Development and application of feature engineered geological layers for ranking magmatic, volcanogenic, and orogenic system components in Archean greenstone belts
R.M. Montsion, S. Perrouty, M.D. Lindsay, M.W. Jessell, R. Sherlock
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (2) : 101759.
Development and application of feature engineered geological layers for ranking magmatic, volcanogenic, and orogenic system components in Archean greenstone belts
Geologically representative feature engineering is a crucial component in geoscientific applications of machine learning. Many commonly applied feature engineering techniques used to produce input variables for machine learning apply geological knowledge to generic data science techniques, which can lead to ambiguity, geological oversimplification, and/or compounding subjective bias. Workflows that utilize minimally processed input variables attempt to overcome these issues, but often lead to convoluted and uninterpretable results. To address these challenges, new and enhanced feature engineering methods were developed by combining geological knowledge, understanding of data limitations, and a variety of data science techniques. These include non-Euclidean fluid pre-deformation path distance, rheological and chemical contrast, geologically constrained interpolation of characteristic host rock geochemistry, interpolation of mobile element gain/loss, assemblages, magnetic intensity, structural complexity, host rock physical properties. These methods were applied to compiled open-source and new field observations from Archean greenstone terranes in the Abitibi and western Wabigoon sub-provinces of the Superior Province near Timmins and Dryden, Ontario, respectively. Resulting feature maps represent conceptually significant components in magmatic, volcanogenic, and orogenic mineral systems. A comparison of ranked feature importance from random forests to conceptual mineral system models show that the feature maps adequately represent system components, with a few exceptions attributed to biased training data or limited constraint data. The study also highlights the shared importance of several highly ranked features for the three mineral systems, indicating that spatially related mineral systems exploit the same features when available. Comparing feature importance when classifying orogenic Au mineralization in Timmins and Dryden provides insights into the possible cause of contrasting endowment being related to fluid source. The study demonstrates that integrative studies leveraging multi-disciplinary data and methodology have the potential to advance geological understanding, maximize data utility, and generate robust exploration targets.
Machine learning / Random forests / Mineral systems / Magmatic Ni-Cu-PGE / Volcanogenic Massive Sulfide (VMS) Cu-Zn-Pb-Ag(-Au) / Orogenic Au / Abitibi / Wabigoon
E.C. Appleyard. A preliminary metasomatic assessment of laminated siltstones at the Silverfields mine, Cobalt, Ontario. E.G. Pye (Ed.), Grant 70 Geoscience Research Grant Program Summary of Research 1979–1980, Ontario Geological Survey Miscellaneous Paper (1980), p. 262p
|
E.C. Appleyard. . L.S. Beck, C.T. Harper (Eds.), Modern exploration techniques, 10, Saskatchewan Geological Society Special Publication (1990), pp. 27-40
|
J.A. Ayer, Y. Amelin, F. Corfu, S. Kamo, J. Ketchum, K. Kwok, N. Trowell. Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology: autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation. Precambrian Res., 115 (2002), pp. 63-95,
CrossRef
Google scholar
|
Ayer, J.A., Thurston, P.C., Bateman, R., Dubé, B., Gibson, H.L., Hamilton, M.A., Hathway, B., Hocker, S.M., Houlé, M.G., Hudak, G.J., Ispolatov, V., Lafrance, B., Lesher, C.M., MacDonald, P.J., Péloquin, A.S., Piercey, S.J., Reed, L.E., Thompson, P.H., 2005. Overview of results from the Greenstone Architecture Project: Discover Abitibi Initiative. Open File Report (OFR 6154). Ontario Geological Survey. http://www.geologyontario.mndm.gov.on.ca/mndmfiles/pub/data/records/OFR6154.html.
|
Barnes, S.J., Robertson, J.C.,2019. Time scales and length scales in magma flow pathways and the origin of magmatic Ni-Cu-PGE ore deposits. Geosci. Front. 10(1), 77–87.
