Journal home Browse Latest Articles

Latest Articles

  • Select all
  • research-article
    Fangxiu Luo, Jialu Zhao, Yubao Chen, Zhenping Peng, Ran An, Yeling Lu, Jiaming Li
    Global Medical Genetics, 2024, 11(02): 187-195. https://doi.org/10.1055/s-0044-1787752

    Objective Myelodysplastic syndrome (MDS) is a malignant clonal disorder of hematopoietic stem cells which is characterized by morphologic dysplasia. However, the pathological characteristics of megakaryocytes (MKs) in MDS patients with gene mutation are not well established.
    Methods Bone marrow MK specimens from 104 patients with primary MDS were evaluated, and all patients were distributed into two groups according to gene mutation associated with functional MKs. The morphologic and cellular characteristics of MKs and platelets were recorded and compared.
    Results The more frequently mutated genes in MDS patients were TUBB1 (11.54%), VWF (8.65%), NBEAL2 (5.77%), and the most common point mutation was TUBB1 p.(R307H) and p.(Q43P). Patients with MK mutation showed a decrease in adenosine diphosphate-induced platelet aggregation, high proportion of CD34+ CD61+ MKs (10.00 vs. 4.00%, p = 0.012), and short overall survival (33.15 vs. 40.50 months, p = 0.013). Further, patients with a higher percent of CD34+ CD61+ MKs (≧20.00%) had lower platelet counts (36.00 × 109/L vs. 88.50 × 109/L, p = 0.015) and more profound emperipolesis (p  = 0.001). By analyzing RNA-sequencing of MKs, differentially expressed mRNA was involved in physiological processes including platelet function and platelet activation, especially for MDS patients with high percent of CD34+CD61+MKs. The high levels of expression of CD62P, CXCL10, and S100A9 mRNA, shown by RNA sequencing, were validated by PCR assay.
    Conclusion High proportion of CD34+ CD61+ MKs was a poor prognostic factor in MDS patients with MK mutation. CD62P, CXCL10, and S100A9 may be the potential targets to evaluate the molecular link between gene defects and platelet function.

  • research-article
    Wenchao Xia, Jing Yang, Hongbin Li, Ling Li, Jinfeng Liu
    Global Medical Genetics, 2024, 11(02): 175-186. https://doi.org/10.1055/s-0044-1787301

    Background Anaplastic lymphoma kinase (ALK) fusion events account for 3 to 7% of genetic alterations in patients with nonsmall cell lung cancer (NSCLC). This study aimed to explore the landscape of ALK fusion-positive and ALK fusion-negative in a large cohort of NSCLC patients.
    Methods The formalin-fixed paraffin-embedded specimens of NSCLC patients who underwent next-generation sequencing from 2020 to 2023 in Yinfeng Gene Technology Co., Ltd. Clinical laboratory were included in this study.
    Results In the current study, a total of 180 (3.20%) patients tested positive for ALK fusions in 5,622 NSCLC samples. Within the ALK-positive cohort, a total of 228 ALK fusions were identified. Furthermore, five novel ALK fusion partners, including DAB1-ALK, KCMF1-ALK, KIF13A-ALK, LOC643770-ALK, and XDH-ALK were identified. In cases with ALK fusion-positive, TP53 alterations were the most prevalent (26.3%), followed by CDKN2A (8.4%), epidermal growth factor receptor (EGFR, 5.6%), and ALK (5.6%). By contrast, EGFR alterations were most prevalent (51%) in patients with ALK fusion-negative NSCLC, followed by TP53 (42.7%), KRAS (11.6%), and CDKN2A (11.3%). A total of 10 cases where ALK fusion co-occurred with EGFR mutations were also identified. Notably, the ALK fusion positivity rate was higher in younger patients (p < 0.0001) and in female patients (p = 0.0429). Additionally, positive ALK test results were more prevalent in patients with high programmed death-ligand 1 expression, especially when applying a 50% cutoff.
    Conclusions Collectively, these findings offer valuable genomic insights that could inform the personalized clinical care of patients with NSCLC harboring ALK fusions within the context of precision medicine.

