Petrogenesis of early Paleozoic granitoids in the North Qinling Orogen, Central China: Implications for crustal evolution in an accretionary orogen
Leran Hao, Debin Yang, Anqi Wang, Yikang Quan, Xiangyu Yan, Shuo Wang
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (2) : 101764.
Petrogenesis of early Paleozoic granitoids in the North Qinling Orogen, Central China: Implications for crustal evolution in an accretionary orogen
Accretionary orogens are sites of extensive continental crustal growth and modification. The mechanism by which mafic crust is transformed into silicic melts (i.e., maturation of continental crust) is important for understanding the formation of the continental crust. The North Qinling Orogen (NQO) is a composite orogenic belt and contains an early Paleozoic accretion-dominated orogenic system, which is ideal for investigating continental crustal maturation. We obtained zircon and monazite U–Pb age and O isotope data, zircon Lu–Hf isotope data, and whole-rock major- and trace-element and Sr–Nd isotope data for early Paleozoic granitoids of the NQO. The granitoids are divided into three groups. Group 1 includes the Taiping tonalite (445 ± 3 Ma), the Manziying syenogranite (445 ± 2 Ma), and the Huoshenmiao granodiorite (436 ± 2 Ma). The Taiping and Huoshenmiao plutons have relatively high SiO2 contents (68.64–71.67 wt.%) and Na2O/K2O ratios (1.15–4.19), with enrichments in Rb, Ba, Th, and U and depletions in Nb, Ta, P, and Ti, and they are geochemically similar to sodic arc magmas. The Manziying syenogranite is a peraluminous potassic granite with high K2O contents (4.59–5.27 wt.%). Grantioids from Group 1 have similarly depleted Sr–Nd–Hf–O isotopic features (εHf[t] = +5.9 to +8.8; δ18O = 3.98‰–5.41‰), indicative of derivation via partial melting of oceanic arc crust, which suggests that partial melting of oceanic arc crust in a subduction system contributes to the generation of continental crust and causes its maturation. Group 2 consists of the Wuduoshan monzogranite (418 ± 2 Ma) and the Sikeshu granodiorite (423 ± 3 Ma). These plutons have relatively high SiO2 (65.59–72.06 wt.%), K2O (3.26–4.79 wt.%), and Al2O3 (14.65–16.12 wt.%) contents and Sr/Y (33–87) and (La/Yb)N (23–48) ratios. The Wuduoshan monzogranite has positive zircon εHf(t) (+0.4 to +3.1) and uniform δ18O (6.38‰–8.07‰) values, but the Sikeshu granodiorite has more variable isotopic compositions (εHf[t] = −1.9 to +5.0; δ18O = 6.37‰–10.60‰). The Wuduoshan monzogranite and Sikeshu granodiorite have similar whole-rock Sr–Nd isotopic compositions to basement rocks of the NQO. These features indicate that the two plutons formed by partial melting of basement rocks (i.e., subducted into the lower crust) of the North Qinling unit, along with juvenile crustal material. Group 3 is represented by the Xiaguan monzogranite, which formed at 434–430 Ma, and can be subdivided into heavy rare earth element (REE)-depleted and -enriched units. The former has high Sr/Y (56–98) and (La/Yb)N (34–73) ratios and low MgO (0.13–0.24 wt.%), Cr (0.37–1.69 ppm), and Ni (0.32–1.09 ppm) contents, similar to adakites derived from metabasaltic sources. The heavy REE-enriched nature of the Xiaguan monzogranite may reflect modification of its source by melt or fluid. Our results show that partial melting of enriched oceanic arc crust contributed to crustal maturation in an accretionary orogen. The addition of evolved crustal material also facilitated this process; therefore, the basement rocks and crustal thickness should be considered when assessing crustal dynamics in an accretionary orogen.
