Contrasting sources and enrichment mechanisms in lithium-rich salt lakes: A Li-H-O isotopic and geochemical study from northern Tibetan Plateau

Fei Xue, Hongbing Tan, Xiying Zhang, M. Santosh, Peixin Cong, Lu Ge, Chao Li, Guohui Chen, Yu Zhang

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (2) : 101768.

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (2) : 101768. DOI: 10.1016/j.gsf.2023.101768

Contrasting sources and enrichment mechanisms in lithium-rich salt lakes: A Li-H-O isotopic and geochemical study from northern Tibetan Plateau

Author information +
History +

Abstract

Lithium (Li), a crucial mineral resource for modern high-tech industries, is notably abundant in the northern Tibetan Plateau, primarily within lithium-rich salt lakes. However, the exploration and development of these resources are hindered due to an incomplete understanding of their nature and origin. Here we present results from a comprehensive study on the hydrochemical parameters, whole-rock geochemistry, H-O isotopes, and Li concentrations in surface brine, river water, geothermal springs, and associated rocks from two representative lithium-enriched salt lakes, the Laguo Co (LGC) and Cangmu Co (CMC) in Tibet to understand the genetic mechanisms. Our water-salt balance calculations and H-O isotopic analysis reveal that Li in LGC and CMC primarily originates from the Suomei Zangbo (SMZB, ∼91%) and Donglong Zangbo (DLZB, ∼75%) rivers, respectively. It is estimated that the LGC and CMC took a minimum of 6.0 ka and 3.0 ka to accumulate their current lithium resources, respectively. The distinct geological characteristics reflect evolutionary differences between the two lakes, suggesting diverse lithium sources and enrichment processes. The high lithium ion concentration and light lithium isotope composition in the SMZB river waters indicate the genetic relationship with lithium-enriched geothermal springs in the Tibetan Plateau. Our results suggest that lithium in the LGC originates from lithium-enriched geothermal springs and is primarily supplied through the small-scale SMZB river. In contrast, the formation and evolution of CMC are influenced by the northern Lunggar rifts, receiving a prolonged and stable input from the DLZB, resulting in high lithium concentrations and isotopic values. The absence of lithium-enriched geothermal springs and the prevalence of silicate rocks in the CMC catchment suggest that lithium may be sourced from the weathering of silicate rocks, such as granitic pegmatite veins containing lithium-rich beryl, widely distributed in the upstream area of DLZB. The forward modeling approach, quantifying the contribution fractions of different reservoirs (atmospheric precipitation, silicate, carbonate, and evaporite), indicates that the distinct lithium concentrations in the mainstream (>1 mg/L) and tributaries (<0.1 mg/L) are positively correlated with the ratio of silicate contributions to carbonate contributions, suggesting that dissolved lithium in river waters primarily originates from the weathering and dissolution of silicate rocks. The distinct sources and enrichment mechanisms of lithium in these two salt lakes are attributed to various evolutionary processes, topographical features, hydrological factors, fundamental geological settings, and tectonic histories, despite their spatial proximity. Furthermore, our study highlights the significant role of rivers in the formation of young salt lakes, in addition to geothermal springs.

Keywords

Lithium isotopes / Hydrochemistry / Salt lakes / Enrichment mechanism / Tibetan Plateau

Cite this article

Download citation ▾
Fei Xue, Hongbing Tan, Xiying Zhang, M. Santosh, Peixin Cong, Lu Ge, Chao Li, Guohui Chen, Yu Zhang. Contrasting sources and enrichment mechanisms in lithium-rich salt lakes: A Li-H-O isotopic and geochemical study from northern Tibetan Plateau. Geoscience Frontiers, 2024, 15(2): 101768 https://doi.org/10.1016/j.gsf.2023.101768