  • research-article
    Mainak Bardhan, Kiran Polavarapu, Dipti Baskar, Veeramani Preethish-Kumar, Seena Vengalil, Saraswati Nashi, Valakunja H. Ganaraja, Dinesh Sharma, Karthik Kulanthaivelu, B.N. Nandeesh, Atchayaram Nalini
    Global Medical Genetics, 2024, 11(02): 167-174. https://doi.org/10.1055/s-0044-1786815

    Introduction VMA21-related myopathy is one of the rare forms of slowly progressive myopathy observed in males. Till now, there have been only a handful of reports, mainly from Europe and America, and two reports from India.
    Method Here, we describe a case of genetically confirmed VMA21-associated myopathy with clinical, histopathological, and imaging features with a list of known VMA21 mutations.
    Results A 29-year-old man had the onset of symptoms at 18 years of age with features of proximal lower limb weakness. Muscle magnetic resonance imaging showed the preferential involvement of vasti and adductor magnus. A biopsy of the left quadriceps femoris showed features of autophagic vacuolar myopathy with vacuoles containing granular eosinophilic materials. In targeted next-generation sequencing, hemizygous mutation in the 3′ splice site of intron 2 of the VMA21 gene (c.164-7 T > A) was identified and confirmed the diagnosis of X-linked myopathy with excessive autophagy.
    Conclusion This report expands the phenotypic and genotypic profile of VMA21-related myopathy, with a yet unreported mutation in India.

  • research-article
    Hao Shi, Yaya Duan, Xinting Bu
    Global Medical Genetics, 2024, 11(02): 159-166. https://doi.org/10.1055/s-0044-1786006

    Purpose To analyze the factors affecting the mobilization efficiency of hematopoietic stem cells and hematopoietic reconstruction indicators during autologous peripheral hematopoietic stem cell transplantation.
    Methods The clinical data of 54 patients who underwent autologous peripheral blood hematopoietic stem cell mobilization and transplantation at Xuzhou Central Hospital from May 2016 to April 2023 were retrospectively analyzed. The gender, age, disease type, mobilization regimen, number of chemotherapy sessions, G-CSF (granulocyte colony-stimulating factor) dosage, and platelet number at the time of collection were also collected. Moreover, the relationship between these indicators with mobilization results and hematopoietic reconstruction was analyzed.
    Results Results showed that age, disease type, and number of collections were significantly related to the mobilization results (number of CD34+ hematopoietic stem cells). Furthermore, multivariate analysis showed that the number of collections was an independent factor affecting mobilization efficiency. Similarly, age, platelet value at the time of collection, CD34+ stem cell value during collection, white blood cell count, and number of chemotherapy times were significantly related to the time of megakaryocytic hematopoietic reconstruction. Multifactor analysis found that age and platelet count were independent factors affecting the reconstruction time of the megakaryocytic system. However, no factor was related to the time of granulocyte hematopoietic reconstruction.
    Conclusion Platelet count and age when collecting hematopoietic stem cells are closely related to megakaryocytic hematopoietic reconstruction and are key indicators of early hematopoietic reconstruction after autologous hematopoietic stem cell transplantation.

  • research-article
    Jinfeng Liu, Sijie Liu, Dan Li, Hongbin Li, Fan Zhang
    Global Medical Genetics, 2024, 11(02): 150-158. https://doi.org/10.1055/s-0044-1786004

