%A Jitang FAN %T Evaluating the material strength from fracture angle under uniaxial loading %0 Journal Article %D 2019 %J Front. Struct. Civ. Eng. %J Frontiers of Structural and Civil Engineering %@ 2095-2430 %R 10.1007/s11709-018-0480-8 %P 288-293 %V 13 %N 2 %U {https://journal.hep.com.cn/fsce/EN/10.1007/s11709-018-0480-8 %8 2019-03-12 %X

The most common experimental methods of measuring material strength are the uniaxial compressive and tensile tests. Generally, shearing fracture model occurs in both the tests. Compressive strength is higher than tensile strength for a material. Shearing fracture angle is smaller than 45° under uniaxial compression and greater than 45° under uniaxial tension. In this work, a unified relation of material strength under uniaxial compression and tension is developed by correlating the shearing fracture angle in theory. This constitutive relation is quantitatively illustrated by a function for analyzing the material strength from shear fracture angle. A computational simulation is conducted to validate this theoretical function. It is full of interest to give a scientific illustration for designing the high-strength materials and engineering structures.