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ABSTRACT Today, the most commonly used civil infrastructure inspection method is based on a visual assessment
conducted by certified inspectors following prescribed protocols. However, the increase in aggressive environmental and
load conditions, coupled with the achievement of many structures of the life-cycle end, has highlighted the need to
automate damage identification and satisfy the number of structures that need to be inspected. To overcome this challenge,
this paper presents a method for automating concrete damage classification using a deep convolutional neural network.
The convolutional neural network was designed after an experimental investigation of a wide number of pretrained
networks, applying the transfer-learning technique. Training and validation were conducted using a database built with
1352 images balanced between “undamaged”, “cracked”, and “delaminated” concrete surfaces. To increase the network
robustness compared to images in real-world situations, different image configurations have been collected from the
Internet and on-field bridge inspections. The GoogLeNet model, with the highest validation accuracy of approximately
94%, was selected as the most suitable network for concrete damage classification. The results confirm that the proposed
model can correctly classify images from real concrete surfaces of bridges, tunnels, and pavement, resulting in an
effective alternative to the current visual inspection techniques.
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1 Introduction

The management and efficiency of an infrastructural
network has significant relevance for the growth of a
country, presenting repercussions from both economic and
safety perspectives. Preserving the structural integrity and
reliability of bridges, tunnels, and roads is a difficult task.
Although the construction of reinforced concrete structures
makes it possible to exploit the static collaboration of two
complementary materials such as concrete and steel, their
union brings about problems of durability as time passes.
As a result, the proper resources should be allocated to deal
with aging structures still in service and interventions
should be defined to plan and avoid catastrophic events. At
the same time, in rapidly developing regions characterized
by increasing traffic volume, the detection of defects is
required from the early stages of the structures to avoid any
further losses in structural capacity, durability, and

maintenance costs.
The first step in identifying the damage state and

potential risk conditions currently takes place through
direct visual inspections of certified professionals, com-
bined with the decision-making process. The early
detection and classification of defects helps in planning
an effective repair program, preventing a worsening of the
conditions, and enabling low-cost maintenance. Cracks,
spalling, and delamination are key indicators of the general
conditions of a concrete structural member. In addition to
visually showing the load conditions of a structure, cracks
are the first mark of surface degradation caused by the
corrosion of steel. Based on their shape and location, it is
possible to discover hidden diseases and their potential
causes. However, because inspection tasks are conducted
manually, some issues need to be solved. Most of the
structural placements are in dangerous locations, where a
low accessibility could lead to inaccurate evaluations or
defects to be occasionally ignored. In addition, the
subjective nature of such assessments is strictly linked toArticle history: Received Sep 17, 2020; Accepted Nov 26, 2020
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the expertise of the inspector. Consequently, the subjectiv-
ity and variability affect the damage detection, which is
ineffective and not repeatable over time. Furthermore, a
condition assessment can be expensive, with both a long
logistic time and intensive labor.
Developments in modern sensors and ICT techniques

can significantly help replace current defect inspection
practices with a more repeatable, reliable, and automated
civil infrastructure condition assessment. More powerful
graphical processing units (GPUs) for parallel computing,
the ability to transfer and collect big data through the
Internet, and innovative learning architectures are chan-
ging the manner in which a wide range of industries
operates by introducing artificial intelligence. Deep
learning is a machine learning technique that has been
spreading in recent years owing to the high performance
achieved in deep learning. Based on neural network
architectures, deep learning techniques applying classifica-
tion tasks for directly analyzing images, text, or sounds,
giving a relevant impact in fields such as autonomous
driving systems, medical imaging, and face recognition.
Furthermore, artificial neural networks have been devel-
oped to approximate the solution of partial differential
equations of mechanical problems. In most of these
approaches, a collocation method is employed to fit both
the governing equations and the boundary conditions at
randomly selected points. Anitescu et al. [1] proposed a
collocation method for solving second order boundary
value problems, such as Poisson and Helmholtz equations,
based on an adaptive approach. In addition, Guo et al. [2]
developed a collocation method for governing partial
differential questions of Kirchhoff plate bending problems.
The implementation of computer vision techniques in

