Interpreting random fields through the U-Net architecture for failure mechanism and deformation predictions of geosystems

Ze Zhou Wang, Jinzhang Zhang, Hongwei Huang

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101720.

PDF(6715 KB)
PDF(6715 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101720. DOI: 10.1016/j.gsf.2023.101720
Research Paper

Interpreting random fields through the U-Net architecture for failure mechanism and deformation predictions of geosystems

Author information +
History +

Abstract

The representation of spatial variation of soil properties in the form of random fields permits advanced probabilistic assessment of slope stability. In many studies, the safety margin of the system is typically characterized by the term “probability of failure (Pfailure)”. As the intensity and spatial distribution of soil properties vary in different random field realizations, the failure mechanism and deformation field of a slope can vary as well. Not only can the location of the failure surfaces vary, but the mode of failure also changes. Such information is equally valuable to engineering practitioners. In this paper, two slope examples that are modified from a real case study are presented. The first example pertains to the stability analysis of a multi-layer -slope while the second example deals with the serviceability analysis of a multi-layer c-φ slope. In addition, due to the large number of simulations needed to reveal the full picture of the failure mechanism, Convolutional Neural Networks (CNNs) that adopt a U-Net architecture is proposed to offer a soft computing strategy to facilitate the investigation. The spatial distribution of the failure surfaces, the statistics of the sliding volume, and the statistics of the deformation field are presented. The results also show that the proposed deep-learning model is effective in predicting the failure mechanism and deformation field of slopes in spatially variable soils; therefore encouraging probabilistic study of slopes in practical scenarios.

Keywords

Deep-learning / Spatial variability / Slope stability / Failure mechanism / Sliding volume

Cite this article

Download citation ▾
Ze Zhou Wang, Jinzhang Zhang, Hongwei Huang. Interpreting random fields through the U-Net architecture for failure mechanism and deformation predictions of geosystems. Geoscience Frontiers, 2024, 15(1): 101720 https://doi.org/10.1016/j.gsf.2023.101720