Zircon Hf-O isotopes / Granite / Continental crust / Accretionary orogen
M.I.M. Abdallsamed, Y.B. Wu, W. Zhang, G. Zhou, H. Wang, S. Yang. Early Paleozoic high-Mg granodiorite from the Erlangping unit, North Qinling orogen, central China: partial melting of metasomatic mantle during the initial back-arc opening. Lithos, 288–289 (2017), pp. 282-294
|
A.J. Anderson. The alteration of metamict zircon and its role in the remobilization of high-field-strength-elements in the Georgeville granite, Nova Scotia. Can. Mineral., 46 (2008), pp. 1-18
|
C.R. Bacon, L.H. Adami, M.A. Lanphere. Direct evidence for the origin of low-18O silicic magmas: quenched samples of a magma chambers partially-fused granitoid walls, Crater Lake Oregon. Earth Planet. Sci. Lett., 96 (1) (1989), pp. 199-208
|
S.J. Barker, C.J.N. Wilson, J.A. Baker, M.A. Millet, M.D. Rotella, I.C. Wright, R.J. Wysoczanski. Geochemistry and petrogenesis of silicic magmas in the Intra-Oceanic Kermadec arc. J. Petrol., 54 (2) (2013), pp. 351-391
|
E.A. Belousova, W.L. Griffin, S.Y. O’Reilly, N.I. Fisher. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143 (2002), pp. 602-622
|
P.R. Castillo, P.E. Janney, R.U. Solidum. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib. Mineral. Petrol., 134 (1999), pp. 33-51
|
E.J. Catlos, L.D. Gilley, T.M. Harrison. Interpretation of monazite ages obtained via in situ analysis. Chem. Geol., 188 (3–4) (2002), pp. 193-215
|
Y.W. Chen, R.Z. Hu, X.W. Bi, S.H. Dong, Y. Xu, T. Zhou. Zircon U-Pb ages and Sr-Nd-Hf isotopic characteristics of the Huichizi granitic complex in the North Qinling orogenic belt and their geological significance. J. Earth Sci., 29 (3) (2018), pp. 492-507
|
R.X. Chen, Y.F. Zheng. Metamorphic zirconology of continental subduction zones. J. Asian Earth Sci., 145 (2017), pp. 149-176
|
M.J. Defant, M.S. Drummond. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347 (1990), pp. 662-665
|
C.R. Diwu, Y. Sun, L.A. Liu, C.L. Zhang, H.L. Wang. The disintegration of Kuanping Group in North Qinling orogenic belts and Neo-Proterozoic N-MORB. Acta Petrol. Sin., 26 (2010), pp. 2025-2038
|
C.R. Diwu, Y. Sun, Y. Zhao, B.X. Liu, S.C. Lai. Geochronological, geochemical, and Nd-Hf isotopic studies of the Qinling Complex, central China: implications for the evolutionary history of the North Qinling Orogenic Belt. Geosci. Front., 5 (2014), pp. 499-513
|
Y. Dong, M. Santosh. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt. Central China. Gondwana Res., 29 (1) (2016), pp. 1-40
|
Y.P. Dong, Z. Yang, X.M. Liu, X.N. Zhang, D.F. He, W. Li, F.F. Zhang, S.S. Sun, H.F. Zhang, G.W. Zhang. Neoproterozoic amalgamation of the Northern Qinling Terrain to the North China Craton: constraints from geochronology and geochemistry of the Kuanping ophiolite. Precambrian Res., 255 (2014), pp. 77-95
|
Y.P. Dong, X.N. Zhang, X.M. Liu, W. Li, Q. Chen, G.W. Zhang, H.F. Zhang, Z. Yang, S.S. Sun, F.F. Zhang. Propagation tectonics and multiple accretionary processes of the Qinling Orogen. J. Asian Earth Sci., 104 (2015), pp. 84-98
|
M.S. Drummond, M.J. Defant. A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J. Geophys. Res., 95 (1990), pp. 21503-21521
|
J.M. Ferry, E.B. Watson. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol., 154 (4) (2007), pp. 429-437
|