self-navigating robots, such as unmanned aerial vehicles,
ground robots, and consumer electronics, could represent a
turning point for the automated structural inspection
process. Images acquired mechanically contain visual
information comparable to that obtained by a human
inspector. Furthermore, images provide details from the
entire field of view quickly, economically, and without
contact.
Owing to the complex texture of the defects, various

image backgrounds, changes in lighting, surface rough-
ness, and finish, a convolutional neural network (CNN) is a
suitable for the automatic classification of such images.
Unlike traditional network architectures, which are
characterized by simple structures and based on the
manual extraction of features with image processing
techniques, a CNN learns the features directly from the
training data by applying a 2D convolutional layer. This is
an important advantage because CNNs no longer require
the image processing, design, or manual extraction of the
features. In recent years, numerous studies have applied
CNN-based algorithms to solve image-based object
detection and classification problems. Fan et al. [3]
presented a supervised algorithm using a CNN to learn

the crack structure under different pavement conditions.
Zhang et al. [4] developed a four-layer CNN to detect road
cracks, achieving an accuracy of approximately 87%. To
improve the network, pretrained deep networks on a large-
scale image data set are often reused with transfer-learning
techniques related to accuracy and time consumption. Kim
and Cho [5] applied transfer learning to the AlexNet
network by dividing the training set into cracks, intact
surfaces, patterns of joints and edges, and plants. The
training of a deep neural network led to an average
precision of approximately 92%. Hung et al. [6] built a new
data set from the Internet using normal, cracked,
honeycomb, blistering, and moss labels. The transfer-
learning approach was also applied to obtain a maximum
accuracy of 93%. In addition, Zhu and Song [7] developed
a model for detecting surface defects on concrete bridges
based on transfer learning and a CNN. The VGG-16 was
modified to classify the surface as normal or having cracks,
plate fractures, corner breaks, edge exfoliation, skeleton
exposure, or repairs with approximately 83% validation
accuracy. Feng et al. [8] proposed a deep CNN with
transfer learning for the damage detection of a hydro-
junction infrastructure. For fast tunnel crack identification,
Song et al. [9] built a tunnel crack data set and proposed a
deep learning algorithm to define a complete analysis
system for identifying tunnel cracks. Makantasis et al. [10]
combined a CNN and a multi-layer perceptron for the
tunnel defect inspection problem. Patterson et al. [11]
trained a deep learning algorithm to automate post-
earthquake reconnaissance image tagging tasks. Gulgec
et al. [12] conducted a finite-element analysis to simulate
the cracking of gusset plate connections in steel bridges
and classify the strain field as “damaged” or “healthy”. To
detect multiple types of damage, Cha et al. [13] defined a
faster region-based CNN modifying the ZF-net architec-
ture. A database of 297 images containing steel delamina-
tion and corrosion, bolt corrosion, and concrete cracks,
reaching a mean precision of approximately 88%, was
created. Soukup and Huber-Mörk [14] trained CNNs to
detect rail surface defects using a database of photometric
stereo images of rail surfaces in a dark-field configuration.
In addition, Li et al. [15] improved the YOLO architecture
to detect six types of surface defects on cold-rolled steel
strips, improving the manufacturing quality of the entire
steel strip line.
The above studies have highlighted the potential and

versatility of neural networks in automatic classification
tasks; however, some aspects must be overcome to make
this procedure more reliable. Most of the research has been
mainly limited to detecting only the surface cracks,
excluding other types of damage typical of real structures
such as delamination. Many times, the data sets are based
only on ideal laboratory conditions, containing only
images with high resolution and prefixed camera-object
distance, excluding real structures in different environ-
mental conditions. The main contribution of the present
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paper is a deep learning-based algorithm that can classify
various types of civil infrastructure surfaces in the
“undamaged”, “cracked”, and “delaminated” classes. The
robustness of the network is ensured by considering a
database of raw images collected from the Internet, field
bridge inspections, and Google Street View, containing
real environmental conditions, background variety, and
noise. The CNN architecture is developed using the
transfer-learning approach through an in-depth comparison
among the highest performing deep neural networks in
terms of accuracy and prediction time. A further contribu-
tion was therefore identifying the best-performing network
in identifying damages in civil infrastructures by analyzing
a wide number of existing pretrained networks. The neural
network developed is able to classify various types of
structures and damage surfaces, and differing image
quality, with an accuracy of approximately 94%. The
experimental results on the validation data set highlight the
promising performance of the deep learning model in
providing a faster and cheaper overview of existing
infrastructures than a current visual inspection. The
selected network will also be the basis for future
developments in automatic defect localization and quanti-
fication.