References

[1]
Ang A.H.S., Tang W.H., 2007. Probability Concepts in Engineering Planning and Design:Emphasis on Application to Civil and Environmental Engineering. Second edition. John Wiley and Sons Inc., New York.
[2]
Au S.K., Beck J.L., 2001. Estimation of small failure probabilities in high dimensions by subset simulation. Probab. Eng. Mech. 16 (4), 263-277. https://doi.org/10.1016/S0266-8920(01)00019-4.
[3]
Chen L.L., Zhang W.G., Chen F.Y., Gu D.M., Wang L., Wang Z.Y., 2022. Probabilistic assessment of slope failure considering anisotropic spatial variability of soil properties. Geosci. Front. 13 (3), 101371. https://doi.org/10.1016/j.gsf.2022.101371.
[4]
Cho S.E., 2010. Probabilistic assessment of slope stability that considers the spatial variability of soil properties. j.Geotech. Geoenviron. Eng. 136 (7), 975-984. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000309.
[5]
Dyson A.P., Tolooiyan A., 2019. Prediction and classification for finite element slope stability analysis by random field comparison. Comput. Geotech. 109, 117-129. https://doi.org/10.1016/j.compgeo.2019.01.026.
[6]
Fenton G.A., Griffiths D.V., 2002. Probabilistic foundation settlement on spatially random soil. j.Geotech. Geoenviron. Eng. 128 (5), 381-390. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:5(381).
[7]
Gong W.P., Tang H.M, Wang H., Wang X., Juang C.H., 2019. Probabilistic analysis and design of stabilizing piles in slope considering stratigraphic uncertainty. Eng. Geol. 259, 105162. https://doi.org/10.1016/j.enggeo.2019.105162.
[8]
Griffiths D.V., Huang J.S., Fenton G.A., 2009. Influence of spatial variability on slope reliability using 2-D random fields. j.Geotech. Geoenviron. Eng. 135 (10), 1367-1378. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000099.
[9]
Gu X., Ou Q., Zhang W., Fu J., Hao S., 2023. A novel subroutine for estimating unsaturated slope stability considering water fluctuation in spatially variable soils. Bull. Eng. Geol. Environ. 82(1), 6. https://doi.org/10.1007/s10064-022-03025-y.
[10]
Hassan A.M., Wolff T.F., 1999. Search algorithm for minimum reliability index of Earth slopes. j.Geotech. Geoenviron. Eng. 125 (4), 301-308. https://doi.org/10.1061/(asce)1090-0241(1999)125:4(301).
[11]
He X., Wang F., Li W., Sheng D., 2021. Efficient reliability analysis considering uncertainty in random field parameters: Trained neural networks as surrogate models. Comput. Geotech. 136, 104212. https://doi.org/10.1016/j.compgeo.2021.104212.
[12]
Huang J., Lyamin A.V., Griffiths D.V., Krabbenhoft K., Sloan S.W., 2013. Quantitative risk assessment of landslide by limit analysis and random fields. Comput. Geotech. 53, 60-67. https://doi.org/10.1016/j.compgeo.2013.04.009.
[13]
Ireland H.O., 1954. Stability analysis of the congress street open cut in chicago. Geotechnique. 4 (4), 163-168. https://doi.org/10.1680/geot.1954.4.4.163.
[14]
Jiang S.H., Huang J.S., 2016. Efficient slope reliability analysis at low-probability levels in spatially variable soils. Comput. Geotech. 75, 18-27. https://doi.org/10.1016/j.compgeo.2016.01.016.
[15]
Jiang S. H., Huang J.*, Griffiths D. V., Deng Z. P., 2022. Advances in reliability and risk analyses of slopes in spatially variable soils: A state-of-the-art review. Computers and Geotechnics 141, 104498.
[16]
Jiang S.H., Li D.Q., Cao Z.J., Zhou C.B., Phoon K.K., 2015. Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation. j.Geotech. Geoenviron. Eng. 141 (2), 04014096. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001227.
[17]
Jiang S. H., Zhu G. Y., Wang Z. Z.*, Huang Z. T., Huang J., 2023. Data augmentation for CNN-based probabilistic slope stability analysis in spatially variable soils. Computers and Geotechnics 160, 105501.
[18]
Kasama K., Whittle A.J., 2016. Effect of spatial variability on the slope stability using Random Field Numerical Limit Analyses. Georisk. 10 (1), 42-54. https://doi.org/10.1080/17499518.2015.1077973.