C.D. Frost, S.M. Swapp, B.R. Frost, L. Finley-Blasi, D.B. Fitz-Gerald. Leucogranites of the Teton Range, Wyoming: a record of Archean collisional orogeny. Geochim. Cosmochim. Acta, 185 (2016), pp. 528-549
|
S. Gao, R.L. Rudnick, H.L. Yuan, X.M. Liu, Y.S. Liu, W.L. Xu, W.L. Lin, J. Ayerss, X.C. Wang, Q.H. Wang. Recycling lower continental crust in the North China Craton. Nature, 432 (2004), pp. 892-897
|
S. Gao, D.L. Chen, X.K. Gong, Y.F. Ren, H.P. Li. Zircon U-Pb dating of clastic rocks and granites of Kuanping Group in Dongcha areas of Tianshui, and its geological implications. Earth Sci. Front., 22 (4) (2015), pp. 255-264
|
E. Gazel, J.L. Hayes, K. Hoernle, P. Kelemen, E. Everson, W.S. Holbrook, F. Hauff, P. Bogaard, E.A. Vance, S. Chu, A.J. Calvert, M.J. Carr, G.M. Yogodzinski. Continental crust generated in oceanic arcs. Nat. Geosci., 8 (2015), pp. 321-327
|
R.T. Gregory, H.P. Taylor. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J. Geophys. Res., 86 (1981), pp. 2737-2755
|
C.B. Grimes, T. Ushikubo, R. Kozdon, J.W. Valley. Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos, 179 (2013), pp. 48-66
|
C.L. Guo, D.L. Chen, W. Fan, A.G. Wang. Geochemical and zircon U-Pb chronological studies of the Manziying granite in Erlangping area, western Henan Province. Acta Petrol. Mineral., 29 (2010), pp. 15-22
|
C.L. Guo, D.L. Chen. Identification of O-type adakitic rocks in Erlangping area, western of Henan Province, and its geological significance. Acta Geol. Sin., 85 (12) (2011), pp. 1994-2002
|
B.R. Hacker, P.B. Kelemen, M.D. Behn. Differentiation of the continental crust by relamination. Earth Planet. Sci. Lett., 307 (2011), pp. 501-516
|
J. Hammerli, A.I.S. Kemp, T. Shimura, J.D. Vervoort, D.J. Dunkley. Generation of I-type granitic rocks by melting of heterogeneous lower crust. Geology, 46 (2018), pp. 907-910
|
L.R. Hao, D.B. Yang, M.S. Mu, H.T. Yang, A.Q. Wang, Y.K. Quan, X.Y. Yan. Neoarchean continental crust evolution of the southern North China Craton: constrains from geochronology and geochemistry of the Dengfeng complex in the Jishan area. Int. J. Earth Sci., 112 (2023), pp. 161-173
|
T.M. Harrison, E.J. Catlos, J.M. Montel. U-Th-Pb dating of phosphate minerals. Rev. Mineral. Geochem., 48 (1) (2002), pp. 524-558
|
P. Hu, Y. Wu, W. Zhang, Y. He. Timing of the Erlangping back-arc basin in the Qinling orogen, central China and its tectonic significance. Terra Nova, 31 (2019), pp. 458-464
|
P. Hu, Y.B. Wu, A.M. Bauer, W.X. Zhang, Y. He. Zircon U-Pb geochronology and geochemistry of plagiogranites within a Paleozoic oceanic arc, the Erlangping unit of the Qinling accretionary orogenic belt: petrogenesis and geological implications. Lithos, 394–395 (2021), Article 106196
|
Y. Isozaki, K. Aoki, T. Nakama, S. Yanai. New insight into a subduction-related orogen: a reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Res., 18 (2010), pp. 82-105
|
P.B. Kelemen, M.D. Bhen. Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nat. Geosci., 9 (2016), pp. 197-205
|
A.I.S. Kemp, C.J. Hawkesworth, G.L. Foster, B.A. Paterson, J.D. Woodhead, J.M. Hergt, C.M. Gray, M.J. Whitehouse. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315 (2007), pp. 980-983
|
C. Kincaid, R.W. Griffiths. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature, 425 (2003), pp. 58-62
|