2 Convolutional neural network

A CNN is a common algorithm used in deep neural
networks, a technique of machine learning in which
computer models learn how to apply classification tasks
directly from input data. CNNs learn from image data,
eliminating the need for a manual feature extraction.
Similar to the biological structure of a visual cortex in the
human brain, a network can have hundreds of layers, each
aimed at learning and detecting specific features from
images. Extremely low-level features or kernels, such as
brightness and edges, can gradually take on more complex
shapes that uniquely define an object. The layers closer to
the output interpret the extracted features related to the
context of the classification task. CNNs generally contain
convolution, activation, pooling, and fully connected

layers [16]. Filters are applied to each input image, and
the output of each layer is the input for the next layer. After
learning the features in the surface layers, the network was
moved to the classification. The last layer before the output
layer is a fully connected layer that creates a vector of a
size equal to the number of classes that the network can
predict, containing the probabilities for each class (Fig. 1).
Because a CNN can also be trained on millions of images
and can have an extremely complex network architecture,
the processing time required to train a model can be
significantly reduced when using a GPU. Depending on
the size of the data set, a CNN can be created from scratch,
or existing networks can be re-trained with their own data
sets for new recognition tasks. This procedure, called
transfer learning, is a cost-effective solution for applying
the deep learning technique without a large data set and
long processing and training time.

2.1 Convolution layer

The convolution layers extract and learn features from their
input images by means of neurons arranged in the feature
maps. Each neuron is linked to a series of adjacent neurons
in the following layer with a set of trainable weights called
convolution kernels. Because within the same convolu-
tional layer there are feature maps with different weights,
several features can be extracted at each level [17]. In
convolution operations, the kernel slides with a prefixed
stride on each region of the input image, performing a
matrix multiplication between the input pixel and the
corresponding weights of the convolution kernel. Figure 2
shows an example of convolution operations involving a
2 � 2 � 1 convolutional kernel of weights of 0.5 and a
stride of 1. A larger stride size leads to a smaller output and
computational cost but can lose features from the input
data.
The bias term can be added to the weighted pixels

according to the following equation:

Yi ¼
X

i

xi$wij þ bi, (1)

where xi denotes the input pixel, wij and bi represent the

Fig. 1 CNN image classification architecture.
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weights and bias of the convolutional filter, and Yi
represents the output. Both parameters are fine-tuned
during the training process such that the weight increases
or decreases the effectiveness of a specific input, which
makes the model more flexible by adjusting the output with
the weighted sum of the inputs to the neuron. After the
convolutional layer, the convolved results are sent to a
nonlinear activation function that provides nonlinear
behavior to the neural networks.

2.2 Activation layer

In the neural network architecture, nonlinear functions are
introduced to extract nonlinear features when neurons are
activated. The sigmoid and hyperbolic tangent functions
are the first types of functions to be used. However, both
functions present a “vanishing gradient problem” for
extremely large and small arguments, making it impossible
for neurons to acquire signals or transfer weights and data
(Fig. 3). Subsequently, an effective activation function
called a rectified linear unit (ReLU) [18] was introduced,
and has become the most popular approach:

ReLUðY Þ ¼ maxð0,Y Þx: (2)

Comparing the gradients of the function ReLU with both
the sigmoid function and tanh function, the gradients of the
ReLU are always 0 or 1. The learning is applied in a
specific neuron when training samples generate a positive
input for ReLU. These features facilitate a faster
computation and convergence speed.

