Progress in recyclable chemicals for sustainable ex-situ CO2 mineralisation

Song Zhou , Liang Li , Long Ji , Baiqian Dai , Ziliang Wang , Emad Benhelal , Nanthi S. Bolan , Paul Feron , Hai Yu

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (3) : 100087

PDF (3562KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (3) : 100087 DOI: 10.1016/j.gerr.2024.100087
Reviews
research-article

Progress in recyclable chemicals for sustainable ex-situ CO2 mineralisation

Author information +
History +
PDF (3562KB)

Abstract

The 21st century grapples with rising atmospheric CO2 and anthropogenic solid waste. Ex-situ CO2 mineralisation, converting CO2 into stable carbonates via reacting with solid waste, shows great promise. However, concerns over the extensive consumption of chemicals urge sustainable and recyclable alternatives. This paper critically reviews recyclable chemicals for CO2 mineralisation with various industrial solid wastes, and systematically examines their efficacy and reaction mechanisms. This study offers a comprehensive comparison of these chemicals and outlines clear future research directions.

The main findings are briefed below: first, we emphasize the pivotal role of trapping and recycling NH3 gas for achieving effective and efficient CO2 mineralisation using ammonium salts. Second, scaling up amines-based mineralisation could be feasible by replacing conventional strippers with mineralisation units. This transition is contingent upon resolving technical challenges such as amines' low leaching capacity and limited applicability to solid feedstocks that contain water-soluble Ca/Mg-bearing species. Third, leveraging their unique zwitterionic structures, amino acids may cater to diverse industrial needs and achieve a satisfactory CO2 mineralisation efficiency with good recyclability at low temperatures. Fourth, a novel HCl regeneration technology known as ‘oxy-pyrohydrolysis,’ can achieve simultaneous CO2 mineralisation and HCl regeneration in a single step. However, both amino acids-based mineralisation and oxy-pyrohydrolysis are nascent technologies requiring further research to ascertain their applicability and advance their development. Fifth, despite employing recyclable chemicals, operational costs of mineralisation could remain significant when high temperatures are used. Thus, energy optimization strategies should be explored, such as exploring low-energy consumption chemicals and integrating waste energy harvesting units. This review paper aims to delineate potential avenues for cost-effective CO2 mineralisation facilitated by recyclable chemicals, thereby alleviating post-processing costs and environmental concerns associated with chemical residues.

Keywords

Permanent carbon storage / Ex-situ CO2 mineralisation / Carbon capture and utilisation (CCU) / Alkaline solid wastes / Recyclable chemicals

Cite this article

Download citation ▾
Song Zhou, Liang Li, Long Ji, Baiqian Dai, Ziliang Wang, Emad Benhelal, Nanthi S. Bolan, Paul Feron, Hai Yu. Progress in recyclable chemicals for sustainable ex-situ CO2 mineralisation. Green Energy and Resources, 2024, 2(3): 100087 DOI:10.1016/j.gerr.2024.100087

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

Data will be made available on request.

CRediT authorship contribution statement

Song Zhou: Writing - original draft, Project administration, Methodology, Investigation, Funding acquisition, Data curation, Conceptualization. Liang Li: Writing - review & editing. Long Ji: Writing - review & editing. Baiqian Dai: Writing - review & editing. Ziliang Wang: Writing - review & editing. Emad Benhelal: Writing - review & editing. Nanthi S. Bolan: Writing - review & editing. Paul Feron: Writing - review & editing, Supervision. Hai Yu: Writing - review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The financial support from the CSIRO (Commonwealth Scientific and Industrial Research Organisation)'s CarbonLock Future Science Platform (FSP) is sincerely acknowledged.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gerr.2024.100087.

References

[1]

Agency, I.E., 2021. Cumulative emissions reduction by mitigation measure. In: The Net Zero Scenario, pp.2021-2050.

[2]

Al Kalbani, M., Serati, M., Hofmann, H., Bore, T., 2023. A comprehensive review of enhanced in-situ CO2 mineralisation in Australia and New Zealand. Int. J. Coal Geol. 104316. https://doi.org/10.1016/j.coal.2023.104316.

[3]

Argiz, C., Moragues, A., Menéndez, E., 2018. Use of ground coal bottom ash as cement constituent in concretes exposed to chloride environments. J. Clean. Prod. 170, 25-33. https://doi.org/10.1016/j.jclepro.2017.09.117.

[4]

Association, A.C.A., 2021. News-Release-Coal-Ash-Production-and-Use-2021.

[5]

Atashin, S., Wen, J.Z., Varin, R.A., 2016. Optimizing milling energy for enhancement of solid-state magnesium sulfate (MgSO4) thermal extraction for permanent CO2 storage. RSC Adv. 6 (73), 68860-68869. https://doi.org/10.1039/c6ra12526c.