References

M. Alivernini, Z. Lai, P. Frenzel, S. Fürstenberg, J. Wang, Y. Guo, P. Peng, T. Haberzettl, N. Börner, S. Mischke. Late quaternary lake level changes of Taro Co and neighbouring lakes, southwestern Tibetan Plateau, based on OSL dating and ostracod analysis. Glob. Planet. Change, 166 (2018), pp. 1-18,
CrossRef Google scholar
D. Araoka, H. Kawahata, T. Takagi, Y. Watanabe, K. Nishimura, Y. Nishio. Lithium and strontium isotopic systematics in playas in Nevada, USA: Constraints on the origin of lithium. Miner. Deposita, 49 (2014), pp. 371-379,
CrossRef Google scholar
T.R. Benson, M.A. Coble, J.J. Rytuba, G.A. Mahood. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nat. Commun., 8 (2017), p. 270,
CrossRef Google scholar
L.D. Benton, J.G. Ryan, I.P. Savov. Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: Insights into the mechanics of slab-mantle exchange during subduction. Geochem. Geophy. Geosy., 5, Q08J12 (2004),
CrossRef Google scholar
Bradley, D., Munk, L., Jochens, H., Hynek, S., Labay, K.A., 2013. A preliminary deposit model for lithium brines. U.S. Geological Survey Open-File Report 2013-1006 6.
C. Chen, C.T.A. Lee, M. Tang, K. Biddle, W. Sun. Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment. Nat. Commun., 11 (2020), pp. 1-8,
CrossRef Google scholar
Coffey, D.M., Munk, L.A., Ibarra, D.E., Butler, K.L., Boutt, D.F., Jenckes, J., 2021. Lithium Storage and Release From Lacustrine Sediments: Implications for Lithium Enrichment and Sustainability in Continental Brines. Geochem. Geophy. Geosy. 22 (12), e2021GC009916. https://doi.org/10.1029/2021GC009916.
J.T. Cullen, S. Hurwitz, J.D. Barnes, J.C. Lassiter, S. Penniston-Dorland, A. Meixner, F. Wilckens, S.A. Kasemann, R.B. McCleskey. The Systematics of Chlorine, Lithium, and Boron and δ37Cl, δ7Li, and δ11B in the Hydrothermal System of the Yellowstone Plateau Volcanic Field. Geochem. Geophy. Geosy., 22 (2021), Article e2020GC009589,
CrossRef Google scholar
M. Dellinger, J. Gaillardet, J. Bouchez, D. Calmels, V. Galy, R.G. Hilton, P. Louvat, C. France-Lanord. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion. Earth Planet. Sci. Lett., 401 (2014), pp. 359-372,
CrossRef Google scholar
M. Dellinger, J. Gaillardet, J. Bouchez, D. Calmels, P. Louvat, A. Dosseto, C. Gorge, L. Alanoca, L. Maurice. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochim. Cosmochim. Acta, 164 (2015), pp. 71-93,
CrossRef Google scholar
Dong, H., 2019. Study on Lithium Metallogenesis Mechanism of Laguocuo Salt Lake, Tibet. MSc thesis, China University of Geosciences(in Chinese with English abstract).
H.I. Elenga, H. Tan, J. Su, J. Yang. Origin of the enrichment of B and alkali metal elements in the geothermal water in the Tibetan Plateau: Evidence from B and Sr isotopes. Geochemistry, 81 (2021), Article 125797,
CrossRef Google scholar
B.S. Ellis, D. Szymanowski, T. Magna, J. Neukampf, R. Dohmen, O. Bachmann, P. Ulmer, M. Guillong. Post-eruptive mobility of lithium in volcanic rocks. Nat. Commun., 9 (2018), p. 3228,
CrossRef Google scholar
G.E. Ericksen, J.D. Vine, R. Ballon. Chemical composition and distribution of lithium-rich brines in Salar de Uyuni and nearby salars in southwestern Bolivia. Energy, 3 (3) (1978), pp. 355-363,
CrossRef Google scholar
J.J. Fan, G.J. Tang, G.J. Wei, H. Wang, Y.G. Xu, Q. Wang, J.S. Zhou, Z.Y. Zhang, T.Y. Huang, Z.L. Wang. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun. NW Tibet. Lithos, 352–353 (2020), Article 105236,