T. Kogiso. A geochemical and petrological view of mantle plume. Beyond Plate Tectonics. Springer, Dordrecht, Superplumes (2007), pp. 165-186
|
A. Kröner, G.W. Zhang, Y. Sun. Granulites in the Tongbai area, Qinling belt, China: geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of Eastern Asia. Tectonics, 12 (1993), pp. 245-255
|
A. Kröner, V. Kovach, E. Belousova, E. Hegner, R. Armstrong, A. Dolgopolova, R. Seltmann, D.V. Alexeiev, J.E. Hoffmann, J. Wong, M. Sun, K. Cai, T. Wang, Y. Tong, S.A. Wilde, K.E. Degtyarev, E. Rytsk. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res., 25 (1) (2014), pp. 103-125
|
Y. Lai, G.C. Zhao, W.L. Li, Q.S. Lai, Z.L. Fan, Z.Q. Yi, J. Wen. Lithogeochemical characteristics and geological significance of granitoids in Zhenping area, Eastern Qinling Mountains. Geol. Miner. Resour. South China, 33 (2017), pp. 330-343
|
M. Lei. Petrogenesis of Granites and their Relation to Tectonic Evolution of Orogen in the East Part of Qinling Orogenic Belt. Ph.D. thesis, Chinese Academy Geolog. Sci (2010)
|
Z.Q. Li, S.L. Ren, S.W. Dong, J.H. Li, C.Z. Song, Q.L. Yang. Tectonic evolution time limit of subduction in Erlangping back-arc basin North Qinling. Chin. J. Geol., 56 (3) (2021), pp. 770-791
|
B.X. Liu. Magmatism and crustal evolution in the eastern North Qinling Terrain. Ph.D. thesis, University of Science and Technology of China (2014)
|
X.C. Liu, B.M. Jahn, J.J. Cui, S.Z. Li, Y.B. Wu, X.H. Li. Triassic retrograded eclogites and Cretaceous gneissic granites in the Tongbai Complex, central China: implications for the architecture of the HP/UHP Tongbai-Dabie-Sulu collision zone. Lithos, 119 (2010), pp. 211-237
|
X.C. Liu, B.M. Jahn, J. Hu, S.Z. Li, X. Liu, B. Song. Metamorphic patterns and SHRIMP zircon ages of medium- to high-grade rocks from the Tongbai orogen, central China: implications for multiple accretion/collision processes prior to terminal continental collision. J. Metamorph. Geol., 29 (2011), pp. 979-1002
|
L. Liu, X.Y. Liao, Y.W. Wang, C. Wang, M. Santosh, M. Yang, C.L. Zhang, D.L. Chen. Early Paleozoic tectonic evolution of the north Qinling orogenic belt in central China: insights on continental deep subduction and multiphase exhumation. Earth Sci. Rev., 159 (2016), pp. 58-81
|
Q. Liu, Y.B. Wu, H. Wang, S. Gao, Z.W. Qin, X.C. Liu, S.H. Yang, H.J. Gong. Zircon U-Pb ages and Hf isotope compositions of migmatites from the North Qinling terrane and their geological implications. J. Metamorph. Geol., 32 (2014), pp. 177-193
|
S. López, C. Fernández, A. Castro. Evolution of the Archaean continental crust: insights from the experimental study of Archaean granitoids. Curr. Sci. India, 91 (2006), pp. 607-621
|
K.R. Ludwig. Isoplot 3.75: a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol. Centre Spec. Publ., no 5 (2012)
|
X.H. Mao, J.X. Zhang, Z.L. Lu, G.S. Zhou, X. Teng. Structural style and geochronology of ductile shear zones in the western North Qinling orogenic belt, Central China: implications for Paleozoic orogeny in the Central China orogeny. J. Asian Earth Sci., 201 (2020), Article 104498
|
H. Martin, R.H. Smithies, R.P. Rapp, J.F. Moyen, D.C. Champion. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79 (2005), pp. 1-24
|