[6]

Bang, J.-H., Chae, S.C., Lee, S.-W., Kim, J.-W., Song, K., Kim, J., Kim, W., 2019. Sequential carbonate mineralisation of desalination brine for CO2 emission reduction. J. CO2 Util. 33, 427-433. https://doi.org/10.1016/j.jcou.2019.07.020.

[7]

Bilen, M., Altiner, M., Yildirim, M., 2017. Evaluation of steelmaking slag for CO2 fixation by leaching-carbonation process. Part. Sci. Technol. 36 (3), 368-377. https://doi.org/10.1080/02726351.2016.1267285.

[8]

Chen, J., Fu, C., Mao, T., Shen, Y., Li, M., Lin, X., Li, X., Yan, J., 2022. Study on the accelerated carbonation of MSWI fly ash under ultrasonic excitation: CO2 capture, heavy metals solidification, mechanism and geochemical modelling. Chem. Eng. J. 450, 138418. https://doi.org/10.1016/j.cej.2022.138418.

[9]

Chen, Q., Ding, W., Sun, H., Peng, T., Ma, G., 2020. Utilisation of phosphogypsum to prepare high-purity CaCO3 in the NH4Cl-NH4OH-CO2 system. ACS Sustain. Chem. Eng. 8 (31), 11649-11657. https://doi.org/10.1021/acssuschemeng.0c03070.

[10]

Choo, T.K., Cashion, J., Selomulya, C., Zhang, L., 2016. Reductive leaching of iron and magnesium out of magnesioferrite from victorian Brown coal fly ash. Energy Fuels. https://doi.org/10.1021/acs.energyfuels.5b01979.

[11]

Chu, G., Li, C., Liu, W., Zhang, G., Yue, H., Liang, B., Wang, Y., Luo, D., 2019a. Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high valueadded products through a completely wet process. Energy 166, 1314-1322. https://doi.org/10.1016/j.energy.2018.10.128.

[12]

Chu, G., Wang, L., Liu, W., Zhang, G., Luo, D., Wang, L., Liang, B., Li, C., 2019b. Indirect mineral carbonation of chlorinated tailing derived from Ti-bearing blast-furnace slag coupled with simultaneous dechlorination and recovery of multiple value-added products. Greenhouse Gases: Sci. Technol. 9 (1), 52-66. https://doi.org/10.1002/ghg.1832.

[13]

Dai, S., Zhu, H., Zhang, D., Liu, Z., Cheng, S., Zhao, J., 2022. Insights to compressive strength, impermeability and microstructure of micro-expansion steel slag cement under constraint conditions. Construct. Build. Mater. 326, 126540. https://doi.org/10.1016/j.conbuildmat.2022.126540.

[14]

Dass, A., Mishra, A.K., Santos, G.A.d.A., Ranjan, R.K., 2024. Spatio-temporal variation of atmospheric CO2 and its association with anthropogenic, vegetation, and climate indices over the state of Bihar, India. Environ. Adv. 16, 100513. https://doi.org/10.1016/j.envadv.2024.100513.

[15]

Desport, L., Selosse, S., 2022. An overview of CO2 capture and utilisation in energy models. Resour. Conserv. Recycl. 180, 106150. https://doi.org/10.1016/j.resconrec.2021.106150.

[16]

Ding, W., Qiao, J., Zeng, L., Sun, H., Peng, T., 2023. Desulfurization gypsum carbonation for CO2 sequestration by using recyclable ammonium salt. Int. J. Greenh. Gas Control 123. https://doi.org/10.1016/j.ijggc.2023.103843.

[17]

Dri, M., Sanna, A., Maroto-Valer, M.M., 2013. Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation. Fuel Process. Technol. 113, 114-122. https://doi.org/10.1016/j.fuproc.2013.03.034.

[18]

Dutcher, B., Fan, M., Russell, A.G., 2015. Amine-based CO2 capture technology development from the beginning of 2013-A Review. ACS Appl. Mater. Interfaces 7 (4), 2137-2148. https://doi.org/10.1021/am507465f.

[19]

Fagerlund, J., Nduagu, E., Rom-ao, I., Zevenhoven, R., 2012. CO2 fixation using magnesium silicate minerals part 1: process description and performance. Energy 41 (1), 184-191. https://doi.org/10.1016/j.energy.2011.08.032.

[20]

Farabi-Asl, H., Itaoka, K., Chapman, A., Kato, E., Kurosawa, A., 2020. Key factors for achieving emission reduction goals cognizant of CCS. Int. J. Greenh. Gas Control 99, 103097. https://doi.org/10.1016/j.ijggc.2020.103097.

[21]

Fu, L., Ren, Z., Si, W., Ma, Q., Huang, W., Liao, K., Huang, Z., Wang, Y., Li, J., Xu, P., 2022. Research progress on CO2 capture and utilisation technology. J. CO2 Util. 66, 102260. https://doi.org/10.1016/j.jcou.2022.102260.