2.3 Pooling layer

After the convolution process, the output neurons include
redundant information, which increases the number of
calculations. The pooling layer improves the algorithm
performance and decreases the computational cost required
to process the data by reducing the size of the convolved
feature. Furthermore, it can help to keep model training
more robust to object orientation and scale changes by
extracting the main features. The key features are extracted
using max or average pooling. Max pooling provides the
maximum value from the region where the filter covers the
image, and average pooling gives the average values
contained within the kernel. Figure 4 shows the difference
between the average and max pooling.
Given a 4 � 4 input image size, a 2 � 2 filter size and

stride of 2 are applied. The convolution and pooling layers
form a single layer of the CNN architecture.

2.4 Fully connected layer

After the convolutional layers, it is necessary to take high-
resolution data and solve the representations of the objects.
For this purpose, the fully connected layer interprets all
features extracted by the previous layers to produce class

Fig. 2 Convolution operations.

Fig. 3 Activation functions.
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labels. This can be considered a link between the classifier
and the information output. As the name suggests, each
neuron is connected to every neuron in the previous layer
as a traditional neural network. Thus, the features extracted
and learned in the shallow layers can be mapped onto the
tag array. To attach the fully connected layer to the
network, the size of the CNN output needs to be flattened
into a vector of values. To obtain the classes of the input
images, the softmax layer was finally located at the bottom
of the CNN architecture. The output unit activation
function for the multiclass classification problem is given
by the softmax function:

�ðzÞj ¼
ezj

XK

k¼1

ezk
, (3)

where 0£σ(z)j£1 and
XK

j¼1

�ðzÞj ¼ 1. The output of the

softmax layer represents the probability that the network
associates the ith input with the jth class.

2.5 Softmax loss and stochastic gradient descent

Once the neural network is designed, the free parameters
need to be optimized using learning algorithms to obtain
the correct network output. The most common algorithm
used to train a neural network on a training data set is
backpropagation. Backpropagation allows the parameters
to be updated by moving forward and backward across the
network until the loss function between the predicted and
actual outputs reaches its local minimum. The deviations
between the predicted and actual classes are defined by the
following:

loss ¼ 1

N

XN

i¼1

XK

j¼1

tijln�ðzÞj, (4)

where N is the number of samples, K is the number of
class, tij is a logical term that returns a value of 1 if the ith
sample follows the jth class, and �ðzÞj is the output for
samples i and j. The most efficient way to minimize the
deviations and update the weights is stochastic gradient
descent using backpropagation. Starting from the initial

values of the weight and loss, the algorithm provides the
best weights by computing the global loss minimum
according to the following equation:

w ¼ w – α
∂loss
∂w

, (5)

where α indicates the learning rate, and w is the weight.
When the gradient is positive, the weight is reduced;
otherwise, when it is negative, the weight is increased. The
amount of contribution that should be considered is
defined by the learning rate. During the CNN training,
the above process is repeated many times on a mini-batch
of images until an epoch of iterations over the entire data
set is completed. After each iteration, the gradient of the
loss and an updating of the weights are applied.

3 Deep convolutional neural network with
transfer learning

Humans have the inherent ability to acquire knowledge
while learning an activity and use such knowledge to solve
related tasks. Similarly, transfer learning is a widespread
deep learning application employed for pretrained net-
works as the starting point of a new classification scenario.
Fine-tuning a network using transfer learning is typically
much faster than training a network from scratch and
provides a high accuracy level even with fewer training
images. Most pretrained networks have been developed for
the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), the reference benchmark for large-scale object
recognition [19]. These networks have been trained on
over a million images contained in the ImageNet database
and can classify and detect 1000 object categories. The
great variety and size of the training data set guarantees a
better ability to extract features from various types of
images. Pretrained networks have different levels of
accuracy, speed, and size, which should be considered
when looking for a solution to a specific problem. In the
present study, eight of the fastest pretrained CNN models
were tested to conduct transfer learning on concrete
damage classification tasks. From the experimental study
aimed at evaluating the influence of training parameters,
the most performing neural network was selected in terms
of speed and accuracy.