CrossRef
Google scholar
|
S.J. Barnes, M.L. Fiorentini. Komatiite magmas and sulfide nickel deposits; a comparison of variably endowed Archean terranes. Econ. Geol. Bull. Soc. Econ. Geologists, 107 (5) (2012), pp. 755-780,
CrossRef
Google scholar
|
S.J. Barnes, C.M. Lesher, R.A. Sproule. Geochemistry of komatiites in the Eastern Goldfields Superterrane, Western Australia and the Abitibi greenstone belt, Canada, and implications for the distribution of associated Ni-Cu-PGE deposits. Inst. Min. Metall. Trans. Sect. B Appl. Earth Sci., 116 (2007), pp. 167-187,
CrossRef
Google scholar
|
R. Bateman, J.A. Ayer, B. Dubé, M.A. Hamilton. The timmins-porcupine gold camp, northern ontario: the anatomy of an archaean greenstone belt and its gold mineralization (discover abitibi initiative); open file report (OFR 6158). Ontario Geological Survey (2005),
CrossRef
Google scholar
|
Bateman, R., Ayer, J.A., Dubé, B.,2008. The Timmins-Porcupine gold camp, Ontario: Anatomy of an Archean greenstone belt and ontogeny of gold mineralization. Econ. Geol. 103(6), 1285–1308.
CrossRef
Google scholar
|
Beakhouse, G.P., Webb, J.L., Rainsford, D.R.B., Stone, D., Josey, S.D.,2011. Western Wabigoon GIS synthesis-2011. Miscellaneous Release—Data (MRD 280). Ontario Geological Survey. http://www.geologyontario.mndm.gov.on.ca/mndmaccess/mndm_dir.asp?type=pub&id=MRD280.
|
G.C. Begg, J.A.M. Hronsky, N.T. Arndt, W.L. Griffin, S.Y. O’Reilly, N. Hayward. Lithospheric, cratonic, and geodynamic setting of Ni-Cu-PGE sulfide deposits. Econ. Geol. Bull. Society Econ. Geologists, 105 (6) (2010), pp. 1057-1070,
CrossRef
Google scholar
|
F.P. Bierlein, F.C. Murphy, R.F. Weinberg, T. Lees. Distribution of orogenic gold deposits in relation to fault zones and gravity gradients: Targeting tools applied to the Eastern Goldfields, Yilgarn Craton Western Australia. Miner. Deposita, 41 (2) (2006), pp. 107-126,
CrossRef
Google scholar
|
C.E. Blackburn, R.C. Beard, A.S. Rivett. Geological compilation, Kenora-Fort Frances, Kenora and Rainy River districts. Preliminary Map (P 2443). Ontario Geological Survey. Scale (1981), p. 1:253 440
|
W. Bleeker. Contributions to the understanding of Precambrian lode gold deposits and implications for exploration. In Targeted Geoscience Initiative 4 (2015), pp. 1883-1884
|
V.G. Bogolepov. The recomputation of the chemical analyses ol rocks in studying metasomatic processes. Int. Geol. Rev., 5 (12) (1963), pp. 1585-1592,
CrossRef
Google scholar
|
L. Breiman. Bagging predictors. Mach. Learn., 24 (2) (1996), pp. 123-140,
CrossRef
Google scholar
|
L. Breiman. Random Forests. Mach. Learn., 45 (1) (2001), pp. 5-32,
CrossRef
Google scholar
|
W.M. Brown, T.D. Gedeon, D.I. Groves, R.G. Barnes. Artificial neural networks: a new method for mineral prospectivity mapping. Aust. J. Earth Sci., 47 (4) (2000), pp. 757-770,
CrossRef
Google scholar
|
D.R. Burrows, P.C. Wood, E.T.C. Spooner. Carbon isotope evidence for a magmatic origin for Archaean gold-quartz vein ore deposits. Nature, 321 (6073) (1986), pp. 851-854,
CrossRef
Google scholar
|
E.M. Cameron. Archean gold: relation to granulite formation and redox zoning in the crust. Geology, 16 (2) (1988), pp. 109-112,
CrossRef
Google scholar
|
E.M. Cameron. Scouring of gold from the lower crust. Geology, 17 (1) (1989), pp. 26-29,
CrossRef
Google scholar
|
I.H. Campbell, J.M. Franklin, M.P. Gorton, T.R. Hart, S.D. Scott. The Role of subvolcanic sills in the generation of massive sulfide deposits. Econ. Geol. (1981), pp. 2248-2253,