[22]

García-Luna, S., Ortiz, C., 2024. Partial oxycombustion and amines-driven waste-tomethane for improved carbon capture and utilisation (CCU). Energy Convers. Manag. 302, 118125. https://doi.org/10.1016/j.enconman.2024.118125.

[23]

Ghiat, I., Al-Ansari, T., 2021. A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. J. CO2 Util. 45, 101432. https://doi.org/10.1016/j.jcou.2020.101432.

[24]

Gong, Y., Zhu, X., Yang, Z., Zhang, X., Li, C., 2022. Indirect aqueous carbonation of CaSO4.2H2O with aspartic acid as a recyclable additive. RSC Adv. 12 (41), 26556-26564. https://doi.org/10.1039/d2ra03763g.

[25]

Guo, B., Zhao, T., Sha, F., Zhang, F., Li, Q., Zhao, J., Zhang, J., 2017. Synthesis of vaterite CaCO3 micro-spheres by carbide slag and a novel CO2-storage material. J. CO2 Util. 18, 23-29. https://doi.org/10.1016/j.jcou.2017.01.004.

[26]

Han, Z., Gao, J., Yuan, X., Zhong, Y., Ma, X., Chen, Z., Luo, D., Wang, Y., 2020. Microwave roasting of blast furnace slag for carbon dioxide mineralisation and energy analysis. RSC Adv. 10 (30), 17836-17844. https://doi.org/10.1039/d0ra02846k.

[27]

He, L., Yu, D., Lv, W., Wu, J., Xu, M., 2013. A novel method for CO2 sequestration via indirect carbonation of coal fly ash. Ind. Eng. Chem. Res. 52 (43), 15138-15145. https://doi.org/10.1021/ie4023644.

[28]

Heldebrant, D.J., Kothandaraman, J., Mac Dowell, N., Brickett, L., 2022. Next steps for solvent-based CO2 capture; integration of capture, conversion, and mineralisation. Chem. Sci. 13 (22), 6445-6456. https://doi.org/10.1039/D2SC00220E.

[29]

Hosseini, T., Daneshpayeh, M., Selomulya, C., Haque, N., Zhang, L., 2017. Chemical kinetic modeling and parameter sensitivity analysis for the carbonation of Ca2t and Mg2t under ambient conditions. Hydrometallurgy 167, 141-152. https://doi.org/10.1016/j.hydromet.2016.11.003.

[30]

Hosseini, T., Selomulya, C., Haque, N., Zhang, L., 2014. Indirect carbonation of victorian Brown coal fly ash for CO2 sequestration: multiple-cycle leaching-carbonation and magnesium leaching kinetic modeling. Energy Fuels 28 (10), 6481-6493. https://doi.org/10.1021/ef5014314.

[31]

Hosseini, T., Selomulya, C., Haque, N., Zhang, L., 2015. Investigating the effect of the Mg 2 t/Ca2t molar ratio on the carbonate speciation during the mild mineral carbonation process at atmospheric pressure. Energy Fuels 29 (11), 7483-7496. https://doi.org/10.1021/acs.energyfuels.5b01609.

[32]

Hu, J., Liu, W., Wang, L., Liu, Q., Chen, F., Yue, H., Liang, B., L., Wang, Y., Zhang, G., Li, C., 2017. Indirect mineral carbonation of blast furnace slag with (NH4)2SO4 as a recyclable extractant. J. Energy Chem. 26 (5), 927-935. https://doi.org/10.1016/j.jechem.2017.06.009.

[33]

Huang, Y., Zheng, X., Wei, Y., He, Q., Yan, S., Ji, L., 2022. Protonated amines mediated CO2 mineralisation of coal fly ash and polymorph selection of CaCO3. Chem. Eng. J. 450, 138121. https://doi.org/10.1016/j.cej.2022.138121.

[34]

Ji, L., Yu, H., Li, K., Yu, B., Grigore, M., Yang, Q., Wang, X., Chen, Z., Zeng, M., Zhao, S., 2018. Integrated absorption-mineralisation for low-energy CO2 capture and sequestration. Appl. Energy 225, 356-366. https://doi.org/10.1016/j.apenergy.2018.04.108.

[35]

Ji, L., Yu, H., Wang, X., Grigore, M., French, D., Gözükara, Y.M., Yu, J., Zeng, M., 2017. CO2 sequestration by direct mineralisation using fly ash from Chinese Shenfu coal. Fuel Process. Technol. 156, 429-437. https://doi.org/10.1016/j.fuproc.2016.10.004.

[36]

Ji, L., Yu, H., Zhang, R., French, D., Grigore, M., Yu, B., Wang, X., Yu, J., Zhao, S., 2019. Effects of fly ash properties on carbonation efficiency in CO2 mineralisation. Fuel Process. Technol. 188, 79-88. https://doi.org/10.1016/j.fuproc.2019.01.015.