S. Maruyama, S. Omori, H. Senshu, K. Kawai, B.F. Windley. Pacific-type orogens: new concepts and variations in space and time from present to past. J. Geogr. (chigaku Zasshi), 120 (1) (2011), pp. 115-223
|
W.F. McDonough, S.S. Sun. The composition of the Earth. Chem. Geol., 120 (1995), pp. 223-253
|
L. Meng. Metallogenic Characteristics and Genesis of the Pegmatite Type Uranium Deposit in Danfeng Area, Eastern Qinling Mountains. M.S. thesis, Guilin University of Technology (in Chinese with English abstract) (2016)
|
Q.R. Meng, G.W. Zhang. Timing of collision of the North and South China blocks: controversy and reconciliation. Geology, 27 (1999), pp. 123-126
|
Q.R. Meng, G.W. Zhang. Geological framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323 (2000), pp. 183-196
|
P. Mikkola, H. Huhma, E. Heilimo, M. Whitehouse. Archean crustal evolution of the Suomussalmi district as part of the Kianta Complex, Karelia: constraints from geochemistry and isotopes of granitoids. Lithos, 125 (2011), pp. 287-307
|
A. Mushkin, O. Navon, L. Halicz, G. Hartmann, M. Stein. The petrogenesis of A-type magmas from the Amram Massif, Southern Israel. J. Petrol., 44 (2003), pp. 815-832
|
S.M. Peacock, T. Rushmer, A.B. Thompson. Partial melting of subducting oceanic crust. Earth Planet Sci. Lett., 121 (1994), pp. 227-244
|
X.L. Pei, Y. Shi, B. Liang, X.J. Liu, H.H. Ding, Y.Y. Zhu. Genesis of the metamict zircons in the pegmatite from the Qinling Group (Complex) in the North Qinling Terrane. J. Guilin Univ. Tech., 35 (4) (2015), pp. 675-685
|
Z.W. Qin. Early Paleozoic Magmatism in the North Qinling Orogenic Belt and its implications for continental crust evolution. Ph.D. thesis, China University of Geoscience (in Chinese with English abstract) (2016)
|
Z.W. Qin, Y.B. Wu, H. Wang, S. Gao, L.Q. Zhu, L. Zhou, S.H. Yang. Geochronology, geochemistry, and isotope compositions of Piaochi S-type granitic intrusion in the Qinling orogen, central China: petrogenesis and tectonic significance. Lithos, 202–203 (2014), pp. 347-362
|
Z.W. Qin, Y.B. Wu, W. Siebel, S. Gao, H. Wang, M.I.M. Abdallsamed, W.X. Zhang, S.H. Yang. Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: a case study from the Huichizi pluton, Qinling orogen, central China. Lithos, 238 (2015), pp. 1-12
|
R.P. Rapp, E.B. Watson, C.F. Miller. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res., 51 (1991), pp. 1-25
|
L. Ratschbacher, B.R. Hacker, A. Calvert, L.E. Webb, J.C. Grimmer, M.O. McWilliams, T. Ireland, S.W. Dong, J.M. Hu. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366 (2003), pp. 1-53
|
R.L. Rudnick. Making continental crust. Nature, 378 (1995), pp. 571-578
|
R.L. Rudnick, D.M. Fountain. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., 33 (1995), pp. 267-309
|
R.L. Rudnick, S. Gao. Composition of the continental crust. Treatise Geochem., 3 (2003), pp. 1-64
|
B. Scaillet, M. Pichavant, J. Roux. Experimental crystallization of leucogranite magmas. J. Petrol., 36 (1995), pp. 663-705
|
C. Sen, T. Dunn. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contrib. Mineral. Petrol., 117 (4) (1994), pp. 394-409
|
A.M.C. Sengör. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364 (1993), pp. 299-307
|
S. Sheppard, T.J. Griffin, I.M. Tyler, R.W. Page. High- and low-K granites and adakites at a Palaeoproterozoic plate boundary in northwestern Australia. J. Geol. Soc., 158 (3) (2001), pp. 547-560