CrossRef
Google scholar
|
L.D. Campos, S.M. de Souza, D.A. de Sordi, F.M. Tavares, E.L. Klein, E.C. dos Lopes. Predictive mapping of prospectivity in the gurupi orogenic gold belt, north-northeast brazil: an example of district-scale mineral system approach to exploration targeting. Nat. Resour. Res., 26 (4) (2017), pp. 509-534,
CrossRef
Google scholar
|
E.J.M. Carranza, M. Hale. Geologically constrained fuzzy mapping of gold mineralization potential, baguio district Philippines. Nat. Resour. Res., 10 (2) (2001), pp. 125-136,
CrossRef
Google scholar
|
L. Ceriani, P. Verme. The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini. J. Econ. Inequality, 10 (3) (2012), pp. 421-443,
CrossRef
Google scholar
|
D. Chicco, N. Tötsch, G. Jurman. The matthews correlation coefficient (Mcc) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Mining, 14 (1) (2021), pp. 1-22,
CrossRef
Google scholar
|
Colvine, A. C.,1989. An empirical model for the formation of Archean gold deposits: products of final cratonization of the Superior province, Canada. In The Geology of Gold Deposits: The Perspective in 1988. Economic Geology Monograph No. 6.
CrossRef
Google scholar
|
P.L. Corcoran, W.U. Mueller. Time-transgressive archean unconformities underlying molasse basin-fill successions of dissected oceanic arcs, superior province Canada. J. Geology, 115 (6) (2007), pp. 655-674,
CrossRef
Google scholar
|
S.F. Cox, V.J. Wall, M.A. Etheridge, T.F. Potter. Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits - examples from the Lachlan Fold Belt in central Victoria, Australia. Ore Geol. Rev., 6 (1991), pp. 391-423,
CrossRef
Google scholar
|
F.C. Curriero. On the use of non-euclidean distance measures in geostatistics. Math. Geol., 38 (8) (2006), pp. 907-926,
CrossRef
Google scholar
|
J. Davidson, S. Turner, H. Handley, C. Macpherson, A. Dosseto. Amphibole “sponge” in arc crust?. Geology, 35 (9) (2007), pp. 787-790,
CrossRef
Google scholar
|
D.W. Davis, K.H. Poulsen, S.L. Kamo. New insights into archean crustal development from geochronology in the rainy lake area, superior province Canada. J. Geol., 97 (4) (1989), pp. 379-398,
CrossRef
Google scholar
|
D.W. Davis, Y. Amelin, G.M. Nowell, R.R. Parrish. Hf isotopes in zircon from the western Superior province, Canada: Implications for Archean crustal development and evolution of the depleted mantle reservoir. Precambrian Res., 140 (3–4) (2005), pp. 132-156,
CrossRef
Google scholar
|
S. De Souza, S. Perrouty, B. Dubé, P. Mercier-Langevin, R.L. Linnen, G.R. Olivo. Metallogeny of the Neoarchean Malartic gold camp, Québec, Canada. Geology of the World’s Major Gold Deposits and Provinces. Special Publications of the, 23, Society of Economic Geologists (2020), pp. 29-52
|
J. Dostal, W.U. Mueller, J.B. Murphy. Archean Molasse Basin evolution and magmatism, Wabigoon Subprovince Canada. J. Geol., 112 (4) (2004), pp. 435-454,
CrossRef
Google scholar
|
Dubé, B., Gosselin, P., 2007. Greenstone-Hosted Quartz-Carbonate Vein Deposits. In: Goodfellow, W. D. (Ed.), Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Special Publication No. 5 (pp. 49–73). Geological Association of Canada, Mineral Deposits Division. https://gac.ca/product/mdd-sp-5-mineral-deposits-of-canada-a-synthesis-of-major-deposit-types-district-metallogeny-the-evolution-of-geological-provinces-exploration-methods/.
