%A Luthfi Muhammad MAULUDIN, Chahmi OUCIF %T The effects of interfacial strength on fractured microcapsule %0 Journal Article %D 2019 %J Front. Struct. Civ. Eng. %J Frontiers of Structural and Civil Engineering %@ 2095-2430 %R 10.1007/s11709-018-0469-3 %P 353-363 %V 13 %N 2 %U {https://journal.hep.com.cn/fsce/EN/10.1007/s11709-018-0469-3 %8 2019-03-12 %X

The effects of interfacial strength on fractured microcapsule are investigated numerically. The interaction between crack and microcapsule embedded in mortar matrix is modeled based on cohesive approach. The microcapsules are modelled with variation of core-shell thickness ratio and potential cracks are represented by pre-inserted cohesive elements along the element boundaries of the mortar matrix, microcapsules core, microcapsule shell, and at the interfaces between these phases. Special attention is given to the effects of cohesive fracture on the microcapsule interface, namely fracture strength, on the load carrying capacity and fracture probability of the microcapsule. The effect of fracture properties on microcapsule is found to be significant factor on the load carrying capacity and crack propagation characteristics. Regardless of core-shell thickness ratio of microcapsule, the load carrying capacity of self-healing material under tension increases as interfacial strength of microcapsule shell increases. In addition, given the fixed fracture strength of the interface of microcapsule shell, the higher the ratio core-shell thickness, the higher the probability of microcapsules being fractured.