3.1 Pretrained neural networks

Deep learning models have layered architectures in which
different layers correspond to different feature learning. As
mentioned above, the last layer is a fully connected layer to
obtain the final output. This architecture allows the use of
weights in feature extractor layers as the starting point for
the training process and adapting them in response to the
new problem. Furthermore, it allows the replacement of the

Fig. 4 Pooling operators.
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last fully connected layer, softmax layer, and classification
output layer for the fine-tuning of the different classifica-
tion problems. In the present study, eight different
pretrained networks were modified, including AlexNet,
SqueezeNet, ShuffleNet, ResNet-18, GoogLeNet, ResNet-
50, MobileNet-v2, and NASNet-mobile.
AlexNet is a CNN trained on over a million images in

the ImageNet LSVRC-2010 contest and can classify
images belonging to 1000 different categories [20].
AlexNet won the ILSVRC-2012 contest with a top-5
error rate of 15.3%, compared to 26.2% for the second-best
approach. The network contains five convolutional layers,
some of which are connected to max pooling layers, and
three fully connected layers with a softmax layer and a
classification output layer at the end. To transfer the layers
for the new classification task, the last three layers need to
be fine-tuned to have a fully connected layer with a size
equal to the number of classes in the new data.
SqueezeNet is a smaller CNN that achieves the same

accuracy as AlexNet on ImageNet, with 50-times fewer
parameters and is 510-times smaller than AlexNet [21].
The SqueezeNet architecture is composed of 1� 1 squeeze
convolutional layers and expands the layers with a mix of
1� 1 and 3� 3 convolution filters. Unlike most networks,
in which the last layer with learnable weights is a fully
connected layer, in SqueezeNet, the last learnable layer is
the final convolutional layer. To retrain a pretrained
network to classify new images, the convolutional layer
should be replaced with a new convolutional layer having
the same number of classes as the number of filters.
ShuffleNet is a computationally efficient CNN designed

for devices with limited computing power [22]. The new
architecture introduces a pointwise group convolution and
channel shuffle to reduce the computational costs while
maintaining the level of accuracy. ShuffleNet achieves
about 13 times less of actual speedup compared to AlexNet
while maintaining comparable accuracy on ImageNet data
set.
ResNet-18 and ResNet-50 are residual CNNs with

architectures of 18 and 50 layers deep, respectively [23].
Their introduction was the most revolutionary work in the
deep network architecture. Because an increasing network
depth through a simple stacking of the layers can lead to a
vanishing gradient problem or to overfitting of the data, the
core idea of the authors was the introduction of the so-
called “identity shortcut connection” to bypass one or more
layers. Residual connections allow the parameter gradients
to propagate more easily from the output layer to the
previous network layers, making it possible to train deeper
networks with greater accuracy.
GoogLeNet was the winner of the ILSVRC-2014

competition, and as the name suggests, was developed
by a Google team [24]. To reduce the use of the computing
resources while increasing the depth and width of the
network, a new architecture called “inception” was

proposed. The idea of an inception layer is to apply filters
with the most accurate detail (1 � 1) to a bigger version
(5� 5) that can work in parallel at the same level. To avoid
a parameter explosion on the inception layers and perform
faster computations, a 1 � 1 convolution is added as a
dimension reduction module. Using the bottleneck
approach, the depth and width can be increased without
computational and overfitting problems. Instead of using a
fully connected layer, the ends of the inception modules
were connected to the global average pooling layer.
MobileNet-v2 [25] is a refinement of the v1 [26] mobile

architecture, which introduced the idea of replacing the
convolutional layers with depth-wise separable convolu-
tions in order to decrease the computational cost. The
convolution layer is split into a depth-wise convolution
layer to filter the input and a 1 � 1 pointwise convolution
layer to combine the filtered values and create new
features. The new architecture presents an inverted residual
structure, where the input and output residual blocks are
opposite those of traditional residual models. This type of
layer, based on the bottleneck principle, reduces the
amount of data flowing through the network with a
relevant computational gain. Furthermore, to help in
gradient propagation, residual connections are introduced,
as in the ResNet network.
NASNet-mobile was proposed as an algorithm to learn

network architectures directly on the data set considered
[27]. The authors searched for the best convolutional layer
on the smallest CIFAR-10 data set and applied it to the
ImageNet data set by stacking together multiple times. The
NASNet model allows accurate results to be achieved with
smaller model sizes and less complexity.
The main properties of the pretrained networks analyzed

are reported in Table 1.