|
B. Dubé, P. Mercier-Langevin. Gold deposits of the Archean Abitibi greenstone belt, Canada. Rev. Econ. Geol., 23 (2020), pp. 669-708
|
B. Dube, P. Mercier-Langevin. Gold deposits of the Archean Abitibi greenstone belt. Canada. Rev. Econ. Geol., 23 (2020), pp. 669-708,
CrossRef
Google scholar
|
B. Dubé, P. Mercier-Langevin, J.A. Ayer, J.L. Pilote, T. Monecke. Gold deposits of the world-class Timmins-Porcupine Camp, Abitibi greenstone belt, Canada. Rev. Econ. Geol., 23 (2020), pp. 53-80,
CrossRef
Google scholar
|
L. Feltrin, J.G. Motta, F. Al-Obeidat, F. Marir, M. Bertelli. Combining weights of evidence analysis with feature extraction - a case study from the hauraki goldfield New Zealand. Procedia Comput. Sci., 83 (2016), pp. 1262-1267,
CrossRef
Google scholar
|
Ford, A., 2019. Practical Implementation of Random Forest-Based Mineral Potential Mapping for Porphyry Cu-Au Mineralization in the Eastern Lachlan Orogen, NSW , Australia. Nat. Resour. Res.
CrossRef
Google scholar
|
Franklin, J. M., Gibson, H. L., Jonasson, I. R., Galley, A. G., 2005. Volcanogenic massive sulfide deposits. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., Richards, J. P. (Eds.), Economic Geology 100th Anniversary Volume (pp. 523–560). Society of Economic Geologists. https://www.segweb.org/Store/detail.aspx?id=EDOC100ODT11.
|
B.M. Frieman, Y.D. Kuiper, N.M. Kelly, T. Monecke, A. Kylander-Clark. Constraints on the geodynamic evolution of the southern Superior Province: U-Pb LA-ICP-MS analysis of detrital zircon in successor basins of the Archean Abitibi and Pontiac subprovinces of Ontario and Quebec Canada. Precambrian Res., 292 (2017), pp. 398-416,
CrossRef
Google scholar
|
A.G. Galley. Composite synvolcanic intrusions associated with Precambrian VMS-related hydrothermal systems. Miner. Depos., 38 (2003), pp. 443-473,
CrossRef
Google scholar
|
Galley, A.G., Hannington, M. D., Jonasson, I.R., 2007. Volcanogenic massive sulphide deposits. In: Mineral Deposits of Canada: A Syntesis of Major Deposit Types. Geological Survey of Canada, Mineral Deposits Division Special Publication (5). Geological Association of Canada, , St. John's, Newfoundland, pp. 141-162. https://gac.ca/product/mdd-sp-5-mineral-deposits-of-canada-a-synthesis-of-major-deposit-types-district-metallogeny-the-evolution-of-geological-provinces-exploration-methods/.
|
Gibson, H.L., Allen, R.L., Riverin, G., Lane, T.E., 2007. The VMS Mode : Advances and Application to Exploration Targeting, in: Fifth Decennial International Conference on Mineral Exploration - Ore Deposits and Exploration Technology. Toronto, ON, pp. 713-730 pp. http://www.dmec.ca/ex07-dvd/E07/pdfs/49.pdf
|
C. Gini. Variabilità e Mutuabilità. Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche. C, Cuppini, Bologna (1912)
|
Goldfarb, R. J., Baker, T., Dubé, B., Groves, D. I., Hart, C. J. R., Gosselin, P., 2005. Distribution, character, and genesis of gold deposits in metamorphic terranes. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., Richards, J. P. (Eds.), Economic Geology 100th Anniversary Volume,Society of Economic Geologists, 407–450. https://www.segweb.org/Store/detail.aspx?id=EDOC100ODT11.