CrossRef Google scholar
G.D. Flesch, A.R. Anderson, H.J. Svec. A secondary isotopic standard for 6Li/7Li determinations. Int. J. Mass Spectrom. Ion Phys., 12 (1973), pp. 265-272,
CrossRef Google scholar
D.M. Fries, R.H. James, C. Dessert, J. Bouchez, A. Beaumais, C.R. Pearce. The response of Li and Mg isotopes to rain events in a highly-weathered catchment. Chem. Geol., 519 (2019), pp. 68-82,
CrossRef Google scholar
J. Gaillardet, B. Dupré, P. Louvat, C.J. Allègre. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol., 159 (1999), pp. 3-30,
CrossRef Google scholar
Y. Gao, J.F. Casey. Lithium Isotope Composition of Ultramafic Geological Reference Materials JP-1 and DTS-2. Geostand. Geoanal. Res., 36 (2012), pp. 75-81,
CrossRef Google scholar
R.J. Gibbs. Mechanisms controlling world water chemistry. Science, 170 (1970), pp. 1088-1090
L. Godfrey, F. Álvarez-Amado. Volcanic and Saline Lithium Inputs to the Salar de Atacama. Minerals, 10 (2020), p. 201,
CrossRef Google scholar
L.V. Godfrey, L.-H. Chan, R.N. Alonso, T.K. Lowenstein, W.F. McDonough, J. Houston, J. Li, A. Bobst, T.E. Jordan. The role of climate in the accumulation of lithium-rich brine in the Central Andes. Appl. Geochem., 38 (2013), pp. 92-102,
CrossRef Google scholar
L.V. Godfrey, C. Herrera, C. Gamboa, R. Mathur. Chemical and isotopic evolution of groundwater through the active Andean arc of Northern Chile. Chem. Geol., 518 (2019), pp. 32-44,
CrossRef Google scholar
H. Gong, T. Hansen. The rise of China’s new energy vehicle lithium-ion battery industry: The coevolution of battery technological innovation systems and policies. Environ. Innov. Soc. Tr., 46 (2023), Article 100689,
CrossRef Google scholar
L.F. Gou, Z. Jin, L. Deng, H. Sun, H. Yu, F. Zhang. Efficient purification for Li and high-precision and accuracy determination of Li isotopic compositions by MC-ICP-MS. Geochimica, 46 (2017), pp. 528-537
L.-F. Gou, Z. Jin, P.A.E. Pogge von Strandmann, G. Li, Y.-X. Qu, J. Xiao, L. Deng, A. Galy. Li isotopes in the middle Yellow River: Seasonal variability, sources and fractionation. Geochim. Cosmochim. Acta, 248 (2019), pp. 88-108,
CrossRef Google scholar
L.-F. Gou, Y. Xu, F. Tong, Z. Jin. Li isotopic seasonality in a small catchment at the northeastern Tibetan Plateau: Roles of hydrology and temperature dependency. Sci. Total Environ., 870 (2023), Article 161896,
CrossRef Google scholar
M.Y. He, C.G. Luo, H.J. Yang, F.C. Kong, Y.L. Li, L. Deng, X.Y. Zhang, K.Y. Yang. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: Evidence from Li isotopes. Ore Geol. Rev., 117 (2020), Article 103277,
CrossRef Google scholar
S. Henchiri, C. Clergue, M. Dellinger, J. Gaillardet, P. Louvat, J. Bouchez. The Influence of Hydrothermal Activity on the Li Isotopic Signature of Rivers Draining Volcanic Areas. Procedia Earth Planet. Sci., 10 (2014), pp. 223-230,
CrossRef Google scholar
S. Henchiri, J. Gaillardet, M. Dellinger, J. Bouchez, R.G.M. Spencer. Riverine dissolved lithium isotopic signatures in low-relief central Africa and their link to weathering regimes. Geophys. Res, Lett., 43 (2016), pp. 4391-4399,
CrossRef Google scholar
R.S. Hindshaw, R. Tosca, T.L. Goût, I. Farnan, N.J. Tosca, E.T. Tipper. Experimental constraints on Li isotope fractionation during clay formation. Geochim. Cosmochim. Acta, 250 (2019), pp. 219-237,
CrossRef Google scholar
D. Hu. Geochemical characteristics of the water body in the Kekexili region lakes. Oceanol. Limnol. Sin., 28 (1997), pp. 164-170
