Green synthesis of ZnO nanoparticles and its application for methyl green dye adsorption

Segun Michael Abegunde , Matthew Ayorinde Adebayo , Emmanuel Folorunso Olasehinde

Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (2) : 100073

PDF (1814KB)
Green Energy and Resources ›› 2024, Vol. 2 ›› Issue (2) : 100073 DOI: 10.1016/j.gerr.2024.100073
Research Articles
research-article

Green synthesis of ZnO nanoparticles and its application for methyl green dye adsorption

Author information +
History +
PDF (1814KB)

Abstract

This research presents a facile and inexpensive method for synthesizing ZnO nanoparticles using Nauclea latifolia fruit extract as a bioreductant and stabilizer. The prepared particles were characterized using some analytical techniques, including X-ray diffraction (XRD) for crystallinity and phase identification, scanning electron microscopy (SEM) to study surface morphology, Fourier transform infrared (FTIR) spectroscopy for functional groups analysis, transmission electron microscopy (TEM) for grain size analysis, UV-Vis spectroscopy for optical properties, and Brunauer-Emmett-Teller (BET) for surface area analysis. XRD analysis revealed a hexagonal wurtzite structure with an average crystallite size of 14.40 nm. FTIR showed absorption peaks at 3659, 1341, and 460 cm−1, corresponding to hydroxyl, carboxylic, and Zn-O, respectively. SEM image showed an agglomerated surface morphology with a flower-like shape. TEM estimated the particle size range to be 12.54-17.35 nm. UV-Vis scanning showed a broad peak at 373 nm. BET revealed 277.420 m2/g as the specific surface area. A batch adsorption experiment conducted on the performance of the nanoparticles for methyl green (MG) removal from aqueous solution showed highest efficiency of 99.96% at 60 min agitation time and pH of 7, with 0.05 g of the ZnO NPs, confirming the efficiency of the particles. The results of adsorption modelling revealed that the adsorption data were best fit to Freundlich isotherm and general-order kinetic models. Thermodynamic investigation confirmed the adsorption process as spontaneous, feasible, endothermic, and physical. Finally, the simplicity of the synthesis method and the performance evaluation of the ZnO nanoparticles indicate that an efficient and cost-effective adsorbent for MG recovery from aqueous solution has been successfully prepared.

Keywords

ZnO nanoparticles / Nauclea latifolia / Methyl green / Isotherm / Kinetic

Cite this article

Download citation ▾
Segun Michael Abegunde, Matthew Ayorinde Adebayo, Emmanuel Folorunso Olasehinde. Green synthesis of ZnO nanoparticles and its application for methyl green dye adsorption. Green Energy and Resources, 2024, 2(2): 100073 DOI:10.1016/j.gerr.2024.100073

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Segun Michael Abegunde: Conceptualization, Investigation, Writing - original draft. Matthew Ayorinde Adebayo: Supervision, Writing - review & editing. Emmanuel Folorunso Olasehinde: Project administration, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors acknowledge TETfund, Nigeria, in providing financial assistance for this work.

References

[1]

Abdulrahman, N.A., Rotibi, A., Abegunde, S.M., 2020. Surface modification and characterization of carbonized Raphia taedigera seed for the adsorption of Pb2t from aqueous solution. Int. J. Sci. Res. Publ 10 (9), 164-177.

[2]

Abegunde, S.M., Idowu, K.S., 2023. Enhanced adsorption of methylene blue dye from water by alkali-treated activated carbon. Eurasi. J. Sci. Tech. 3 (3), 109-124. https://doi.org/10.48309/ejst.2023.379937.1078.

[3]

Abegunde, S.M., Idowu, K.S., Adejuwon, O.M., Adeyemi-Adejolu, T., 2020. A review on the influence of chemical modification on the performance of adsorbents. Resour. Environ. Sustain. 1, 100001.

[4]

Abegunde, S.M., Idowu, K.S., Adubiaro, H.O., 2024. Methyl green dye adsorption from wastewater using coconut husk biosorbents: kinetic, isotherm and thermodynamic studies. Iran. J. Sci. 48 (1), 113-126.

[5]

Adebayo, M.A., Areo, F.I., 2021. Removal of phenol and 4-nitrophenol from wastewater using a composite prepared from clay and Cocos nucifera shell: kinetic, equilibrium and thermodynamic studies. Resour. Environ. Sustain. 3, 100020.