4 Experimental results and analysis

The classification accuracy of a deep learning model is
strongly influenced by the size and quality of the image
data set. However, most common data sets contain a

Table 1 Pretrained model properties

network number of
layers

size (Mb) parameters (mil-
lions)

AlexNet 25 227 61

SqueezeNet 68 4.6 1.24

ShuffleNet 173 6.3 1.4

ResNet-18 72 44 11.7

GoogLeNet 144 27 7

ResNet-50 177 96 25.6

MobileNet-v2 155 13 3.5

NASNet-mobile 914 20 5.3
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limited number of images, often showing only ideal
laboratory conditions with no real structural surfaces or
environmental conditions as a background. The proposed
experimental program implementing a neural network for
the automatic classification of concrete damage is based on
the construction of a reference image data set, the analysis
and detection of a reference artificial intelligent system
using the transfer-learning approach, and finally the
optimization and validation of the defined neural network.
Before defining the reference neural network, the best set
of hyperparameters was identified for each model. The
training was conducted in a MATLAB 2019b environment
on a workstation with the following configurations: Intel®

Core™ i7-3537U CPU@ 2.00–2.50 GHz, 8.00 GB of
RAM, and an NVIDIA GeForce GT720M GPU.

4.1 Image data set

Transfer learning is applied using data collected from the
Internet, field bridge inspections, and Google Street View.
This made it possible to select a greater and different
variety of civil infrastructure images, increasing the

practicality of research in the real field by simulating the
acquisition from robotic platforms or drones. To match the
input size of the networks, all image sizes were adjusted by
a rescaling operation. The model trained on small images
learns fewer features than one trained on large images,
which are the most important to achieve proper efficiency
in the classification task. The robustness of the networks,
with the aim of being invariant to distortions in the image
data, has been ensured by applying randomized augmenta-
tion techniques such as rotation, reflection, and translation.
Furthermore, using an augmented image datastore to
transform training data for each epoch increases the
amount of training data and prevents the network from
overfitting and learning the specific details of the training
images. Figure 5 shows examples of datastore images
classified as “undamaged”, “cracked”, and “delaminated”.
The original data set included 1352 images. To evaluate

the network performance during training and detect if the
network overfits the details of the training data, the data set
is split into 80% for the training set and 20% for the
validation set. The validation set contains images that the
network has never seen prior to the validation process.

Fig. 5 Image data set examples.
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When the training loss decreases and the validation loss
increases, the training should be stopped because the
network learns details regarding the training set that are
irrelevant to the new images. The data set details for each
class are presented in Table 2.

To avoid unbalanced classes, the same order of
magnitude is considered for the quantity of images.

4.2 Neural network training

The implementation of deep neural networks was achieved
using the deep learning toolbox in MATLAB. Images are
automatically labeled according to folder names and stored
using the “imageDatastore” function. By installing the
proper deep learning toolbox of each model, the
architecture can be visualized, and the network layers are
modified based on the layer replacements required by the
transfer-learning technique. To make the images compa-
tible with the input size of the network and perform
randomized preprocessing operations, the “augmentedI-
mageDatastore” is used. Once the training options are
specified, the network is trained by employing the
“trainNetwork” function, specifying the augmented
image datastore, layers, and options.
After creating the data set and modifying the network

architecture for transfer learning, the best training algo-
rithm settings, that is, the learning rate, mini-batch size,

and epoch number, should be determined to increase the
network behavior. Other parameters, such as the dropout
rate, have not been considered in the optimization process,
as are not present in all networks and therefore are
considered with the original value. Both the classification
accuracy and training time are considered as the metric for
an evaluation of such hyperparameters. Because their best
value cannot be estimated from the data, the optimization
process is applied through the iterations for various
permutations. By monitoring the training progress, their
influence on the training dynamics and stability can help in
the detection of the best combination. The use of a mini-
batch of the training data set to minimize errors and update
the weights guarantees a faster convergence and better
generalization, which is an approximation of the entire data
set. Smaller learning rates require a long training time
given the minor changes made to the weight update,
whereas larger training rates require fewer training epochs
but could lead to a suboptimal final set of weights or
divergence. Given the above considerations, a good
combination was found with a learning rate of 0.001 and
a mini-batch size of 32. Finally, a maximum number of 12
epochs was selected as the appropriate number to reach an
asymptotic behavior. The classifiers were trained using 396
iterations and validated every epoch. For each validation,
the accuracy was evaluated as the ratio between the
number of correctly classified images and the total number
of images in the validation set.
The plot below (Fig. 6) shows a comparison among the