C. Huang, Y. Guo, L. Yu, M. Cao, H. Tu, Z. Lai. Holocene hydrological history of a Tibetan glacier-fed lake Taro Co in response to climate change. CATENA, 220 (2023), Article 106686,
CrossRef Google scholar
X. Huang, M. Sillanpää, E.T. Gjessing, R.D. Vogt. Water quality in the Tibetan Plateau: Major ions and trace elements in the headwaters of four major Asian rivers. Sci. Total Environ., 407 (2009), pp. 6242-6254,
CrossRef Google scholar
Y. Huh, L.-H. Chan, L. Zhang, J.M. Edmond. Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget. Geochim. Cosmochim. Acta, 62 (1998), pp. 2039-2051,
CrossRef Google scholar
W. Jiang, Y. Sheng, G. Wang, Z. Shi, F. Liu, J. Zhang, D. Chen. Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins: a review. Environ. Chem. Lett., 20 (2022), pp. 1497-1528,
CrossRef Google scholar
B. Kısakűrek, R.H. James, N.B.W. Harris. Li and δ7Li in Himalayan rivers: Proxies for silicate weathering? Earth Planet. Sci. Lett., 237 (2005), pp. 387-401,
CrossRef Google scholar
J. Lee, S.-H. Li, J.C. Aitchison. OSL dating of paleoshorelines at Lagkor Tso, western Tibet. Quat. Geochronol., 4 (2009), pp. 335-343,
CrossRef Google scholar
J. Li, F. Chen, Z. Ling, T. Li. Lithium sources in oilfield waters from the Qaidam Basin, Tibetan Plateau: Geochemical and Li isotopic evidence. Ore Geol. Rev., 139 (2021), Article 104481,
CrossRef Google scholar
B.K. Li, H.D. Cheng, H.Z. Ma. Boron Isotope Geochemistry of the Lakkor Co Salt Lake (Tibet) and Its Geological Significance. Geofluids, 2022 (2022), pp. 1-13,
CrossRef Google scholar
Z.Q. Li, Z.Q. Hou, F.J. Nie, X.J. Meng. Characteristic and distribution of the partial melting layers in the upper crust: evidence from active hydrothermal fluid in the south Tibet. Acta Geol. Sin., 79 (1) (2005), pp. 68-77 (in Chinese with English abstract)
Y.L. Li, W.L. Miao, M.Y. He, C.Z. Li, H.E. Gu, X.Y. Zhang. Origin of lithium-rich salt lakes on the western Kunlun Mountains of the Tibetan Plateau: Evidence from hydrogeochemistry and lithium isotopes. Ore Geol. Rev., 155 (2023), Article 105356,
CrossRef Google scholar
Y. Li, C. Wang, J. Dai, G. Xu, Y. Hou, X. Li. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: A review. Earth Sci. Rev., 143 (2015), pp. 36-61,
CrossRef Google scholar
H. Liu, H. Sun, Y. Xiao, Y. Wang, L. Zeng, W. Li, H. Guo, H. Yu, A. Pack. Lithium isotope systematics of the Sumdo Eclogite, Tibet: Tracing fluid/rock interaction of subducted low-T altered oceanic crust. Geochim. Cosmochim. Acta, 246 (2019), pp. 385-405,
CrossRef Google scholar
Liu, X.F., Zheng, M.P., Qi, W., 2007. Sources of ore-forming materials of the superlarge B and Li deposit in Zabuye Salt Lake, Tibet. China. Acta Geol. Sin. 81 (12), 1709–1715 (in Chinese with English abstract).
Y. Lü, M. Zheng, W. Chen, X. Zhang, X. Liu, Q. Wu, J. Yu. Origin of boron in the Damxung Co Salt Lake (central Tibet): Evidence from boron geochemistry and isotopes. Geochem. J., 47 (2013), pp. 513-523,
CrossRef Google scholar
Luo, Y., Zheng, M., 2016. Origin of Boron in the Dangxiong Co Salt Lake, Tibet. China. Acta Geol. Sin. 90 (8), 1900–1907 (in Chinese with English abstract).
T. Ma, M. Weynell, S.-L. Li, Y. Liu, B. Chetelat, J. Zhong, S. Xu, C.-Q. Liu. Lithium isotope compositions of the Yangtze River headwaters: Weathering in high-relief catchments. Geochim. Cosmochim. Acta, 280 (2020), pp. 46-65,
CrossRef Google scholar