[6]

Adebayo, M.A., Adebomi, J.I., Abe, T.O., Areo, F.I., 2020. Removal of aqueous Congo red and malachite green using ackee apple seed-bentonite composite. Coll. Interf. Sci. Commun. 38, 100311.

[7]

Ahmad, W., Kalra, D., 2020. Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. J. King Saud Univ. Sci. 32 (4), 2358-2364.

[8]

Ahmed, S.F., Mofijur, M., Nuzhat, S., Chowdhury, A.T., Rafa, N., Uddin, M.A., et al., 2021. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard Mater. 416, 125912.

[9]

Ajayi, E.I.O., Modo, E.U., Kiakubu, O.T., Molehin, O.R., 2019. Diabetes care and wound healing using nauclea latifolia, manihot esculenta, and other natural products. In: Bioactive Food as Dietary Interventions for Diabetes. Academic Press, pp. 545-558.

[10]

Al-Arjan, W.S., 2022. Zinc oxide nanoparticles and their application in adsorption of toxic dye from aqueous solution. Polymers 14, 3086.

[11]

Al-Degs, Y.S., El-Barghouthi, M.I., El-Sheikh, A.H., Walker, G.M., 2008. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments 77 (1), 16-23.

[12]

Alalwan, H.A., Mohammed, M.M., Sultan, A.J., Abbas, M.N., Ibrahim, T.A., Aljaafari, H.A., Alminshid, A.A., 2021. Adsorption of methyl green stain from aqueous solutions using non-conventional adsorbent media: isothermal kinetic and thermodynamic studies. Bioresour. Technol. Rep. 14, 100680.

[13]

Alrajhi, A.H., Ahmed, N.M., 2023. Green synthesis of zinc oxide nanoparticles using Salvia officinalis Extract. In: Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications. Springer International Publishing, Cham, pp. 1-21.

[14]

Batool, M., Khurshid, S., Qureshi, Z., Daoush, W.M., 2021. Adsorption, antimicrobial and wound healing activities of biosynthesised zinc oxide nanoparticles. Chem. Pap. 75, 893-907.

[15]

Ejikeme, C., Ezeonu, C.S., Eboatu, A.N., 2014. Determination of physical and phytochemical constituents of some tropical timbers indigenous to nigerdelta area of Nigeria. Eur. Sci. J. 10 (18), 247-270.

[16]

El-Khawaga, A.M., Elsayed, M.A., Gobara, M., Suliman, A.A., Hashem, A.H., Zaher, A.A., et al., 2023. Green synthesized ZnO nanoparticles by Saccharomyces cerevisiae and their antibacterial activity and photocatalytic degradation. Biomass Convers. Bioref. 1-12.

[17]

Ezeonu, C.S., Ejikeme, C.M., 2016. Qualitative and quantitative determination of phytochemical contents of indigenous Nigerian softwoods. New J. Sci. 2016, 1-9.

[18]

Faisal, S., Jan, H., Shah, S.A., Shah, S., Khan, A., Akbar, M.T., et al., 2021. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: their characterizations and biological and environmental applications. ACS Omega 6 (14), 9709-9722.

[19]

Gawade, V.V., Gavade, N.L., Shinde, H.M., Babar, S.B., Kadam, A.N., Garadkar, K.M., 2017. Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. J. Mater. Sci. Mater. Electron. 28, 14033-14039.

[20]

Gupta, O., Roy, S., Mitra, S., 2020. Nanocarbon-immobilized membranes for separation of tetrahydrofuran from water via membrane distillation. ACS Appl. Nano Mater. 3 (7), 6344-6353.

[21]

Hanif, M.A., Ibrahim, N., Md Isa, K., Md Ali, U.F., Tuan Abdullah, T.A., Jalil, A.A., 2022. Sulfur dioxide removal by calcium-modified fibrous KCC-1 mesoporous silica: kinetics, thermodynamics, isotherm and mass transfer mechanism. J. Porous Mater. 29 (2), 501-514.

[22]

Islam, T., Repon, M.R., Islam, T., Sarwar, Z., Rahman, M.M., 2023. Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions. Environ. Sci. Pollut. Control Ser. 30 (4), 9207-9242.

[23]

Jha, M., Ansari, S., Shimpi, N.G., 2019. Ultrasonic assisted green synthesis of Ag: CdO nanocubes and nanospheres using Citrus limon leaves for efficient degradation of organic dyes. J. Ind. Eng. Chem. 69, 269-284.