different networks, between the validation accuracy and
the time required to train the networks after 12 epochs, and
the magnitude of the marker representing the networks is
related to their byte dimension.
A wide variety of CNN architectures were obtained

through a training experiment, including from those having
the fastest and lowest precision to those having the greatest

Table 2 Data set details

class number of images training set validation set

undamaged 443 355 88

cracked 441 353 88

delaminated 468 374 94

Fig. 6 Comparison of pretrained network.
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complexity and accuracy. The pretrained network more
related to automating the damage assessment was
GoogLeNet, with a validation accuracy of 94.44% and a
training time of approximately 45 min. Furthermore,
owing to its relatively small disk and memory size, it is
also compatible with predictions using mobile sensors with
low computational resources or for its distribution over the
Internet.

4.3 Neural network details and performance

The entire GoogLeNet architecture is 22 layers deep, with
3 convolution layers, 9 inception modules stacked linearly,
and 2 deep layers, with a last fully connected layer. All
convolutions inside the network use ReLU as the
activation function. The input layer takes images of size
224 � 224 with RGB color channels. The detailed
GoogLeNet architecture is presented in Table 3.
To retrain the pretrained network to classify “unda-

maged”, “cracked”, and “delaminated” images, the last
fully connected layer is replaced with a new fully
connected layer containing three outputs. A new classifica-
tion layer was replaced by specifying the new class labels.
Using the set of hyperparameters specified in the

previous paragraph, the following accuracy and loss
progress are obtained for each iteration, after a training
time on a single GPU of approximately 45 min (Fig. 7).
The first aspect that can be observed is the quick drop in

the loss function that motivates the optimal learning rate
set. The slope of the accuracy trend highlights the
effectiveness of transfer learning in achieving a high
accuracy within a short amount of time.
Furthermore, the training progress showed the same

error trends for both the validation and training sets. This
means that the model behaves correctly on both the
training and validation data, showing a general validity.
For the training data set without data augmentation, the
model achieved 100% accuracy after 150 iterations,
leading to an over-specialization of the noise and details
of the training data set. As a result, the model performance
decreased and the validation accuracy dropped to 88.89%.
Once the network is trained, the confusion matrix is

calculated between the true and predicted labels from the
validation data set. Putting the true classes in the rows and
the predicted classes in the column, the diagonal and off-
diagonal regions correspond to the correct and incorrect
observations, respectively (Fig. 8).
To better understand the performance measurement, a

receiver operating characteristic (ROC) curve was plotted
(Fig. 9). The ROC curve shows how the true positive and
false positive rates relate, applying decision threshold
values across an interval from 0 to 1. For each threshold,
the true positive ratio (TPR), also called the sensitivity, and
the false positive ratio (FPR) are calculated as follows:

TPR ¼ TP

TP þ FN
, (6)

Table 3 GoogLeNet pretrained model architecture

type filter size / stride output size total learnables depth

convolution 7 � 7 / 2 112 � 112 � 64 9472 1

max pool 3 � 3 / 2 56 � 56 � 64 0

convolution 3 � 3 / 1 56 � 56 � 192 114944 2

max pool 3 � 3 / 2 28 � 28 � 192 0

inception (3a) 28 � 28 � 256 163696 2

inception (3b) 28 � 28 � 480 388736 2

max pool 3 � 3 / 2 14 � 14 � 480 0

inception (4a) 14 � 14 � 512 376176 2

inception (4b) 14 � 14 � 512 449160 2

inception (4c) 14 � 14 � 512 510104 2

inception (4d) 14 � 14 � 528 605376 2

inception (4e) 14 � 14 � 832 868352 2

max pool 3 � 3 / 2 7 � 7 � 832 0

inception (5a) 7 � 7 � 832 1043456 2

inception (5b) 7 � 7 � 1024 1444080 2

avg pool 7 � 7 / 1 1 � 1 � 1024 0

dropout 1 � 1 � 1024 0

linear 1 � 1 � 1000 1025000 1

softmax 1 � 1 � 1000 0
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FPR ¼ FP