T. Ma, M. Weynell, S.-L. Li, J. Zhong, S. Xu, C.-Q. Liu. High-temporal-resolution of lithium isotopes in Yangtze River headwater: Hydrological control on weathering in high-relief catchments. Sci. Total Environ., 879 (2023), Article 163214,
CrossRef Google scholar
H.R. Marschall, V.D. Wanless, N. Shimizu, P.A.E. Pogge von Strandmann, T. Elliott, B.D. Monteleone. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim. Cosmochim. Acta, 207 (2017), pp. 102-138,
CrossRef Google scholar
W.F. McDonough, S.-S. Sun. The composition of the Earth. Chemi. Geol., 120 (1995), pp. 223-253
A. Meixner, R.N. Alonso, F. Lucassen, L. Korte, S.A. Kasemann. Lithium and Sr isotopic composition of salar deposits in the Central Andes across space and time: the Salar de Pozuelos. Argentina. Miner. Deposita, 57 (2022), pp. 255-278,
CrossRef Google scholar
W. Miao, X. Zhang, Y. Li, W. Li, X. Yuan, C. Li. Lithium and strontium isotopic systematics in the Nalenggele River catchment of Qaidam basin, China: Quantifying contributions to lithium brines and deciphering lithium behavior in hydrological processes. J. Hydrol., 614 (2022), Article 128630,
CrossRef Google scholar
R. Millot, N. Vigier, J. Gaillardet. Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin. Canada. Geochim. Cosmochim. Acta, 74 (2010), pp. 3897-3912,
CrossRef Google scholar
F. Mohammadi, M. Saif. A comprehensive overview of electric vehicle batteries market. e-Prime - Advances in Electrical Engineering. Electronics and Energy, 3 (2023), Article 100127,
CrossRef Google scholar
L.A. Munk, S.A. Hynek, D.C. Bradley, D. Boutt, K. Labay, H. Jochens. Lithium Brines: A Global Perspective. P.L. Verplanck, M.W. Hitzman (Eds.), Rare Earth and Critical Elements in Ore Deposits, Society of Economic Geologists (2016),
CrossRef Google scholar
Munk, L.A., Boutt, D.F., Moran, B.J., McKnight, S.V., Jenckes, J., 2021. Hydrogeologic and Geochemical Distinctions in Freshwater-Brine Systems of an Andean Salar. Geochem. Geophy. Geosy. 22, e2020GC009345. https://doi.org/10.1029/2020GC009345.
M.J. Murphy, D. Porcelli, P.A.E. Pogge von Strandmann, C.A. Hirst, L. Kutscher, J.A. Katchinoff, C.-M. Mörth, T. Maximov, P.S. Andersson. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes. Geochim. Cosmochim. Acta, 245 (2019), pp. 154-171,
CrossRef Google scholar
P. Négrel, R. Millot, E. Petelet-Giraud, G. Klaver. Li and δ7Li as proxies for weathering and anthropogenic activities: Application to the Dommel River (meuse basin). Appl. Geochem., 120 (2020), Article 104674,
CrossRef Google scholar
H. Noh, Y. Huh, J. Qin, A. Ellis. Chemical weathering in the Three Rivers region of Eastern Tibet. Geochim. Cosmochim. Acta, 73 (2009), pp. 1857-1877,
CrossRef Google scholar
S. Penniston-Dorland, X.M. Liu, R.L. Rudnick. . Lithium Isotope Geochemistry. Non-Traditional Stable Isotopes, 82 (2017), pp. 165-218,
CrossRef Google scholar
J.S. Pistiner, G.M. Henderson. Lithium-isotope fractionation during continental weathering processes. Earth Planet. Sci. Lett., 214 (2003), pp. 327-339,
CrossRef Google scholar
B. Qu, Y. Zhang, S. Kang, M. Sillanpää. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the “Water Tower of Asia”. Sci. Total Environ., 649 (2019), pp. 571-581,
CrossRef Google scholar
Rao, J.P., Jia, Q.X., Liu, X.F., Wang, H.P., Luo, Y.H., 2019. Morphologic, hydrological and chemical characteristics of the Debuer-Lakkor Co lake chain in Tibet. Acta Geosci. Sin. 5, 737–746 (in Chinese with English abstract).