|
T.W. Sisson, K. Ratajeski, W.B. Hankins, A.F. Glazner. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol., 148 (2005), pp. 635-661
|
S.S. Sun, W.F. McDonough. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London Spec. Publ., 42 (1989), pp. 313-345
|
K. Suzuki, K. Kitajima, Y. Sawaki, K. Hattori, T. Hirata, S. Maruyama. Ancient oceanic crust in island arc lower crust: evidence from oxygen isotopes in zircons from the Tanzawa Tonalitic Pluton. Lithos, 228–229 (2015), pp. 43-54
|
W. Tian, C. Wei. The Caledonian low Al-TTD series from the northern Qinling orogenic belt; rock properties, genetic simulation and geological implication. Sci. China Ser. D- Earth Sci., 48 (11) (2005), pp. 1837-1847
|
J.W. Valley. Oxygen isotopes in zircon. Rev. Mineral. Geochem., 53 (1) (2003), pp. 343-385
|
J.W. Valley, P.D. Kinny, D.J. Schulze, M.J. Spicuzza. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol., 133 (1998), pp. 1-11
|
J. Wang, C.R. Diwu, Y. Sun, Y. Liu, W. Wang. LA-ICP-MS zircon U-Pb dating and Hf isotope analysis of the Qinggangping granodiorite in Xixia area of western Henan Province and their geological significance. Geol. Bull. China, 31 (6) (2012), pp. 884-895
|
X. Wang, H. Hua, Y. Sun. A study on microfossils of the Erlangping group in Wantan area Xixia county Henan Province. J. Northwest Univ., 25 (4) (1995), pp. 837-848
|
H. Wang, Y.B. Wu, S. Gao, X.C. Liu, H.J. Gong, Q.L. Li, X.H. Li, H.L. Yuan. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks. J. Metamorph. Geol., 29 (2011), pp. 1019-1031
|
H. Wang, Y.B. Wu, S. Gao, X.C. Liu, Q. Liu, Z.W. Qin, S.W. Xie, L. Zhou, S.H. Yang. Continental origin of eclogites in the North Qinling terrane and its tectonic implications. Precambrian Res., 230 (2013), pp. 13-30
|
H. Wang, Y.B. Wu, S. Gao, Z.W. Qin, Z.C. Hu, J.P. Zheng, S.H. Yang. Continental growth through accreted oceanic arc: Zircon Hf-O isotope evidence for granitoids from the Qinling orogen. Geochim. Cosmochim. Acta, 182 (2016), pp. 109-130
|
C.D. Wareham, I.L. Millar, A.P.M. Vaughan. The generation of sodic granite magmas, western Palmer Land. Antarctic Peninsula. Contrib. Mineral. Petrol., 128 (1) (1997), pp. 81-96
|
J.M. Watkins, J.D. Clemens, P.J. Treloar. Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6-1.2 GPa. Contrib. Mineral. Petrol., 154 (2007), pp. 91-110
|
C.J. Wei. Granulite facies metamorphism and petrogenesis of granite (II): Quantitative modeling of the HT-UHT phase equillibria for matapelites and the petrogenesis of S-type granite. Acta Petrol. Sin., 32 (6) (2016), pp. 1625-1643
|
R.F. Weinberg. Melt segregation structures in granitic plutons. Geology, 34 (2006), pp. 305-308
|
J.B. Whalen, J.A. Percival, V.J. McNicoll, F.J. Longstaffe. A mainly crustal origin for tonalitic granitoid rocks, Superior Province, Canada: implications for late Archean tectonomagmatic processes. J. Petrol., 43 (2002), pp. 1551-1570
|
A.J.R. White, B.W. Chappell. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geol. Soc. Am. Memoirs, 159 (1983), pp. 21-34
|
Williams, I.S., Hergt, J.M., 2000. U-Pb dating of Tasmanian dolerites: A cautionary tale of SHRIMP analysis of high-U zircon. In: Woodhead, J.D., Hergt, J.M., Noble, W.P. (Eds.), Beyond 2000: New Frontiers in Isotope Geoscience: Lorne, pp. 185-188 (Abstract Proceedings).