[24]

Khan, M.S., Dhavan, P.P., Jadhav, B.L., Shimpi, N.G., 2020. Ultrasound-Assisted green synthesis of Ag-decorated ZnO nanoparticles using Excoecaria agallocha leaf extract and evaluation of their photocatalytic and biological activity. ChemistrySelect 5 (41), 12660-12671.

[25]

Khan, M., Ware, P., Shimpi, N., 2021. Synthesis of ZnO nanoparticles using peels of Passiflora foetida and study of its activity as an efficient catalyst for the degradation of hazardous organic dye. SN Appl. Sci. 3, 1-17.

[26]

Khan, M.S., Dhavan, P.P., Ratna, D., Shimpi, N.G., 2022. Ultrasonic-assisted biosynthesis of ZnO nanoparticles using Sonneratia alba leaf extract and investigation of its photocatalytic and biological activities. J. Cluster Sci. 1-17.

[27]

Lima, É.C., Adebayo, M.A., Machado, F.M., 2015. Kinetic and Equilibrium Models of Adsorption. Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, pp. 33-69.

[28]

Me, B., Besong, E.E., Obu, D.C., Obu, M.S.U., Djobissie, S.F.A., 2016. Nauclea Latifolia: A Medicinal, Economic and Pharmacological Review.

[29]

Mosleh, S., Dashtian, K., Ghaedi, M., Amiri, M., 2019. A Bi 2 WO 6/Ag 2 S/ZnS Z- scheme heterojunction photocatalyst with enhanced visible-light photoactivity towards the degradation of multiple dye pollutants. RSC Adv. 9 (52), 30100-30111.

[30]

Mouhamadou, S., Dalhatou, S., Dobe, N., Djakba, R., Fasanya, O.O., Bansod, N.D., et al., 2023. Linear and non-linear modelling of kinetics and equilibrium data for Cr (VI) adsorption by activated carbon prepared from Piliostigma reticulatum. Chem. Africa 6 (2), 719-731.

[31]

Mussaenda frondosa L Jayappa, M.D., Ramaiah, C.K., Kumar, M.A.P., Suresh, D., Prabhu, A., Devasya, R.P., Sheikh, S., 2020. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications. Appl. Nanosci. 10, 3057-3074.

[32]

Mustapha, S., Ndamitso, M.M., Abdulkareem, A.S., Tijani, J.O., Shuaib, D.T., Mohammed, A.K., Sumaila, A., 2019. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 10 (4), 045013.

[33]

Necip, A., Demirtas, I., Tayhan, S.E., Işık, M., Bilgin, S., Turan, Í.F., et al., 2023. Isolation of phenolic compounds from eco-friendly white bee propolis: antioxidant, woundhealing, and anti-Alzheimer effects. Food Sci. Nutr. 12 (3), 1928-1939.

[34]

Odeniyi, M.A., Okumah, V.C., Adebayo-Tayo, B.C., Odeniyi, O.A., 2020. Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustain. Chem. Pharm. 15, 100197.

[35]

Ofomaja, A.E., Unuabonah, E.I., 2011. Adsorption kinetics of 4-nitrophenol onto a cellulosic material, mansonia wood sawdust and multistage batch adsorption process optimization. Carbohydrate Polym. 83 (3), 1192-1200.

[36]

Ojedokun, A.T., Bello, O.S., 2017. Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon. Appl. Water Sci. 7, 1965-1977.

[37]

Olasehinde, E.F., Abegunde, S.M., 2020a. Preparation and characterization of a new adsorbent from raphia taedigera seed. Res. Eng. Struct. Mater. 6 (2), 167-182.

[38]

Olasehinde, E.F., Abegunde, S.M., Adebayo, M.A., 2020. Adsorption Isotherms, Kinetics and Thermodynamic Studies of Methylene Blue Dye Removal Using Raphia Taedigera Seed Activated Carbon.

[39]

Olasehinde, E.F., Abegunde, 2020b. Adsorption of methylene blue onto acid modified Raphia taedigera seed activated carbon. Adv. J. Chem. A 3 (5), 663-679.

[40]

Othman, N.H., Alias, N.H., Shahruddin, M.Z., Bakar, N.F.A., Him, N.R.N., Lau, W.J., 2018. Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. J. Environ. Chem. Eng. 6 (2), 2803-2811.

[41]

Oyetayo, F.L., Oseni, O.A., Akinlolu, O.S., Momodu, D.U., 2021. Antidiabetic, antilipidemic and antioxidant properties of aqueous extracts of Morinda lucida and Nauclea latifolia leaves in alloxan induced rats. Biointerf. Res. Appl. Chem. 11, 11602-11615.