|
R.J. Goldfarb, D.I. Groves, S. Gardoll. Orogenic gold and geologic time: a global synthesis. Ore Geol. Rev., 18 (1) (2001), pp. 1-75,
CrossRef
Google scholar
|
R.L. Gresens. . Composition-Volume Relationships of Metasomatism. Chemical Geol., 2 (1967), pp. 47-65,
CrossRef
Google scholar
|
D.I. Groves, M. Santosh. Province-scale commonalities of some world-class gold deposits: implications for mineral exploration. Geosci. Front., 6 (3) (2015), pp. 389-399,
CrossRef
Google scholar
|
D.I. Groves, M. Santosh, R.J. Goldfarb, L. Zhang. Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits. Geosci. Front., 9 (4) (2018), pp. 1163-1177,
CrossRef
Google scholar
|
R.W. Henley, R.J. Norris, C.J. Paterson. Multistage ore genesis in the New Zealand geosyncline a history of post-metamorphic lode emplacement. Miner. Depos., 11 (2) (1976), pp. 180-196,
CrossRef
Google scholar
|
S.B. Hood, M.J. Cracknell, M.F. Gazley, A.M. Reading. Element mobility and spatial zonation associated with the Archean Hamlet orogenic Au deposit, Western Australia: implications for fluid pathways in shear zones. Chemical Geol., 514 (2019), pp. 10-26,
CrossRef
Google scholar
|
Jessell, M.W., Pirot, G., Ogarko, V., Lindsay, M.D., Grose, L., Montsion, R.M., Perrouty, S., 2022. Graph-based scenario-testing of fluid pathways in 2D & 3D. In: International Association for Mathematical Geosciences. Nancy, France, p. 108. https://www.iamgconferences.org/iamg2022/program.php.
|
M.G. Houlé, C.M. Lesher. Komatiite-Associated Ni-Cu-(PGE) Deposits, Abitibi Greenstone Belt, Superior Province, Canada. Magmat. Ni-Cu PGE Depos. Geol. Geochemistry, Genes. (2011)
|
A. Joly, A. Porwal, T.C. McCuaig. Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: mineral system analysis, targeting model and prospectivity analysis. Ore Geology Rev., 48 (2012), pp. 349-383,
CrossRef
Google scholar
|
L.R. Katz, D.J. Kontak, B. Dubé, V. McNicoll. The geology, petrology, and geochronology of the Archean Cote gold large-tonnage, low-grade intrusion-related Au(-Cu) deposit, Swayze greenstone belt, Ontario Canada. Can. J. Earth Sci., 54 (2) (2017), pp. 173-202,
CrossRef
Google scholar
|
C.M. Knox-Robinson, L.A.I. Wyborn. Towards a holistic exploration strategy: using Geographic Information Systems as a tool to enhance exploration. Aus. J. Earth Sci., 44 (4) (1997), pp. 453-463,
CrossRef
Google scholar
|
O.P. Kreuzer, A.V.M. Miller, K.J. Peters, C. Payne, C. Wildman, G.A. Partington, E. Puccioni, M.E. Mcmahon, M.A. Etheridge. Comparing prospectivity modelling results and past exploration data: a case study of porphyry Cu – Au mineral systems in the Macquarie Arc, Lachlan Fold Belt New South Wales. Ore Geology Rev., 71 (2015), pp. 516-544,
CrossRef
Google scholar
|
K. Krivoruchko. Empirical Bayesian kriging implemented in ArcGIS geostatistical analyst. ARCuser (Redlands. Calif.), 15 (4) (2012), pp. 6-10
|
S. Kuhn, M.J. Cracknell, A.M. Reading, S. Sykora. Identification of intrusive lithologies in volcanic terrains in British Columbia by machine learning using random forests: the value of using a soft classifier. Geophysics, 85 (6) (2020), pp. 249-258,
CrossRef
Google scholar
|