|
B.F. Windley, D. Alexeiev, W.J. Xiao, A. Kröner, G. Badarch. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. London, 164 (1) (2007), pp. 31-47
|
F.Y. Wu, Z.C. Liu, X.C. Liu, W.Q. Ji. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrol. Sin., 31 (1) (2015), pp. 1-36
|
Y.B. Wu, Y.F. Zheng. Tectonic evolution of a composite collision orogen: an overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Res., 23 (4) (2013), pp. 1402-1428
|
Xu, J., Xia, X.P., Spencer, C.J., Wang, Q., Yin, C.Q., 2022. Identification of high δ 18O adakite-like granites in SE Tibet: Implication for diapiric relamination of subducted sediments. Geophys. Res. Lett. 49, e2022GL098541.
|
F. Xue, A. Kröner, T. Reischmann, F. Lerch. Palaeozoic pre- and post-collision calcalkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks. J. Geol. Soc., 153 (1996), pp. 409-417
|
D.B. Yang, W.L. Xu, F.P. Pei, C.H. Yang, Q.H. Wang. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 136–139 (2012), pp. 246-260
|
D.B. Yang, H.T. Yang, J.P. Shi, W.L. Xu, F. Wang. Sedimentary response to the paleogeographic and tectonic evolution of the southern North China Craton during the Late Paleozoic to Mesozoic. Gondwana Res., 49 (2017), pp. 278-295
|
Z.Q. Yi, J. Wen, Q.S. Lai, K. Xie, H.L. Yan, Z.J. Wang. Zircon U-Pb age of Wuduo mountain compound batholith and its geological significance. Contrib. Geol. Miner. Resour. Res., 32 (4) (2017), pp. 594-603
|
S. Yu, S.Z. Li, S.J. Zhao, H.H. Cao, Y.H. Suo. Long history of a Grenville orogen relic - the North Qinling terrane: Evolution of the Qinling orogenic belt from Rodinia to Gondwana. Precambrian Res., 271 (2015), pp. 98-117
|
H. Yu, K. Qiu, F. Pirajno, P. Zhang, W. Dong. Revisiting Phanerozoic evolution of the Qinling Orogen (east Tethys) with perspectives of detrital zircon. Gondwana Res., 103 (2022), pp. 426-444
|
M. Yu, Q.X. Xia, Y.F. Zheng, Z.F. Zhao, H. Xu. The composition of garnet in granite and pegmatite from the Gangdese Orogen in southeastern Tibet: constraints on pegmatite petrogenesis. Am. Mineral., 106 (2) (2021), pp. 265-281
|
F. Yuan, J.J. Liu, E.J.M. Carranza, S. Zhang, D.G. Zhai, G. Liu, G.W. Wang, H.Y. Zhang, Y.Z. Sha, S.S. Yang. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation-fractional crystallization of pegmatite magma: a case study of the Guangshigou biotite pegmatites from the North Qinling Orogen, Central China. Lithos, 302–303 (2017), pp. 20-36
|
F. Yuan, J.J. Liu, E.J.M. Carranza, D.G. Zhai, Y.H. Wang, S. Zhang, Y.Z. Sha, G. Liu, J. Wu. The Guangshigou uranium deposit, northern Qinling Orogen, China: a product of assimilation-fractional crystallization of pegmatitic magma. Ore Geol. Rev., 99 (2018), pp. 17-41
|
F. Yuan, S.Y. Jiang, J.J. Liu, G. Liu, S. Zhang, Y.Z. Sha. Origin and evolution of uraniferous pegmatite: a case study from the Xiaohuacha granite-pegmatite system and related country rocks in the Shangdan uranium mineralization district of North Qinling Orogenic Belt, China. Lithos, 356–357 (2020), pp. 1-21