[42]

Prasetyoko, D., Sholeha, N.A., Subagyo, R., Ulfa, M., Bahruji, H., Holilah, H., et al., 2023. Mesoporous ZnO nanoparticles using gelatin—pluronic F 127 as a double colloidal system for methylene blue photodegradation. Kor. J. Chem. Eng. 40 (1), 112-123.

[43]

Rathnasamy, R., Thangasamy, P., Thangamuthu, R., Sampath, S., Alagan, V., 2017. Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications. J. Mater. Sci. Mater. Electron. 28, 10374-10381.

[44]

Sadiq, H., Sher, F., Sehar, S., Lima, E.C., Zhang, S., Iqbal, H.M., et al., 2021. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J. Mol. Liq. 335, 116567.

[45]

Saravanan, A., Kumar, P.S., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P.R., Reshma, B., 2021. Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere 280, 130595.

[46]

Shabaani, M., Rahaiee, S., Zare, M., Jafari, S.M., 2020. Green synthesis of ZnO nanoparticles using loquat seed extract; Biological functions and photocatalytic degradation properties. Lwt 134, 110133.

[47]

Shah, A.P., Jain, S., Mokale, V.J., Shimpi, N.G., 2019. High performance visible light photocatalysis of electrospun PAN/ZnO hybrid nanofibers. J. Ind. Eng. Chem. 77, 154-163.

[48]

Shah, A.P., Jain, S., Shimpi, N.G., 2020. Enhanced photocatalytic activity of electrospun PAN/Ag-G NFs under solar irradiation for effective degradation of hazardous organic dyes. ChemistrySelect 5 (13), 3897-3905.

[49]

Sharma, A., Nagraik, R., Sharma, S., Sharma, G., Pandey, S., Azizov, S., et al., 2022. Green synthesis of ZnO nanoparticles using Ficus palmata: antioxidant, antibacterial and antidiabetic studies. Res. Chem. 4, 100509.

[50]

Sikarwar, P., Nemiwal, M., Gosu, V., Subbaramaiah, V., 2023. Adsorptive denitrogenation of indole from model fuel oil over Co-MAC: adsorption mechanisms and competitive adsorption. J. Indian Chem. Soc. 100 (1), 100801.

[51]

Singha, K., Pandit, P., Maity, S., Sharma, S.R., 2021. Harmful environmental effects for textile chemical dyeing practice. In: Green Chemistry for Sustainable Textiles. Woodhead Publishing, pp. 153-164.

[52]

Singla, M.L., Kumar, M., 2009. Optical characterization of ZnO nanoparticles capped with various surfactants. J. Lumin. 129 (5), 434-438.

[53]

Sivasankarapillai, V.S., Krishnamoorthy, N., Eldesoky, G.E., Wabaidur, S.M., Islam, M.A., Dhanusuraman, R., Ponnusamy, V.K., 2023. One-pot green synthesis of ZnO nanoparticles using Scoparia Dulcis plant extract for antimicrobial and antioxidant activities. Appl. Nanosci. 13 (9), 6093-6103.

[54]

Sudapalli, A., Shimpi, N., 2023a. Investigation of the photocatalytic activity of electrospun and surface-modified PAN/α-FeOOH nanofibers for the degradation of hazardous azo dyes. Langmuir 39 (44), 15517-15534.

[55]

Sudapalli, A.M., Shimpi, N.G., 2023b. Ag@rGO coral reef morphology exhibits excellent optical properties and photocatalytic activity against methyl orange under sunlight. Diam. Relat. Mater. 139, 110356.

[56]

Sun, D., Zhang, Z., Wang, M., Wu, Y., 2013. Adsorption of Reactive Dyes on Activated Carbon Developed from Enteromorpha Prolifera.

[57]

Tang, C., Huang, X., Wang, H., Shi, H., Zhao, G., 2020. Mechanism investigation on the enhanced photocatalytic oxidation of nonylphenol on hydrophobic TiO2 nanotubes. J. Hazard Mater. 382, 121017.

[58]

Zou, C., Jiang, W., Liang, J., Sun, X., Guan, Y., 2019. Removal of Pb (II) from aqueous solutions by adsorption on magnetic bentonite. Environ. Sci. Pollut. Control Ser. 26, 1315-1322.

AI Summary AI Mindmap
PDF (1814KB)

244

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/