[37]

Ji, L., Zheng, X., Zhang, L., Feng, L., Li, K., Yu, H., Yan, S., 2022. Feasibility and mechanism of an amine-looping process for efficient CO2 mineralisation using alkaline ashes. Chem. Eng. J. 430, 133118. https://doi.org/10.1016/j.cej.2021.133118.

[38]

Jo, H., Jo, H.Y., Jang, Y.N., 2012a. Effect of extraction solutions on carbonation of cementitious materials in aqueous solutions. Environ. Technol. 33 (10-12), 1391-1401. https://doi.org/10.1080/09593330.2011.630422.

[39]

Jo, H., Park, S.-H., Jang, Y.-N., Chae, S.-C., Lee, P.-K., Jo, H.Y., 2014. Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions. Chem. Eng. J. 254, 313-323. https://doi.org/10.1016/j.cej.2014.05.129.

[40]

Jo, H.Y., Ahn, J.H., Jo, H., 2012b. Evaluation of the CO2 sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions. J. Hazard Mater. 241-242, 127-136. https://doi.org/10.1016/j.jhazmat.2012.09.020.

[41]

Kamkeng, A.D.N., Wang, M., Hu, J., Du, W., Qian, F., 2021. Transformation technologies for CO2 utilisation: current status, challenges and future prospects. Chem. Eng. J. 409, 128138. https://doi.org/10.1016/j.cej.2020.128138.

[42]

Kang, J.M., Murnandari, A., Youn, M.H., Lee, W., Park, K.T., Kim, Y.E., Kim, H.J., Kang, S.-P., Lee, J.-H., Jeong, S.K., 2018. Energy-efficient chemical regeneration of AMP using calcium hydroxide for operating carbon dioxide capture process. Chem. Eng. J. 335, 338-344. https://doi.org/10.1016/j.cej.2017.10.136.

[43]

Kawai, E., Ozawa, A., Leibowicz, B.D., 2022. Role of carbon capture and utilisation (CCU) for decarbonization of industrial sector: a case study of Japan. Appl. Energy 328, 120183. https://doi.org/10.1016/j.apenergy.2022.120183.

[44]

Kelemen, P., Benson, S.M., Pilorgé H., Psarras, P., Wilcox, J., 2019. An overview of the status and challenges of CO2 storage in minerals and geological formations. Front. Clim. 1, 482595. https://doi.org/10.3389/fclim.2019.00009.

[45]

Kodama, S., Nishimoto, T., Yamamoto, N., Yogo, K., Yamada, K., 2008. Development of a new pH-swing CO2 mineralisation process with a recyclable reaction solution. Energy 33 (5), 776-784. https://doi.org/10.1016/j.energy.2008.01.005.

[46]

Koivisto, E., Erlund, R., Fagerholm, M., Zevenhoven, R., 2016. Extraction of magnesium from four Finnish magnesium silicate rocks for CO 2 mineralisation - Part 1: thermal solid/solid extraction. Hydrometallurgy 166, 222-228. https://doi.org/10.1016/j.hydromet.2016.07.005.

[47]

La Plante, E.C., Simonetti, D.A., Wang, J., Al-Turki, A., Chen, X., Jassby, D., Sant, G.N., 2021. Saline water-based mineralisation pathway for gigatonne-scale CO2 management. ACS Sustain. Chem. Eng. 9 (3), 1073-1089. https://doi.org/10.1021/acssuschemeng.0c08561.

[48]

Lavikko, S., Eklund, O., 2016. The significance of the serpentinite characteristics in mineral carbonation by “the ÅA Route”. Int. J. Miner. Process. 152, 7-15. https://doi.org/10.1016/j.minpro.2016.04.009.

[49]

Lee, J.S., Choi, E.C., 2018. CO2 leakage environmental damage cost - a CCS project in South Korea. Renew. Sustain. Energy Rev. 93, 753-758. https://doi.org/10.1016/j.rser.2018.04.074.

[50]

Lee, S., Kim, J.-W., Chae, S., Bang, J.-H., Lee, S.-W., 2016. CO2 sequestration technology through mineral carbonation: an extraction and carbonation of blast slag. J. CO2 Util. 16, 336-345. https://doi.org/10.1016/j.jcou.2016.09.003.

[51]

Li, L., Yu, H., Zhou, S., Dao, V., Chen, M., Ji, L., Benhelal, E., 2023. Activation and utilisation of tailings as CO2 mineralisation feedstock and supplementary cementitious materials: a critical review. Mater. Today Sustain. 24, 100530. https://doi.org/10.1016/j.mtsust.2023.100530.

[52]

Li, W., Huang, Y., Wang, T., Fang, M., Li, Y., 2022a. Preparation of calcium carbonate nanoparticles from waste carbide slag based on CO2 mineralisation. J. Clean. Prod. 363. https://doi.org/10.1016/j.jclepro.2022.132463.