    Background NFE2L2 (nuclear factor erythroid-2-related factor-2) encodes a basic leucine zipper (bZIP) transcription factor and exhibits variations in various tumor types, including lung cancer. In this study, we comprehensively investigated the impact of simultaneous mutations on the survival of NFE2L2-mutant lung cancer patients within specific subgroups.
    Methods A cohort of 1,103 lung cancer patients was analyzed using hybridization capture-based next-generation sequencing.
    Results The NFE2L2 gene had alterations in 3.0% (33/1,103) of lung cancer samples, including 1.5% (15/992) in adenocarcinoma and 16.2% (18/111) in squamous cell carcinoma. Thirty-four variations were found, mainly in exons 2 (27/34). New variations in exon 2 (p.D21H, p.V36_E45del, p.F37_E45del, p.R42P, p.E67Q, and p.L76_E78delinsQ) were identified. Some patients had copy number amplifications. Co-occurrence with TP53 (84.8%), CDKN2A (33.3%), KMT2B (33.3%), LRP1B (33.3%), and PIK3CA (27.3%) mutations was common. Variations of NFE2L2 displayed the tightest co-occurrence with IRF2, TERC, ATR, ZMAT3, and SOX2 (p < 0.001). In The Cancer Genome Atlas Pulmonary Squamous Carcinoma project, patients with NFE2L2 variations and 3q26 amplification had longer median survival (63.59 vs. 32.04 months, p = 0.0459) and better overall survival.
    Conclusions NFE2L2 mutations display notable heterogeneity in lung cancer. The coexistence of NFE2L2 mutations and 3q26 amplification warrants in-depth exploration of their potential clinical implications and treatment approaches for affected patients.

  • research-article
    Jia-Yuan Zhang, Zhang-Song Yan, Xiu-Juan Sun, Yong-Ze Liu, Yan-Ke Yin, Ming-Huan Su, Qiu-Ling Li, Ying-Chang Mi, Da-Peng Li
    Global Medical Genetics, 2024, 11(02): 142-149. https://doi.org/10.1055/s-0044-1786005

    Objectives This study aimed to identify the association between lactate dehydrogenase (LDH) levels and 30-day mortality in patients with intracranial hemorrhage (ICH) with acute leukemia during the induction phase.
    Methods This cohort study included patients with acute leukemia with ICH during induction. We evaluated serum LDH levels upon admission. Multivariable Cox regression analyzed the LDH 30-day mortality association. Interaction and stratified analyses based on factors like age, sex, albumin, white blood cell count, hemoglobin level, and platelet count were conducted.
    Results We selected 91 patients diagnosed with acute leukemia and ICH. The overall 30-day mortality rate was 61.5%, with 56 of the 91 patients succumbing. Among those with LDH levels ≥ 570 U/L, the mortality rate was 74.4% (32 out of 43), which was higher than the 50% mortality rate of the LDH < 570 U/L group (24 out of 48) (p = 0.017). In our multivariate regression models, the hazard ratios and their corresponding 95% confidence intervals for Log2 and twice the upper limit of normal LDH were 1.27 (1.01, 1.58) and 2.2 (1.05, 4.58), respectively. Interaction analysis revealed no significant interactive effect on the relationship between LDH levels and 30-day mortality.
    Conclusions Serum LDH level was associated with 30-day mortality, especially in patients with LDH ≥ 570 U/L.

  • research-article
    Yupeng Liu, Cong Han, Jie Li, Shicai Xu, Zhijian Xiao, Zhiyun Guo, Shuquan Rao, Yao Yao
    Global Medical Genetics, 2024, 11(02): 132-141. https://doi.org/10.1055/s-0044-1785537

    Precise quantification of the JAK2V617F mutation using highly sensitive assays is crucial for diagnosis, treatment process monitoring, and prognostic prediction in myeloproliferative neoplasms' (MPNs) patients. Digital droplet polymerase chain reaction (ddPCR) enables precise quantification of low-level mutations amidst a high percentage of wild type alleles without the need for external calibrators or endogenous controls. The objective of this study was to optimize a ddPCR assay for detecting the JAK2V617F mutation and establish it as a laboratory-developed ddPCR assay in our center. The optimization process involved fine-tuning five key parameters: primer/probe sequences and concentrations, annealing temperature, template amount, and PCR cycles. Our ddPCR assay demonstrated exceptional sensitivity, and the limit of quantification (LoQ) was 0.01% variant allele frequency with a coefficient of variation of approximately 76%. A comparative analysis with quantitative PCR on 39 samples showed excellent consistency (r = 0.988).
    In summary, through rigorous optimization process and comprehensive analytic performance validation, we have established a highly sensitive and discriminative laboratory-developed ddPCR platform for JAK2V617F detection. This optimized assay holds promise for early detection of minimal residual disease, personalized risk stratification, and potentially more effective treatment strategies in MPN patients and non-MPN populations.