[19]
Krabbenhøft K., Lyamin A.V., 2014. Optum G2.Optum Computational Engineering.
[20]
Li D.Q., Jiang S.H., Cao Z.J., Zhou W.H., Zhou C.B., Zhang L.M., 2015. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties. Eng. Geol. 187, 60-72. https://doi.org/10.1016/j.enggeo.2014.12.003.
[21]
Li D.Q., Xiao T., Cao Z.J., Zhou C.B., Zhang L.M., 2016. Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using Subset Simulation. Landslides. 13 (2), 293-303. https://doi.org/10.1007/s10346-015-0569-2.
[22]
Li D.Q., Zheng D., Cao Z.J., Tang X.S., Qi X.H., 2019. Two-stage dimension reduction method for meta-model based slope reliability analysis in spatially variable soils. Struct. Saf. 81, 101872.
[23]
Liu W.S., Cheung S.H., Cao W.J., 2019. An efficient surrogate-aided importance sampling framework for reliability analysis. Adv. Eng. Softw. 135, 102687. https://doi.org/10.1016/j.advengsoft.2019.102687.
[24]
Liu Y., Zhang W., Zhang L., Zhu Z., Hu J., Wei H., 2018. Probabilistic stability analyses of undrained slopes by 3D random fields and finite element methods. Geosci. Front. 9 (6), 1657-1664. https://doi.org/10.1016/j.gsf.2017.09.003.
[25]
Meng J., Mattsson H., Laue J., 2021. Three‐dimensional slope stability predictions using artificial neural networks. Int. j.Numer. Anal. Methods. Geomech. 45 (13), 1988-2000. https://doi.org/10.1002/nag.3252.
[26]
Morgenstern N.R., Price V.E., 1967. A Numerical Method for Solving the Equations of Stability of General Slip Surfaces. Comput. J. 9 (4), 388-393. https://doi.org/10.1093/comjnl/9.4.388.
[27]
Nguyen T.S., Likitlersuang S., 2021. Influence of the spatial variability of soil shear strength on deep excavation: A case study of a Bangkok underground MRT station. Int. j.Geomech. 21(2), 04020248. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001914.
[28]
Pan Y., Shi G., Liu Y., Lee F.H., 2018. Effect of spatial variability on performance of cement-treated soil slab during deep excavation. Constr. Build. Mater. 188, 505-519.
[29]
Phoon K.K., Kulhawy F.H., 1999. Characterization of geotechnical variability. Can. Geotech. J. 36, 612-624. https://doi.org/10.1139/cgj-36-4-612.
[30]
Phoon K.K., Huang S.P., Quek S.T., 2002. Simulation of second-order processes using Karhunen-Loeve expansion. Comput. Struct. 80 (12), 1049-1060. https://doi.org/10.1016/S0045-7949(02)00064-0.
[31]
Ronneberger O., Fischer P., Brox T., 2015. U-net: Convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-24574-4_28.
[32]
Sharma A., Ching J.Y., Phoon K. K., 2022. A hierarchical Bayesian similarity measure for geotechnical site retrieval. j.Eng. Mech. 148 (10), 04022062, https://doi.org/10.1061/(ASCE)EM.1943-7889.0002145.
[33]
Sharma A., Ching J.Y., Phoon K. K., 2023. A spectral algorithm for quasi-regional geotechnical site clustering. Comput. Geotech. 161, 105624, https://doi.org/10.1016/j.compgeo.2023.105624.
[34]
Shen Y.M., Zhang D.M., Wang R.L., Li J., Huang Z.K., 2023. SBD-K-medoids-based long-term settlement analysis of shield tunnel. Transp. Geotech. 42, 101053, https://doi.org/10.1016/j.trgeo.2023.101053.
[35]
Smith I.M., Griffiths D.V., Margetts L., 2013. Programming the Finite Element Method. John Wiley and Sons.
[36]
Tao Y., Phoon K.K., Sun H., Cai Y., 2023. Hierarchical Bayesian model for predicting small-strain stiffness of sand. Can. Geotech. J, https://doi.org/10.1139/cgj-2022-0598.
[37]
van den Eijnden A.P., Hicks M.A., 2017. Efficient subset simulation for evaluating the modes of improbable slope failure. Comput. Geotech. 88, 267-280. https://doi.org/10.1016/j.compgeo.2017.03.010.
[38]
Vanmarcke E., 2010. Random fields: analysis and synthesis. World scientific.
[39]
Wang Z.Z., 2022. Deep learning for geotechnical reliability analysis with multiple uncertainties. j.Geotech. Geoenviron. Eng. 148(4), 06022001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002771.