[53]

Li, W., Wang, T., Yang, Y., Fang, M., Gao, X., 2022b. Calcium recovery from waste carbide slag via ammonium sulfate leaching system. J. Clean. Prod. 377. https://doi.org/10.1016/j.jclepro.2022.134308.

[54]

Li, X., Wang, S., Li, L., Sun, Y., Xie, Y., 2020. Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 142 (21), 9567-9581. https://doi.org/10.1021/jacs.0c02973.

[55]

Li, Y., Su, M., Xie, X., Wu, S., Liu, C., 2015. CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis. Appl. Energy 145, 60-68. https://doi.org/10.1016/j.apenergy.2015.01.061.

[56]

Liang, Z., Fu, K., Idem, R., Tontiwachwuthikul, P., 2016. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents. Chin. J. Chem. Eng. 24 (2), 278-288. https://doi.org/10.1016/j.cjche.2015.06.013.

[57]

Liu, C., Zhou, S., Liu, Y., Yu, D., Zhang, L., 2024. Kinetics of silica-assisted pyro-hydrolysis of CaCl 2 waste for the recovery of hydrochloric acid (HCl): effect of interaction between CaCl2 and SiO2. Chem. Eng. J. 480, 147929. https://doi.org/10.1016/j.cej.2023.147929.

[58]

Liu, C., Zhou, S., Yu, D., Etschmann, B., Zhang, L., 2023a. Flowsheet modelling and techno-economic analysis of CO2 capture coupled pyro-hydrolysis of CaCl2 waste for HCl acid regeneration. J. Clean. Prod. 419, 138195. https://doi.org/10.1016/j.jclepro.2023.138195.

[59]

Liu, J., Chen, H., Zhao, S., Pan, P., Wu, L., Xu, G., 2023b. Evaluation and improvements on the flexibility and economic performance of a thermal power plant while applying carbon capture, utilisation & storage. Energy Convers. Manag. 290, 117219. https://doi.org/10.1016/j.enconman.2023.117219.

[60]

Liu, W., Teng, L., Rohani, S., Qin, Z., Zhao, B., Xu, C.C., Ren, S., Liu, Q., Liang, B., 2021. CO2 mineral carbonation using industrial solid wastes: a review of recent developments. Chem. Eng. J. 416, 129093. https://doi.org/10.1016/j.cej.2021.129093.

[61]

Marín, O., Valderrama, J.O., Kraslawski, A., Cisternas, L.A., 2021. Potential of tailing deposits in Chile for the sequestration of carbon dioxide produced by power plants using ex-situ mineral carbonation. Minerals 11 (3), 320. https://doi.org/10.3390/min11030320.

[62]

Martínez García, D.E., 2018. Technical and Economic Evaluation for Two Process Alternatives of CO2 Mineralisation Technology Using Electric Arc Furnace Slag as Raw Material. 266632-CONACYT-SENER-S0019201401. https://doi.org/10.3389/fenrg.2020.00005.

[63]

Mehdizadeh, H., Mo, K.H., Ling, T.-C., 2023. CO2-fixing and recovery of high-purity vaterite CaCO3 from recycled concrete fines. Resour. Conserv. Recycl. 188. https://doi.org/10.1016/j.resconrec.2022.106695.

[64]

Miao, E., Du, Y., Zheng, X., Zhang, X., Xiong, Z., Zhao, Y., Zhang, J., 2023. CO2 sequestration by direct mineral carbonation of municipal solid waste incinerator fly ash in ammonium salt solution: performance evaluation and reaction kinetics. Separ. Purif. Technol. 309. https://doi.org/10.1016/j.seppur.2023.123103.

[65]

Moon, S., Kim, E., Noh, S., Triwigati, P.T., Choi, S., Park, Y., 2024. Carbon mineralisation of steel and iron-making slag: paving the way for a sustainable and carbon-neutral future. J. Environ. Chem. Eng., 112448 https://doi.org/10.1016/j.jece.2024.112448.

[66]

Mun, M., Cho, H., Kwon, J., 2017a. Study on characteristics of various extractants for mineral carbonation of industrial wastes. J. Environ. Chem. Eng. 5 (4), 3803-3821. https://doi.org/10.1016/j.jece.2017.05.048.

[67]

Mun, M., Cho, H., Kwon, J., Kim, K., Kim, R., 2017b. Investigation of the CO2 sequestration by indirect aqueous carbonation of waste cement. Am. J. Clim. Change 6 (1), 132-150. https://doi.org/10.4236/ajcc.2017.61008.

[68]

Paltsev, S., Morris, J., Kheshgi, H., Herzog, H., 2021. Hard-to-Abate Sectors: the role of industrial carbon capture and storage (CCS) in emission mitigation. Appl. Energy 300, 117322. https://doi.org/10.1016/j.apenergy.2021.117322.