|
P. Zan, S. Chen, J. Chen, S. Li. Early Paleozoic adakitic granitoids from the Xingshuping gold deposit of East Qinling, China: petrogenesis and tectonic significance. Minerals, 11 (2021), p. 1032
|
Z. Zhang, S.Z. Li, H.H. Cao, I.D. Somerville, S.J. Zhao. Origin of the North Qinling Microcontinent and Proterozoic geotectonic evolution of the Kuanping Ocean Central China. Precambrian Res., 266 (2015), pp. 179-193
|
C.L. Zhang, L. Liu, T. Wang, X.X. Wang, L. Li, Q.F. Gong, X.F. Li. Granitic magmatism related to Early Paleozoic continental collision in North Qinling. Chin. Sci. Bull., 35 (2013), pp. 4405-4410
|
G.W. Zhang, Q.R. Meng, S.C. Lai. Tectonics and structure of the Qinling Orogenic belt. Sci. China. Ser. B, 38 (1995), pp. 1379-1394
|
E.P. Zhang, D.Y. Niu, Y.G. Huo, L.F. Zhang, Y.G. Li. Geologic-tectonic features of Qinling-Dabashan mountains and adjacent regions. Geological Publishing House, Beijing (1993), pp. 1-291
|
S.J. Zhao, S.Z. Li, X. Liu, M. Santosh, I. Somerville, H.H. Cao, S. Yu, Z. Zhang, L.L. Guo. The northern boundary of the Proto-Tethys Ocean: constraints from structural analysis and U-Pb zircon geochronology of the North Qinling Terrane. J. Asian Earth Sci., 113 (2015), pp. 560-574
|
S.J. Zhao, S.Z. Li, X.Y. Li, I. Somerville, H.H. Cao, X. Liu, P.C. Wang. Structural analysis of ductile shear zones in the North Qinling Orogen and its implications for the evolution of the Proto-Tethys Ocean. Geol. J., 52 (2017), pp. 202-214
|
L.M. Zhao, Y.L. Li, G.Q. Wang, H. Xiang, W.J. Xiao, J.P. Zheng, F.M. Brouwer. Early Paleozoic arc-accretion in the northern branch of the Proto-Tethys Ocean: new insights from detrital zircon U-Pb ages and geochemistry of paraschists from the Kuanping Complex, North Qinling Orogenic Belt China. Lithos, 400–401 (2021), Article 106410
|
Y.F. Zheng, Y.X. Chen. Continental versus oceanic subduction zones. Natl. Sci. Rev., 3 (2016), pp. 495-519
|
F. Zheng, L.Q. Dai, Z.F. Zhao, Y.F. Zheng, Z. Xu. Recycling of Paleo-oceanic crust: geochemical evidence from Early Paleozoic mafic igneous rocks in the Tongbai orogen, Central China. Lithos, 328–329 (2019), pp. 312-327
|
S.H. Zhong, C.Y. Feng, R. Seltmann, D.X. Li, H.Y. Qu. Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition. Lithos, 314–315 (2018), pp. 646-657
|
S. Zhou, H. Zhang, F.K. Chen. Zircon U-Pb geochronology, geochemistry and petrogenesis of granites from the Wuduoshan Pluton, the North Qinling Terrane. Geol. J. China Univ., 25 (6) (2019), pp. 901-913
|
D.C. Zhu, Q. Wang, R.F. Weinberg, P.A. Cawood, S.L. Chung, Y.F. Zheng, Z.D. Zhao, Z.Q. Hou, X.X. Mo. Interplay between oceanic subduction and continental collision in building continental crust. Nat. Commun., 13 (2022), p. 7141
|
Y.D. Zhuang, Y.B. Wu, W.X. Zhang, P. Hu, Y. He. Generation of continental crust by remelting of enriched oceanic crust in accretionary orogen: Geochemical evidence of granitoids in the Tongbai Orogen Central China. Lithos, 420–421 (2022), Article 106718
|
/
〈 |
|
〉 |