J.H. Reiman, Y.J. Xu, S. He, E.M. DelDuco. Metals geochemistry and mass export from the Mississippi-Atchafalaya River system to the Northern Gulf of Mexico. Chemosphere, 205 (2018), pp. 559-569,
CrossRef Google scholar
D. Shi, H. Tan, X. Chen, W. Rao, R. Basang. Uncovering the mechanisms of seasonal river–groundwater circulation using isotopes and water chemistry in the middle reaches of the Yarlungzangbo River. Tibet. J. Hydrol., 603 (2021), Article 127010,
CrossRef Google scholar
R.A. Spicer, T. Su, P.J. Valdes, A. Farnsworth, F.X. Wu, G. Shi, T.E. Spicer, Z. Zhou. Why ‘the uplift of the Tibetan Plateau’is a myth. Nat. Sci. Rev., 8 (1) (2021), p. nwaa091,
CrossRef Google scholar
R.L.L. Steinmetz. Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30′S. Miner. Deposita, 52 (2017), pp. 35-50,
CrossRef Google scholar
K.E. Sundell, M.H. Taylor, R.H. Styron, D.F. Stockli, P. Kapp, C. Hager, D. Liu, L. Ding. Evidence for constriction and Pliocene acceleration of east-west extension in the North Lunggar rift region of west central Tibet. Tectonics, 32 (2013), pp. 1454-1479,
CrossRef Google scholar
C.B. Tabelin, J. Dallas, S. Casanova, T. Pelech, G. Bournival, S. Saydam, I. Canbulat. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng., 163 (2021), Article 106743,
CrossRef Google scholar
H. Tan, J. Chen, W. Rao, W. Zhang, H. Zhou. Geothermal constraints on enrichment of boron and lithium in salt lakes: An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains. China. J. Asian Earth Sci., 51 (2012), pp. 21-29,
CrossRef Google scholar
H. Tan, Y. Zhang, W. Zhang, N. Kong, Q. Zhang, J. Huang. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes. Appl. Geochem., 51 (2014), pp. 23-32,
CrossRef Google scholar
H. Tan, J. Su, P. Xu, T. Dong, H.I. Elenga. Enrichment mechanism of Li, B and K in the geothermal water and associated deposits from the Kawu area of the Tibetan plateau: Constraints from geochemical experimental data. Appl. Geochem., 93 (2018), pp. 60-68,
CrossRef Google scholar
Tang, Y., Zhai, Q., Hu, P., Wang, W., 2021. Petrogenesis of anorthosite in the Laguoco ophiolite western part of the Bangong-Nujiang suture zone and its constraint to the evolution of the Meso-Tethys Ocean. Geol. Bull. China 40 (8), 1265–1278 (in Chinese with English abstract).
F.-Z. Teng, W.F. McDonough, R.L. Rudnick, R.J. Walker. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet. Sci. Lett., 243 (2006), pp. 701-710,
CrossRef Google scholar
F.-Z. Teng, R.L. Rudnick, W.F. McDonough, F.-Y. Wu. Lithium isotopic systematics of A-type granites and their mafic enclaves: Further constraints on the Li isotopic composition of the continental crust. Chem. Geol., 262 (2009), pp. 370-379,
CrossRef Google scholar
S. Tian, Z. Hou, X. Mo, Y. Tian, Y. Zhao, K. Hou, Z. Yang, W. Hu, X. Li, Y. Zhang. Lithium isotopic evidence for subduction of the Indian lower crust beneath southern Tibet. Gondwana Res., 77 (2020), pp. 168-183,
CrossRef Google scholar
N. Vigier, S.R. Gislason, K.W. Burton, R. Millot, F. Mokadem. The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland. Earth Planet. Sci. Lett., 287 (2009), pp. 434-441,
CrossRef Google scholar
Q.-L. Wang, B. Chetelat, Z.-Q. Zhao, H. Ding, S.-L. Li, B.-L. Wang, J. Li, X.-L. Liu. Behavior of lithium isotopes in the Changjiang River system: Sources effects and response to weathering and erosion. Geochim. Cosmochim. Acta, 151 (2015), pp. 117-132,
CrossRef Google scholar