M. Le Vaillant, M.L. Fiorentini, S.J. Barnes. Review of lithogeochemical exploration tools for komatiite-hosted Ni-Cu-(PGE) deposits. J. Geochem. Explor., 168 (2016), pp. 1-19,
CrossRef
Google scholar
|
C.M. Lesher. Up, down, or sideways: emplacement of magmatic Fe-Ni-Cu-PGE sulfide melts in large igneous provinces. Can. J. Earth Sci., 56 (7) (2019), pp. 756-773,
CrossRef
Google scholar
|
C.M. Lesher, A.M. Goodwin, I.H. Campbell, M.P. Gorton. Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior Province Canada. Canadian J. Earth Sci., 23 (2) (1986), pp. 222-237,
CrossRef
Google scholar
|
C.M. Lesher, O.M. Burnham, R.R. Keays, S.J. Barnes, L. Hulbert. Trace-element geochemistry and petrogenesis of barren and ore-associated komatiites. Can. Mineral., 39 (2) (2001), pp. 673-696,
CrossRef
Google scholar
|
M.D. Lindsay, A.M. Piechocka, M.W. Jessell, R. Scalzo, J. Giraud, G. Pirot, E. Cripps. Assessing the impact of conceptual mineral systems uncertainty on prospectivity predictions. Geosci. Front., 13 (2022), p. 101435,
CrossRef
Google scholar
|
J.R. Lister, R.C. Kerr. Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J. Geophys. Res. Solid Earth Planets, 96 (1991), pp. 10049-10077
|
B. Lu, M. Charlton, P. Harris, A.S. Fotheringham. Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data. Int. J. Geograph. Inform. Sci. IJGIS, 28 (4) (2014), pp. 660-681,
CrossRef
Google scholar
|
W.H. MacLean. Mass change calculations in altered rock series. Miner. Depos., 25 (1990), pp. 44-49,
CrossRef
Google scholar
|
W.H. MacLean, T.J. Barrett. Lithogeochemical techniques using immobile elements. J. Geochem. Explor., 48 (2) (1993), pp. 109-133,
CrossRef
Google scholar
|
Maier, W.D., Smithies, R.H., Spaggiari, C. V, Barnes, S.J., Kirkland, C.L., Yang, S., Lahaye, Y., Kiddie, O., MacRae, C., 2016. Petrogenesis and Ni–Cu sulphide potential of mafic–ultramafic rocks in the Mesoproterozoic Fraser Zone within the Albany–Fraser Orogen, Western Australia. Precambrian Res. 281, 27–46. https://doi.org/10.1016/j.precamres.2016.05.004
|
L. Mathieu. Quantifying hydrothermal alteration: a review of methods. Geosciences, 8 (7) (2018),
CrossRef
Google scholar
|
T. Monecke, P. Mercier-Langevin, B. Dubé, B.M. Frieman. Geology of the abitibi greenstone belt. Rev. Econ. Geol., 19 (2017), pp. 7-49,
CrossRef
Google scholar
|
Montsion, R.M., Thurston, P., Ayer, J., 2018. 1:2 000 000 Scale Geological Compilation of the Superior Craton - Version 1. Mineral Exploration Research Centre, Harquail School of Earth Sciences, Laurentian University Document Number MERC-ME-2018-017. https://www.arcgis.com/home/item.html?id=8cf2b0aabee54953b6be3a081ae15bb5.
|
A.J. Naldrett. World-class Ni-Cu-PGE deposits; key factors in their genesis. Miner. Depos., 34 (1999), pp. 227-240
|
A.J. Naldrett. Fundamentals of Magmatic Sulfide Deposits. Magmat. Ni-Cu PGE Depos. Geol. Geochemistry, Genes. (2011)
|
R.W. Nesbitt, S.S. Sun, A.C. Purvis. Komatiites; geochemistry and genesis. Can. Mineral., 17 (1979), pp. 165-186
|
Ontario Geological Survey, 2019. Mineral Deposit Inventory, Ontario Geological Survey, https://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth/mineral-deposits-mdi.