[69]

Park, A.-H.A., Fan, L.-S., 2004. CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chem. Eng. Sci. 59 (22), 5241-5247. https://doi.org/10.1016/j.ces.2004.09.008.

[70]

Park, S., 2018. CO2 reduction-conversion to precipitates and morphological control through the application of the mineral carbonation mechanism. Energy 153, 413-421. https://doi.org/10.1016/j.energy.2018.04.086.

[71]

Park, S., Min, J., Lee, M.-G., Jo, H., Park, J., 2013. Characteristics of CO2 fixation by chemical conversion to carbonate salts. Chem. Eng. J. 231, 287-293. https://doi.org/10.1016/j.cej.2013.07.032.

[72]

Paulo, C., Power, I.M., Stubbs, A.R., Wang, B., Zeyen, N., Wilson, S., 2021. Evaluating feedstocks for carbon dioxide removal by enhanced rock weathering and CO2 mineralisation. Appl. Geochem. 129, 104955. https://doi.org/10.1016/j.apgeochem.2021.104955.

[73]

Ramezani, R., Mazinani, S., Di Felice, R., 2022. State-of-the-art of CO2 capture with amino acid salt solutions. Rev. Chem. Eng. 38 (3), 273-299. https://doi.org/10.1515/revce-2020-0012.

[74]

Romanov, V., Soong, Y., Carney, C., Rush, G.E., Nielsen, B., O'Connor, W., 2015. Mineralisation of carbon dioxide: a literature review. ChemBioEng Rev. 2 (4), 231-256. https://doi.org/10.1002/cben.201500002.

[75]

Rom-ao, I.S., Gando-Ferreira, L.M., da Silva, M.M.V.G., Zevenhoven, R., 2016. CO2 sequestration with serpentinite and metaperidotite from Northeast Portugal. Miner. Eng. 94, 104-114. https://doi.org/10.1016/j.mineng.2016.05.009.

[76]

Roques, H., Girou, A., 1974. Kinetics of the formation conditions of carbonate tartars. Water Res. 8 (11), 907-920. https://doi.org/10.1016/0043-1354(74)90105-5.

[77]

Rosa, L., Becattini, V., Gabrielli, P., Andreotti, A., Mazzotti, M., 2022. Carbon dioxide mineralisation in recycled concrete aggregates can contribute immediately to carbonneutrality. Resour. Conserv. Recycl. 184, 106436. https://doi.org/10.1016/j.resconrec.2022.106436.

[78]

Rubin, E.S., Davison, J.E., Herzog, H.J., 2015. The cost of CO2 capture and storage. Int. J. Greenh. Gas Control 40, 378-400. https://doi.org/10.1016/j.ijggc.2015.05.018.

[79]

Said, A., Mattila, H.-P., Järvinen, M., Zevenhoven, R., 2013. Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Appl. Energy 112, 765-771. https://doi.org/10.1016/j.apenergy.2012.12.042.

[80]

Sang Sefidi, V., Luis, P., 2019. Advanced amino acid-based technologies for CO2 capture: a review. Ind. Eng. Chem. Res. 58 (44), 20181-20194. https://doi.org/10.1021/acs.iecr.9b01793.

[81]

Sanna, A., Dri, M., Maroto-Valer, M., 2013. Carbon dioxide capture and storage by pH swing aqueous mineralisation using a mixture of ammonium salts and antigorite source. Fuel 114, 153-161. https://doi.org/10.1016/j.fuel.2012.08.014.

[82]

Sanna, A., Gaubert, J., Maroto-Valer, M.M., 2016. Alternative regeneration of chemicals employed in mineral carbonation towards technology cost reduction. Chem. Eng. J. 306, 1049-1057. https://doi.org/10.1016/j.cej.2016.08.039.

[83]

Sanna, A., Lacinska, A., Styles, M., Maroto-Valer, M.M., 2014. Silicate rock dissolution by ammonium bisulphate for pH swing mineral CO2 sequestration. Fuel Process. Technol. 120, 128-135. https://doi.org/10.1016/j.fuproc.2013.12.012.

[84]

Sanni, Eloneva, Teir, S., Salminen, J., Fogelholm, C.-J., Zevenhoven, R., 2008. Steel converter slag as a raw material for precipitation of pure calcium carbonate. Ind. Eng. Chem. Res. https://doi.org/10.1021/ie8004034.

[85]

Skocek, J., Zajac, M., Ben Haha, M., 2020. Carbon Capture and Utilisation by mineralisation of cement pastes derived from recycled concrete. Sci. Rep. 10 (1), 1-12. https://doi.org/10.1038/s41598-020-62503-z.

[86]

Snæbjörnsdóttir, S.Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S.R., Oelkers, E.H., 2020. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1 (2), 90-102. https://doi.org/10.1038/s43017-019-0011-8.