G. Wang, X.F. Tao. Structural features and genetic mechanism of the Duosang graben in the Ngari area. Xizang. Sediment. Geol. Tethyan Geol., 29 (1) (2009), pp. 46-52
C. Wang, M. Zheng, X. Zhang, E. Xing, J. Zhang, J. Ren, Y. Ling. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas. China. Geosci. Front., 11 (2020), pp. 1175-1187,
CrossRef Google scholar
C. Wang, M. Zheng, X. Zhang, Q. Wu, X. Liu, J. Ren, S. Chen. Geothermal-type Lithium Resources in Southern Xizang. China. Acta Geol. Sin. Eng., 95 (2021), pp. 860-872,
CrossRef Google scholar
R.G. Wetzel, G. Likens. Limnological Analyses. Springer Science & Business Media (2000)
M. Weynell, U. Wiechert, J.A. Schuessler. Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, northeastern Tibetan Plateau. Geochim. Cosmochim. Acta, 213 (2017), pp. 155-177,
CrossRef Google scholar
M. Weynell, U. Wiechert, J.A. Schuessler. Lithium isotope signatures of weathering in the hyper-arid climate of the western Tibetan Plateau. Geochim. Cosmochim. Acta, 293 (2021), pp. 205-223,
CrossRef Google scholar
J. Wimpenny, S.R. Gíslason, R.H. James, A. Gannoun, P.A.E. Pogge Von Strandmann, K.W. Burton. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochim. Cosmochim. Acta, 74 (2010), pp. 5259-5279,
CrossRef Google scholar
Woodruff Jr, W.H., Horton, B.K., Kapp, P., Stockli, D.F., 2013. Late Cenozoic evolution of the Lunggar extensional basin, Tibet: Implications for basin growth and exhumation in hinterland plateaus. Bulletin 125, 343–358. https://doi.org/10.1130/B30664.1.
L. Yan, M. Zheng. Influence of climate change on saline lakes of the Tibet Plateau, 1973–2010. Geomorphology, 246 (2015), pp. 68-78,
CrossRef Google scholar
S.Y. Yu. Hydrochemistry of Lithium Ore in Mamico Salt Lake and Chronology and Geochemistry of Travertine, Tibet. MSc thesis, Chinese Academy of Geological Sciences (in Chinese with English abstract) (2022)
Yu, S.Y., Liu, M., Zhao, Y.Y., Zheng, M.P., 2022. Hydrochemical Characteristics Of Large-scale lithium-boron mine basin in the Mami Co Saline Lake, Acta Geol. Sin. 96, 2195–2205 (in Chinese with English abstract). https://doi.org/10.19762/j.cnki.dizhixuebao.2022001.
Y. Yuan, Z. Yin, W. Liu, Q. Huang, J. Li, H. Liu, Z. Wan, Z. Cai, B. Xia. Tectonic Evolution of the Meso-Tethys in the Western Segment of Bangonghu-Nujiang Suture Zone: Insights from Geochemistry and Geochronology of the Lagkor Tso Ophiolite. Acta Geol. Sin. Eng., 89 (2015), pp. 369-388,
CrossRef Google scholar
T. Zack, P.B. Tomascak, R.L. Rudnick, C. Dalpé, W.F. McDonough. Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet. Sci. Lett., 208 (2003), pp. 279-290,
CrossRef Google scholar
H. Zhang, S. Tian, D. Wang, X. Li, T. Liu, Y. Zhang, X. Fu, X. Hao, K. Hou, Y. Zhao, Y. Qin. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite–pegmatite deposit, Sichuan. China. Ore Geol. Rev., 134 (2021), Article 104139,
CrossRef Google scholar
Zhang et al., 2022a J.W. Zhang, Y.-N. Yan, Z.Q. Zhao, X.-M. Liu, X.D. Li, D. Zhang, H. Ding, J.-L. Meng, C.-Q. Liu. Spatiotemporal variation of Li isotopes in the Yarlung Tsangpo River basin (upper reaches of the Brahmaputra River): Source and process. Earth Planet. Sci. Lett., 600 (2022), Article 117875,
CrossRef Google scholar
Zhang et al., 2020a G. Zhang, T. Yao, H. Xie, K. Yang, L. Zhu, C.K. Shum, T. Bolch, S. Yi, S. Allen, L. Jiang, W. Chen, C. Ke. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth Sci. Rev., 208 (2020), Article 103269,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/