  • research-article
    Yaoxian Xiang, Li Wang, Yurong Cheng, Huanjuan An, Chan Zhang, Jing Wang, Yingying Tong, Dong Yan
    Global Medical Genetics, 2023, 10(04): 388-394. https://doi.org/10.1055/s-0043-1777789

    The aim of the study was to evaluate the potential diagnostic and prognostic value of gene, Poly A-Binding Protein Interacting Protein 2B (PAIP2B) in pancreatic cancer. We used the gene expression data and clinical information of pancreatic adenocarcinoma patients from The Cancer Genome Atlas database and Gene Expression Omnibus database to analyze the expression of PAIP2B in pancreatic cancer samples, and validated the expression of PAIP2B in tumor tissue, using bioinformatics technology to explore the prognostic value of PAIP2B and its possible biological function. A significantly lower level of PAIP2B was observed in pancreatic cancer patients than in controls, and validated by immunohistochemistry. PAIP2B reduced the proliferation and invasion of cancer cells and had a significantly high expression in early stage. Patients with lower levels of PAIP2B had a significantly shorter median survival time than those with higher levels. DNA demethylation played an important role in PAIP2B expression. In addition, PAIP2B expression was significantly associated with the tumor-infiltrating immune cells, especially T cells CD8, T cells CD4 memory resting, macrophages M0, and dendritic cells resting. Our study also found that PAIP2B regulated miRNA function leading to disease progression in pancreatic cancer patients. Our study explored the potential value of PAIP2B as a biological link between prognosis and pancreatic cancer, and provided reference for the follow-up study on the role of PAIP2B in pancreatic cancer.

  • research-article
    Oluwatosin Debola Oyebode, Pınar Tulay
    Global Medical Genetics, 2023, 10(04): 382-387. https://doi.org/10.1055/s-0043-1777087

    Alzheimer's disease (AD) is a neurodegenerative disorder that advances gradually and primarily impacts the hippocampus region of the brain. It is defined by a deterioration in cognitive function as well as an observable loss of memory retention. One of the major characteristics of AD is the impairment of neural generation, resulting in the depletion of neurons and synaptic connections within the nervous system. It is unfortunate to say that, at present, no definitive cure is available for AD, and no medication is effective in halting the progression of neurodegeneration associated with it. Nevertheless, it is crucial to highlight that progress has been achieved in addressing the troubling symptoms of AD. The Food and Drug Administration has granted approval for two categories of medications designed to alleviate these symptoms. The scientific community has been inspired by these advancements to investigate alternative therapeutic options, with an emphasis on stem cell therapy in particular. The main focus of this review will be on the potential for the use of a variety of mesenchymal stem cells as a treatment for AD.

  • research-article
    Polyanna Oliveira, Paula Correa, Angelina Acosta, Juliana Freitas, Taísa Machado-Lopes, Thais Bomfim-Palma, Ândrea Ribeiro-dos-Santos, Sidney Santos, Roberto Nascimento, Ivana Nascimento, Kiyoko Abe-Sandes
    Global Medical Genetics, 2023, 10(04): 376-381. https://doi.org/10.1055/s-0043-1777449

    Introduction Cancer is a multifactorial disease dependent on the influence of genetic and environmental factors. About 10% of cancers are associated with germline mutations, which predispose to a higher risk of developing cancer. Currently, the use of panels that identify susceptibility and/or association genes cancer has been increasingly used, both in clinical practice and in scientific research.
    Objective To investigate genetic mutations in patients with a profile for hereditary cancer in individuals from a region of northeast Brazil, where there is a high frequency of endogenous and consanguineous marriages.
    Methods A set of 17 genes (BRCA1, BRCA2, APC, TP53, PTEN, RET, VHL, RB1, CDKN2, CDH1, CHEK2, MLH1, MSH2, MSH6, MUTYH, XPA, and XPC) associated with cancer and hereditary syndromes were analyzed. Fifteen patients with a hereditary cancer profile were evaluated.
    Results The pathogenic variant found was c.1187G > A (p.Gly396Asp), rs36053993 in the MUTYH gene in a male patient diagnosed with melanoma at the age of 43 years and a family history for this tumor. This gene encodes an important enzyme related to DNA repair and has been associated with other types of cancer, this is the first report of an association with melanoma, the biological plausibility of this association is given once the MUTYH protein is expressed in the skin tissue and is responsible for repairing damage caused, for example, by sun exposure.
    Conclusion The results of this study suggest that this mutation may be important for the hereditary predisposition to melanoma, but a broader investigation of this mutation is needed.