[87]

Soong, Y., Goodman, A.L., McCarthy-Jones, J.R., Baltrus, J.P., 2004. Experimental and simulation studies on mineral trapping of CO2 with brine. Energy Convers. Manag. 45 (11), 1845-1859. https://doi.org/10.1016/j.enconman.2003.09.029.

[88]

Spínola, A.C., Pinheiro, C.T., Ferreira, A.G.M., Gando-Ferreira, L.M., 2021. Mineral carbonation of a pulp and paper industry waste for CO2 sequestration. Process Saf. Environ. Protect. 148, 968-979. https://doi.org/10.1016/j.psep.2021.02.019.

[89]

Stokreef, S., Sadri, F., Stokreef, A., Ghahreman, A., 2022. Mineral carbonation of ultramafic tailings: a review of reaction mechanisms and kinetics, industry case studies, and modelling. Cleaner Eng. Technol. 8, 100491. https://doi.org/10.1016/j.clet.2022.100491.

[90]

Sun, Y., Parikh, V., Zhang, L., 2012. Sequestration of carbon dioxide by indirect mineralisation using Victorian brown coal fly ash. J. Hazard Mater. 209-210, 458-466. https://doi.org/10.1016/j.jhazmat.2012.01.053.

[91]

Sun, Y., Yao, M.-S., Zhang, J.-P., Yang, G., 2011. Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chem. Eng. J. 173 (2), 437-445. https://doi.org/10.1016/j.cej.2011.08.002.

[92]

Sun, Y., Zhang, J.P., Zhang, L., 2016. NH4Cl selective leaching of basic oxygen furnace slag: optimization study using response surface methodology. Environ. Prog. Sustain. Energy 35 (5), 1387-1394. https://doi.org/10.1002/ep.12365.

[93]

Wang, F., Dreisinger, D., 2022a. Carbon mineralisation with concurrent critical metal recovery from olivine. Proc. Natl. Acad. Sci. USA 119 (32), e2203937119. https://doi.org/10.1073/pnas.2203937119.

[94]

Wang, F., Dreisinger, D., 2022b. Status of CO2 mineralisation and its utilisation prospects. Miner. Miner. Mater. 1 (4). https://doi.org/10.20517/mmm.2022.02.

[95]

Wang, L., Liu, W., Hu, J., Liu, Q., Yue, H., Liang, B., Zhang, G., Luo, D., Xie, H., Li, C., 2018. Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3. Chin. J. Chem. Eng. 26 (3), 583-592. https://doi.org/10.1016/j.cjche.2017.06.012.

[96]

Wang, W., 2023. Green energy and resources: advancing green and low-carbon development. Green Energy Res. 1 (1), 100009. https://doi.org/10.1016/j.gerr.2023.100009.

[97]

Wang, X., Maroto-Valer, M.M., 2011. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation. Fuel 90 (3), 1229-1237. https://doi.org/10.1016/j.fuel.2010.10.040.

[98]

Wang, X., Maroto-Valer, M.M., 2013. Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts. Energy 51, 431-438. https://doi.org/10.1016/j.energy.2013.01.021.

[99]

Wang, Y., Ye, B., Hong, Z., Wang, Y., Liu, M., 2020. Uniform calcite mircro/nanorods preparation from carbide slag using recyclable citrate extractant. J. Clean. Prod. 253, 119930. https://doi.org/10.1016/j.jclepro.2019.119930.

[100]

Wu, B., Wang, H., Li, C., Tian, Y., Gong, Y., Wang, Y., 2023. Rapid Tyrosine-Mediated Indirect Aqueous-phase Mineralisation of CaSO 4 2H2O via Co-precipitation. https://doi.org/10.2139/ssrn.4570071.

[101]

Xiong, Y., Aldahri, T., Liu, W., Chu, G., Zhang, G., Luo, D., Yue, H., Liang, B., Li, C., 2020. Simultaneous preparation of TiO2 and ammonium alum, and microporous SiO2 during the mineral carbonation of titanium-bearing blast furnace slag. Chin. J. Chem. Eng. 28 (9), 2256-2266. https://doi.org/10.1016/j.cjche.2020.03.020.

[102]

Xu, X., Liu, W., Chu, G., Zhang, G., Luo, D., Yue, H., Liang, B., Li, C., 2019. Energyefficient mineral carbonation of CaSO4 derived from wollastonite via a roastingleaching route. Hydrometallurgy 184, 151-161. https://doi.org/10.1016/j.hydromet.2019.01.004.

[103]

Yang, N., Kang, F., Zhang, K., Zhou, Y., Lin, W.-F., 2023. A strategy for CO2 capture and utilisation towards methanol production at industrial scale: an integrated highly efficient process based on multi-criteria assessment. Energy Convers. Manag. 293, 117516. https://doi.org/10.1016/j.enconman.2023.117516.