|
J.E. Otamendi, M. Tiepolo, B.A. Walker, E.A. Cristofolini, A.M. Tibaldi. Trace elements in minerals from mafic and ultramafic cumulates of the central Sierra de Valle Fertil, Famatinian Arc, Argentina. Lithos, 240–243 (2016), pp. 355-370,
CrossRef
Google scholar
|
J.A. Pearce. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100 (1) (2008), pp. 14-48,
CrossRef
Google scholar
|
J.A. Percival, V. McNicoll, J.L. Brown, J.B. Whalen. Convergent margin tectonics, central Wabigoon subprovince, Superior Province. Canada. Precambrian Res., 132 (3) (2004), pp. 213-244,
CrossRef
Google scholar
|
J.A. Percival, T. Skulski, M. Sanborn-barrie, G.M. Stott, A.D. Leclair, M.T. Corkery, M. Boily. Geology and tectonic evolution of the Superior Province, Canada. J.A. Percival, F.A. Cook, R.M. Clowes (Eds.), Tectonic Styles in Canada: the Lithoprobe Perspective, 49, Geological Association of Canada (2012), pp. 321-378
|
S. Perrouty, R.L. Linnen, C.M. Lesher, G. Olivo, S.J. Piercey, N. Gaillard, J. Clark, R. Enkin. Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec Canada. Miner. Depos., 54 (2019), pp. 761-786,
CrossRef
Google scholar
|
G.N. Phillips. Metamorphic fluids and gold. Mineral. Mag., 57 (1993), pp. 365-374,
CrossRef
Google scholar
|
S.J. Piercey. An overview of petrochemistry in the regional exploration for volcanogenic massive sulphide (VMS) deposits. Geochemistry : Explor. Environ. Analy., 10 (2) (2010), pp. 119-136,
CrossRef
Google scholar
|
S.J. Piercey. An overview of petrochemistry in the regional exploration for volcanogenic massive sulphide (VMS) deposits. Geochemistry Explor. Environ. Anal., 10 (2010), pp. 119-136
|
I.K. Pitcairn, D. Craw, D.A.H. Teagle. The gold conveyor belt: Large-scale gold mobility in an active orogen. Ore Geol. Rev., 62 (2014), pp. 129-142,
CrossRef
Google scholar
|
I.K. Pitcairn, N. Leventis, G. Beaudoin, S. Faure, C. Guilmette, B. Dubé. A metasedimentary source of gold in Archean orogenic gold deposits. Geology, 49 (7) (2021), pp. 862-866,
CrossRef
Google scholar
|
A. Poldervaart. Petrological calculations in metasomatic processes. Am. J. Sci., 251 (7) (1953), pp. 481-504,
CrossRef
Google scholar
|
J.P. Rigol-Sanchez, M. Chica-Olmo, F. Abarca-Hernandez. Artificial neural networks as a tool for mineral potential mapping with GIS. Int. J. Remote Sens., 24 (5) (2003), pp. 1151-1156,
CrossRef
Google scholar
|
E.M. Ripley. . Application of Stable Isotopic Studies to Problems of Magmatic Sulfide Ore Genesis With Special Reference to the Duluth Complex, Minnesota BT - Geology and Metallogeny of Copper Deposits, Springer Berlin Heidelberg, Berlin, Heidelberg (1986), pp. 25-42
|
C.B. Rizzo, F.P.J. de Barros. Minimum hydraulic resistance and least resistance path in heterogeneous porous media: minimum hydraulic resistance. Water Resour. Res., 53 (10) (2017), pp. 8596-8613,
CrossRef
Google scholar
|
Robert, F., Poulsen, K. H., 2001. Vein Formation and Deformation in Greenstone Gold Deposits. In: Richards, J. P., Tosdal, R. M. (Eds.), Structural Controls on Ore Genesis. Society of Economic Geologists.