  • research-article
    Piero Pavone, Xena Giada Pappalardo, Claudia Parano, Enrico Parano, Antonio Corsello, Martino Ruggieri, Giovanni Cacciaguerra, Raffaele Falsaperla
    Global Medical Genetics, 2023, 10(04): 370-375. https://doi.org/10.1055/s-0043-1777362

    Background Microtia is an uncommon congenital malformation ranging from mild anatomic structural abnormalities to partial or complete absence of the ear leading to hearing impairment. Congenital microtia may present as a single malformation (isolated microtia) or sometimes associated with other congenital anomalies involving various organs. Microtia has been classified in three degrees according to the complexity of the auricular malformation and to anotia referred to the total absence of the ear. Genetic role in causing auricular malformation has been widely demonstrated, and genotype-phenotype correlation has been reported in cases of syndromic microtia.
    Case Presentation We report here a young patient with a third degree of scale classification and aural atresia. The patient showed unspecific facial dysmorphism, speech delay, precocious teething, hair white patch, and stereotypic anomalous movements. Genetic analysis displayed a de novo 16p13.11 deletion.
    Conclusion Microtia with aural atresia is an uncommon and severe birth defect, which affects functional and esthetic aspects, often associated with other malformations. As traumatic this disorder may be for the parents, the microtia and aural atresia are treatable, thanks to the improving and evolving surgical techniques. Based on the genetic analysis and the clinical features observed in the present case, a genotype-phenotype correlation has been proposed.

  • research-article
    Xin Qiu, Qing-Qing Jiang, Wei-Wei Guo, Ning Yu, Shi-ming Yang
    Global Medical Genetics, 2023, 10(04): 357-369. https://doi.org/10.1055/s-0043-1777069

    Background Noise and drug-induced hearing loss (HL) is becoming more and more serious, but the integration and analysis based on transcriptomics and proteomics are lacking. On the one hand, this study aims to integrate existing public transcriptomic data on noise and gentamicin-induced HL. On the other hand, the study aims to establish the gentamicin and noise-induced HL model of guinea pigs, then to perform the transcriptomic and proteomic analyses. Through comprehensive analysis of the above data, we aim to screen, predict, and preliminarily verify biomarkers closely related to HL.
    Material and Methods We screened the Gene Expression Omnibus database to obtain transcriptome data expression profiles of HL caused by noise and gentamicin, then constructed the guinea pig HL model and perform the transcriptomic and proteomic analyses. Differential expression and enrichment analysis were performed on public and self-sequenced data, and common differentially expressed genes (DEGs) and signaling pathways were obtained. Finally, we used proteomic data to screen for common differential proteins and validate common differential expression genes for HL.
    Results By integrating the public data set with self-constructed model data set, we eventually obtained two core biomarkers of HL, which were RSAD2 and matrix metalloproteinase-3 (MMP3). Their main function is to regulate the development of sense organ in the inner ear and they are mainly involved in mitogen-activated protein kinase and phosphoinositol-3 kinase/protein kinase B signaling pathways. Finally, by integrating the proteomic data of the self-constructed model, we also found differential expression of MMP3 protein. This also preliminarily and partially verified the above-mentioned core biomarkers.
    Conclusion and Significance In this study, public database and transcriptomic data of self-constructed model were integrated, and we screened out two core genes and various signal pathways of HL through differential analysis, enrichment analysis, and other analysis methods. Then, we preliminarily validated the MMP3 by proteomic analysis of self-constructed model. This study pointed out the direction for further laboratory verification of key biomarkers of HL, which is of great significance for revealing the core pathogenic mechanism of HL.