FP þ TN
, (7)

where TP is the number of positive instances correctly
classified, FN is the number of positive instances
misclassified, FP is the number of negative instances
incorrectly classified, and TN is the number of negative
instances correctly classified. Consequently, the proportion
of negative instances correctly classified based on the total
number of negative instances can be defined as the
following a complementary metric:

Specificity ¼ 1 –FPR: (8)

When the threshold decreases, more positive values are

obtained, thus increasing the sensitivity and decreasing the
specificity. Similarly, when the threshold increases, more
negative values are obtained, thus increasing the specificity
and decreasing the sensitivity.
In addition to detecting the most appropriate trade-off

between sensitivity, specificity, and threshold, the ROC
curve can be effectively employed to study the discrimi-
native ability of the model. A classifier with curves close to
the upper-left corner show a good measure of separability.

Fig. 7 Training progress.

Fig. 8 Confusion matrix chart.

Fig. 9 Receiver operating characteristics.
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By contrast, an area under the curve (AUC) of zero means
that the model reciprocates the classes and predicts the
negative class as a positive and vice versa. When the AUC
is 0.5, the model has no class discrimination capability and
corresponds to a random model. The ability of the model to
distinguish between classes is confirmed by the AUC
measurements of approximately 0.98, 0.97, and 0.96 for
the “cracked”, “delaminated”, and “undamaged” class,
respectively.
The network correctly predicted 255 images in the

validation set containing 270 images, achieving a global
accuracy of 94.44%. The “cracked” class presents an
accuracy of 94.31%, the “delaminated” class has an
accuracy of 92.56%, and the “undamaged” class achieves
a maximum accuracy of 96.59%. Figure 10 shows some
validation results for correct and incorrect classifications.
From the above image, relevant considerations can be

highlighted. First, the image correctly classified as
“delaminated”, which shows a street art picture on a pier,
confirms the robustness of the model compared to the
noisy images. Further observations can be made regarding
the misclassification. In general, the probability of
belonging to the predicted class is low or, in all cases,
less than approximately 90%. Relating to the image
misclassified as “undamaged” with a probability of

97.9%, one possible explanation is the problem of
distance from the delaminated area on the bottom deck
between the two piers, which makes the prediction difficult
even for human inspection. The further image incorrectly
classified with a high probability of 99.9% contains some
relevant details of the delaminated surface, such as the
oxide color, texture of the aggregates, and wide and deep
cracks that mislead the network. By contrast, the images
classified as “cracked” but containing delaminated ele-
ments demonstrate the need to improve the automatic
classification of damage in the case of the presence of
multiple classes.
In conclusion, GoogLeNet has shown the best perfor-

mance in solving the problem of automating the inspection
of civil infrastructures. The high accuracy of this model,
compared to the quality of the images, is extremely close to
real conditions, confirming its suitability as a good basis
for developing future studies for a fully automated
inspection.

5 Conclusions and perspectives

In this paper, a new deep neural network for automatic
classification of the main defects in civil infrastructures is

Fig. 10 Validation results: (a) correct classification and (b) misclassification.
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proposed. The study employed an existing CNN modify-
ing the last fully connected layer, building a robust CNN
capable of classifying images with noisy backgrounds,
containing different defect configurations for bridge,
tunnel, and pavement structures. To define the most
suitable network for concrete damage classification, an
experimental investigation was conducted on eight pre-
trained networks. The major contribution was to train the
network with images that simulate real collections in the
field by means of a robotic platform, low-cost system, or
drone. Nevertheless, an accuracy of 94.44% is achieved,
highlighting the suitability of integration in smart manage-
ment systems for the automatic inspection and assessment
of civil infrastructures. Future developments will focus on
the improvement of network learning not only to identify
the defect classes, but also their detection and quantifica-
tion.
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