[40]
Wang Z.Z., Goh S.H., 2021. Novel approach to efficient slope reliability analysis in spatially variable soils. Eng. Geol. 281, 105989. https://doi.org/10.1016/j.enggeo.2020.105989.
[41]
Wang Z.Z., Goh S.H., 2022. A maximum entropy method using fractional moments and deep learning for geotechnical reliability analysis. Acta. Geotech. 17 (4), 1147-1166. https://doi.org/10.1007/s11440-021-01326-2.
[42]
Wang L., Wu C., Tang L., Zhang W., Lacasse S., Liu H., Gao L., 2020. Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method. Acta. Geotech, 15 (11), 3135-3150. https://doi.org/10.1007/s11440-020-00962-4.
[43]
Wang Z.Z., Xiao C.L., Goh S.H., Deng M.X., 2021. Meta-model based reliability analysis in spatially variable soils using Convolutional Neural Networks. j.Geotech. Geoenviron. Eng. 147 (3), 04021003.https://doi.org/10.1061/(asce)gt.1943-5606.0002486.
[44]
Wu C., Hong L., Wang L., Zhang R., Pijush S., Zhang W., 2023. Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network. Gondw. Res. 123, 184-197. https://www.doi.org/10.1016/j.gr.2022.06.011.
[45]
Zhang W., Gu X., Hong L., Han L., Wang L., 2023. Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges. Appl. Soft. Comput. 136, 110066. https://doi.org/10.1016/j.asoc.2023.110066.
[46]
Zhang J.Z., Huang H.W., Zhang D.M., Phoon K.K., Tang C., 2022c. Simplified methods of tunnel structure deformation analysis considering spatial variability of soil properties. Chin. j.Geotech. Eng. 44 (1), 134-143.
[47]
Zhang J.Z., Huang H.W., Zhang D.M., Zhou M.L., Tang C., Liu D.J., 2021a. Effect of ground surface surcharge on deformational performance of tunnel in spatially variable soil. Comput. Geotech. 136,104229. https://doi.org/10.1016/j.compgeo.2021.104229.
[48]
Zhang J.Z., Phoon K.K., Zhang D.M., Huang H.W., Tang C., 2021b. Novel approach to estimate vertical scale of fluctuation based on CPT data using convolutional neural networks. Eng. Geol. 294,106342. https://doi.org/10.1016/j.enggeo.2021.106342.
[49]
Zhang J.Z., Phoon K.K., Zhang D.M., Huang H.W., Tang C., 2021c. Deep learning-based evaluation of factor of safety with confidence interval for tunnel deformation in spatially variable soil. j.Rock. Mech. Geotech. Eng. 13(6), 1358-1367. https://doi.org/10.1016/j.jrmge.2021.09.001.
[50]
Zhang J.Z., Liu Z.Q., Zhang D.M., Huang H.W., Phoon K.K., Xue Y.D., 2022a. Improved coupled Markov chain method for simulating geological uncertainty. Eng. Geol. 298, 106539. https://doi.org/10.1016/j.enggeo.2022.106539.
[51]
Zhang J.Z., Huang H.W., Zhang D.M., Phoon K.K., 2023. Experimental study of the coupling effect on segmental shield tunnel lining under surcharge loading and excavation unloading. Tunn. Undergr. Sp. Tech. 140, 105199. https://doi.org/10.1016/j.tust.2023.105199.
[52]
Zhang W.G., Wu J.H., Gu X., Han L., Wang L., 2022b. Probabilistic stability analysis of embankment slopes considering the spatial variability of soil properties and seismic randomness. j.Mt. Sci. 19(5), 1464-1474. https://doi.org/10.1007/s11629-021-6981-2.
[53]
Zhang D.M., Ye Z.W., Zhang J.Z., Li J.P., Jia J.W., 2022c. Influence of grouting on rehabilitation of an over-deformed shield tunnel lining in spatially variable soil. Comput. Geotech. 152, 104999, https://doi.org/10.1016/j.compgeo.2022.104999.
[54]
Zhou H.Z., Hu Q.C., Yu X.Y., Zheng G., Liu X.N., Xu H.J., Yang S.C., Liu J., Tian K., 2023. Quantitative bearing capacity assessment of strip footings adjacent to two-layered slopes considering spatial soil variability. Acta. Geotech. 1-15, https://doi.org/10.1007/s11440-023-01875-8.
[55]
Zolfaghari A.R., Heath A.C., McCombie P.F., 2005. Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Comput. Geotech. 32 (3), 139-152. https://doi.org/10.1016/j.compgeo.2005.02.001.
PDF(6715 KB)

Accesses

Citations

Detail

Sections
Recommended

/