  • research-article
    Baohua Li, Wenjuan Li, Yingxue Liang, Chen Zhang, Guangyao Kong, Zongfang Li
    Global Medical Genetics, 2023, 10(04): 348-356. https://doi.org/10.1055/s-0043-1777327

    Objectives Spleen is involved in multiple diseases, the role of the spleen and spleen-derived factors in hepatocellular carcinoma (HCC) is still not clarified.
    Methods In the current study, a murine H22 orthotopic hepatoma model was established. Three groups were divided: normal mice, tumor-bearing mice with spleen-preserving, and tumor-bearing mice with splenectomy. Spleen and tumor weights were recorded by weeks 1 and 2. The proportion of myeloid-derived suppressor cell (MDSC) in peripheral blood and tumor tissue was detected using flow cytometry. Protein chip assay was used to compare the differential cytokines between normal liver supernatant and tumor supernatant. The common upregulated cytokines both in spleen and tumor were focused and analyzed using gene expression profiling interactive analysis (GEPIA) database. Enzyme-linked immunosorbent assay was performed to verify the chip result, and to examine CCL9 expression before and after splenectomy. Spleen MDSC was sorted using flow cytometry, and chemotaxis assay was performed to demonstrate whether CCL9 attracted spleen MDSC.
    Results The spleen enlarged during tumor progression, and compared with splenectomy group, there were faster tumor growth, shorter survival time, and higher proportions of MDSC in spleen-preserving group. Protein chip assay and GEPIA database revealed CCL9 was the most promising chemokine involved in HCC upregulated both in spleen and tumor tissue. CCL9 attracted MDSC in vitro, the level of CCL9 in tumor tissue was downregulated, and the percentage of MDSC was decreased after splenectomy.
    Conclusion The results demonstrate that CCL9 may be derived from spleen; it facilitated HCC growth via the chemotaxis of MDSC, targeting CCL9 may be a promising strategy in HCC treatment.

  • research-article
    A. Di Nora, G. Pellino, A. Di Mari, F. Scarlata, F. Greco, P. Pavone
    Global Medical Genetics, 2023, 10(04): 345-347. https://doi.org/10.1055/s-0043-1777275

    In the clinical practice, it is not common for pediatricians to visit children with overgrowth phenotype. When it happens, it is important to focus on the age of manifestations and research the pathogenic causes using appropriate genetic test. Cowden syndrome is one of these rare causes; it is an autosomal dominant genodermatosis characterized by multiple hamartomas of ectodermal, mesodermal, and endodermal origin. It is caused by loss of function mutations in the phosphatase and tensin homolog (PTEN) gene located on chromosome 10q23.1 Loss of function of the PTEN gene contributes to overgrowth and risk for a variety of cancers including breast, thyroid, endometrium, skin, kidneys, and colon. The early diagnosis of Cowden disease allows a careful monitoring of the patients who are facing the risk of cancer transformation, which is the principal complication of the condition.

  • research-article
    Mehran Radak, Hossein Fallahi
    Global Medical Genetics, 2023, 10(04): 339-344. https://doi.org/10.1055/s-0043-1777072

    This review article discusses the epigenetic regulation of quiescent stem cells. Quiescent stem cells are a rare population of stem cells that remain in a state of cell cycle arrest until activated to proliferate and differentiate. The molecular signature of quiescent stem cells is characterized by unique epigenetic modifications, including histone modifications and deoxyribonucleic acid (DNA) methylation. These modifications play critical roles in regulating stem cell behavior, including maintenance of quiescence, proliferation, and differentiation. The article specifically focuses on the role of histone modifications and DNA methylation in quiescent stem cells, and how these modifications can be dynamically regulated by environmental cues. The future perspectives of quiescent stem cell research are also discussed, including their potential for tissue repair and regeneration, their role in aging and age-related diseases, and their implications for cancer research. Overall, this review provides a comprehensive overview of the epigenetic regulation of quiescent stem cells and highlights the potential of this research for the development of new therapies in regenerative medicine, aging research, and cancer biology.