CrossRef
Google scholar
|
F. Robert, H.K. Poulsen, K.F. Cassidy, J.C. Hodgson. Gold metallogeny of the Superior and Yilgarn Cratons. Econ. Geol., 1001–1033 (2005),
CrossRef
Google scholar
|
R.A. Sproule, C.M. Lesher, J.A. Ayer, P.C. Thurston, C.T. Herzberg. Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precambrian Res.e, 115 (1) (2002), pp. 153-186,
CrossRef
Google scholar
|
J.M. Stromberg. Geochemistry of the dome mine ankerite veins: insights into the multi-stage enrichment of a world-class orogenic gold deposit. Electronic Thesis and Dissertation Repository. (2017)
|
Y.B. Tang, J.Z. Zhao, Y. Bernabe, M. Li. Fluid flow concentration on preferential paths in heterogeneous porous media; application of graph theory. J. Geophys. Res. Solid Earth, 126 (12) (2021), p. n/a,
CrossRef
Google scholar
|
P.H. Thompson. A new metamorphic framework for gold exploration in the Timmins-Kirkland Lake area, western Abitibi greenstone belt (Discover Abitibi Initiative). Open File Report (OFR, 6162 (2005), p. p. 104)
|
P.C. Thurston, K.M. Chivers. Secular variation in greenstone sequence development emphasizing Superior Province Canada. Precambrian Res., 46 (1–2) (1990), pp. 21-58,
CrossRef
Google scholar
|
P.C. Thurston, J.A. Ayer, J. Goutier, M.A. Hamilton. Depositional gaps in abitibi greenstone belt stratigraphy: a key to exploration for syngenetic mineralization. Econ. Geol., 103 (6) (2008), pp. 1097-1134,
CrossRef
Google scholar
|
K.Y. Tomlinson, G.M. Stott, J.A. Percival, D. Stone. Basement terrane correlations and crustal recycling in the western Superior Province: Nd isotopic character of granitoid and felsic volcanic rocks in the Wabigoon subprovince, N. Ontario, Canada. Precambrian Res., 132 (3) (2004), pp. 245-274,
CrossRef
Google scholar
|
Turner, S.J., Reynolds, G., Hagemann, S.G., 2020. Chapter 13: Boddington: An Enigmatic Giant Archean Gold-Copper (Molybdenum-Silver) Deposit in the Southwest Yilgarn Craton, Western Australia. Geol. World’s Major Gold Depos. Prov. .
|
L. Wilson, J.W. Head. Ascent and eruption of basaltic magma on the earth and moon. J. Geophys. Res. Solid Earth Planets, 86 (1981), pp. 2971-3001
|
K. Zammit, S. Perrouty, B.M. Frieman, J.H. Marsh, K.A. Holt. Structural and geochronological constraints on orogenic gold mineralization in the western Wabigoon subprovince Canada. Can. J. Earth Sci., 59 (5) (2022), pp. 278-299,
CrossRef
Google scholar
|
P. Zhang, Z. Zhang, J. Yang, Q. Cheng. Machine learning prediction of ore deposit genetic type using magnetite geochemistry. Nat. Resour. Res., 32 (1) (2023), pp. 99-116,
CrossRef
Google scholar
|
N. Zhang, K. Zhou. Mineral prospectivity mapping with weights of evidence and fuzzy logic methods. J. Intell. Fuzzy Syst., 29 (6) (2015), pp. 2639-2651,
CrossRef
Google scholar
|
Zammit, K., 2020. Structural evolution and orogenic gold metallogeny of the western Wabigoon subprovince, Canada. Laurentian University, MSc Thesis. https://zone.biblio.laurentian.ca/handle/10219/3594?mode=full
|
/
〈 |
|
〉 |