[104]

Yu, B., Li, K., Ji, L., Yang, Q., Jiang, K., Megharaj, M., Yu, H., Chen, Z., 2019. Coupling a sterically hindered amine-based absorption and coal fly ash triggered amine regeneration: a high energy-saving process for CO2 absorption and sequestration. Int. J. Greenh. Gas Control 87, 58-65. https://doi.org/10.1016/j.ijggc.2019.05.006.

[105]

Zevenhoven, R., Slotte, M., Åbacka, J., Highfield, J., 2016. A comparison of CO2 mineral sequestration processes involving a dry or wet carbonation step. Energy 117, 604-611. https://doi.org/10.1016/j.energy.2016.05.066.

[106]

Zevenhoven, R., Slotte, M., Koivisto, E., Erlund, R., 2017. Serpentinite carbonation process routes using ammonium sulfate and integration in industry. Energy Technol. 5 (6), 945-954. https://doi.org/10.1002/ente.201600702.

[107]

Zhang, H.-n., Xu, A.-j., He, D.-f., Cui, J., 2013. Alkaline extraction characteristics of steelmaking slag batch in NH4Cl solution under environmental pressure. J. Cent. S. Univ. 20 (6), 1482-1489. https://doi.org/10.1007/s11771-013-1638-0.

[108]

Zhang, Y., Wang, Y., Han, K., Zhao, J., Wu, J.J., Li, Y., 2024. Calcium looping for CO2 capture and thermochemical heat storage, a potential technology for carbon neutrality: a review. Green Energy and Resources, 100078.

[109]

Zhang, Z., Pan, S.-Y., Li, H., Cai, J., Olabi, A.G., Anthony, E.J., Manovic, V., 2020. Recent advances in carbon dioxide utilisation. Renew. Sustain. Energy Rev. 125, 109799. https://doi.org/10.1016/j.rser.2020.109799.

[110]

Zhao, H., Park, Y., Lee, D.H., Park, A.H., 2013. Tuning the dissolution kinetics of wollastonite via chelating agents for CO2 sequestration with integrated synthesis of precipitated calcium carbonates. Phys. Chem. Chem. Phys. 15 (36), 15185-15192. https://doi.org/10.1039/c3cp52459k.

[111]

Zheng, X., Liu, J., Wang, Y., Wang, Y., Ji, L., Yan, S., 2023a. Regenerable glycine induces selective preparation of vaterite CaCO3 by calcium leaching and CO2 mineralisation from coal fly ash. Chem. Eng. J. 459. https://doi.org/10.1016/j.cej.2023.141536.

[112]

Zheng, X., Liu, J., Wang, Y., Wang, Y., Ji, L., Yan, S., 2023b. Regenerable glycine induces selective preparation of vaterite CaCO3 by calcium leaching and CO2 mineralisation from coal fly ash. Chem. Eng. J. 459, 141536. https://doi.org/10.1016/j.cej.2023.141536.

[113]

Zheng, X., Liu, J., Wei, Y., Li, K., Yu, H., Wang, X., Ji, L., Yan, S., 2022. Glycine-mediated leaching-mineralisation cycle for CO2 sequestration and CaCO3 production from coal fly ash: dual functions of glycine as a proton donor and receptor. Chem. Eng. J. 440, 135900. https://doi.org/10.1016/j.cej.2022.135900.

[114]

Zhou, S., Etschmann, B., Qian, B., Liu, C., Zhang, L., 2021. Synchrotron X-ray absorption spectroscopy study of the evolution of chlorine during the pyro-hydrolysis of calcium and magnesium chloride waste. Waste Manag. 120, 608-615. https://doi.org/10.1016/j.wasman.2020.10.026.

[115]

Zhou, S., Liu, C., Zhang, L., 2020a. Critical review on the chemical reaction pathways underpinning the primary decomposition behavior of chlorine-bearing compounds under simulated municipal solid waste incineration conditions. Energy Fuels 34 (1), 1-15. https://doi.org/10.1021/acs.energyfuels.9b02958.

[116]

Zhou, S., Qian, B., Hosseini, T., De Girolamo, A., Zhang, L., 2019. Pyrohydrolysis of CaCl 2 waste for the recovery of HCl acid upon the synergistic effects from MgCl2 and silica. ACS Sustain. Chem. Eng. 7 (3), 3349-3355. https://doi.org/10.1021/acssuschemeng.8b05513.

[117]

Zhou, S., Yan, X., Liu, C., Qian, B., Zhe Liu, J., Zhang, L., 2020b. Can CO2 and steam react in the absence of electrolysis at high temperatures? ChemSusChem 13 (24), 6660-6667. https://doi.org/10.1002/cssc.202002009.

AI Summary AI Mindmap
PDF (3562KB)

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/