explorer: Knmi (results, code)/world meteorological organization (wmo) (design). https://climexp.knmi.nl/start.cgi.
R. Tol. Costs and benefits of the Paris climate targets. Climate Change Economics, 14 (2023), p. 2340003
D.P. van Vuuren, J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V. Krey, J.-F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S.J. Smith, S.K. Rose. The representative concentration pathways: an overview. Clim. Change, 109 (2011), pp. 5-31
P. Voosen. New climate models forecast a warming surge. Science, 364 (2019), pp. 222-223
P. Voosen. Climate panel confronts implausibly hot models. Science, 373 (2021), pp. 474-475
C.-J. Wu, N.A. Krivova, S.K. Solanki, I.G. Usoskin. Solar total and spectral irradiance reconstruction over the last 9000 years. A & A, 620 (2018), p. A120
M.G. Wyatt, J.A. Curry. Role for Eurasian arctic shelf sea ice in a secularly varying hemispheric climate signal during the 20th century. Clim. Dyn., 42 (9–10) (2013), pp. 2763-2782
Zhang, H.-M., Lawrimore, J., Huang, B., Menne, M., Yin, X., Sánchez-Lugo, A., Gleason, B., Vose, R., Arndt, D., Rennie, J., Williams, C. Updated temperature data give a sharper view of climate trends, Eos, 100. EOS 100. https://doi.org/10.1029/2019EO128229.
Z. Zhu, S. Piao, R.B. Myneni, M. Huang, Z. Zeng, J.G. Canadell, P. Ciais, S. Sitch, P. Friedlingstein, A. Arneth, C. Cao, L. Cheng, E. Kato, C. Koven, Y. Li, X. Lian, Y. Liu, R. Liu, J. Mao, Y. Pan, S. Peng, J. Peñuelas, B. Poulter, T.A.M. Pugh, B.D. Stocker, N. Viovy, X. Wang, Y. Wang, Z. Xiao, H. Yang, S. Zaehle, N. Zeng. Greening of the earth and its drivers. Nat. Clim. Chang., 6 (8) (2016), pp. 791-795
Zou, C.-Z., Xu, H., Hao, X., Liu, Q., 2023. Mid-tropospheric layer temperature record derived from satellite microwave sounder observations with backward merging approach. Journal of Geophysical Research: Atmospheres 128, e2022JD037472.

Accesses

Citations

Detail

Sections
Recommended

/