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ABSTRACT The aim of this study is to propose a new detection method for determining the damage locations in pile
foundations based on deep learning using acoustic emission data. First, the damage location is simulated using a back
propagation neural network deep learning model with an acoustic emission data set acquired from pile hit experiments. In
particular, the damage location is identified using two parameters: the pile location (PL) and the distance from the pile cap
(DS). This study investigates the influences of various acoustic emission parameters, numbers of sensors, sensor
installation locations, and the time difference on the prediction accuracy of PL and DS. In addition, correlations between
the damage location and acoustic emission parameters are investigated. Second, the damage step condition is determined
using a classification model with an acoustic emission data set acquired from uniaxial compressive strength experiments.
Finally, a new damage detection and evaluation method for pile foundations is proposed. This new method is capable of
continuously detecting and evaluating the damage of pile foundations in service.
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1 Introduction

Group pile foundations are used in modern infrastructure
construction to enhance the ground bearing capacity [1–4].
Owing to the complexity of underground environments,
unexpected damage or failure can occur during the service
life of a structure. It is thus very important to implement
effective monitoring of the health status of pile foundations
and detect potential or actual damage locations, such as
cracks and impacts [5]. However, it is more difficult to
check foundations for damage or failure compared with
upper structures, as foundations are always located under-
ground [6]. Thus, source location detection and damage
evaluations of pile foundations are urgent issues for
engineers and researchers.
Acoustic emission (AE) refers to the elastic waves that

are released through structural media when microcracks
occur. AE is a structural health monitoring (SHM)
technique [7] and is widely utilized for nondestructive
testing of in-service concrete structures [8]. Compared
with other nondestructive testing methods, AE techniques
have been applied during loading, which has allowed for
convenient detection of in-service structures in recent years
[9].
Deep learning is a class of machine learning that has

been widely used for diagnostic purposes in recent years
[10,11]. Deep learning involves several aspects, such as
data analysis, image classification, and voice recognition
[12–14]. Deep learning has also been applied to solve
partial differential equations (PDEs) [15–17]. Recently,
several studies have investigated the application of deep
learning for AE source locations with convolutional neural
networks (CNNs). Ebrahimkhanlou et al. [18] proposed a
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characteristics of AE in plate-like structures. Ebrahim-
khanlou and Salamone [19] proposed two different deep
learning models to detect the AE of source locations in
metallic plates by considering geometric features. How-
ever, existing studies have only concentrated on metallic
plate structures and cannot be applied for the detection of
damage locations in in-service pile foundations.
The damage step status should be monitored for repair

assessments of damaged structures. Several studies have
been conducted to identify damage steps in terms of AE
data. Jiao et al. [20] performed model tests on reinforced
concrete beams with AE and studied the correlations
between the cumulative crack width and AE parameters.
Logoń [21] conducted tests on quasi-brittle composites to
identify the destruction process using AE and a sound
spectrum. It was necessary to clarify the damage steps
separately to understand the failure mechanisms. Deep
learning methods have also been used to verify the damage
steps in recent studies. Xu et al. [22] investigated the
identification of seismic damage and source locations
using a CNN with 400 raw images. The images were
captured using a digital camera at different locations with
varying degrees of damage. Furthermore, Jang et al. [23]
proposed a new detection method for concrete cracks using
CNNs with hybrid images. The hybrid images improved
the crack detection accuracy by combining visible and
infrared information. Silva et al. [24] presented a deep
principal component analysis (PCA) approach for concrete
damage identification. However, the correlations between
AE parameters and damage steps have yet to be studied.
To investigate how the damage location and damage step

correlate with AE parameters, this study carried out pile hit
experiments and uniaxial compressive strength (UCS)
experiments. Pile hit experiments were conducted to
simulate the damage location, and compressive uniaxial
experiments were performed to simulate the damage steps
of concrete. Subsequently, a new damage location
detection and damage step evaluation method was
proposed using the analyzed test data with deep learning.
The remainder of this paper is organized as follows.

First, a damage location prediction method based on a back
propagation (BP) neural network deep learning model is
developed and verified using the pile hit experiment data.
Second, a damage step prediction model is developed
based on the classification learner app using the UCS
experiment data. Finally, a new damage detection and
evaluation method for pile foundations is proposed.

2 Damage location prediction

2.1 Data collection from pile hit experiments

Figure 1 shows the experimental setup of the pile hit test,
which was performed to obtain damage location simulation
data for deep learning. The specimen was a scale model of

a pile foundation, including a pile cap, an artificial bedrock
and six piles. The dimensions of the specimen are shown in
Fig. 1. The three-dimensional sizes of the pile cap and
artificial bottom rock bed were 144 cm � 96 cm � 25 cm,
and the depth of the piles was 100 cm. Six piles were
deployed in two rows and three columns on the artificial
bottom rock bed. The row and column spacings between
the centers of the piles were 48 cm. The diameter of the
piles was 16 cm (refer to Fig. 1(g)). Ten AE sensors were
installed on the specimen, with six sensors installed on the
pile cap and four sensors installed on the artificial bedrock,
as shown in Figs. 1(g) and 1(h).
Six hit points were selected on the pile at 20 cm intervals

from the pile bottom to top, with each point including four
different hit directions separated by 90° angles (Fig. 1(c)).
Each point was hit with a small iron hammer five times in
each hit direction (Fig. 1(f)).
The pile hit experiment data were recorded using a

Micro-II Digital AE system (Fig. 1(d)). The threshold
(trigger level for recording AE signals) was set to 60 dB
after pretesting, which could effectively prevent surround-
ing noise interference.

2.2 Deep learning data set

The pile foundation specimen included six piles, and each
pile was hit in four directions. Each direction included six
hit points with varying depths, and each target point was
hit five times. With each hit, the AE signals were received
by the ten sensors installed on the specimen, with each
sensor receiving one AE signal. In total, 7200 AE signal
data points were detected (Fig. 2(a)). An AE signal has 17
characteristics (called AE parameters), which are defined
in Table l. The final size of the deep learning data set was
17 � 7200, of which a 17 � 7188 data set was randomly
selected as the sample set for training, and a 17 � 12 data
set was randomly selected as the validation set.

2.3 Back propagation neural network deep learning model

BP neural networks are adopted in artificial neural
networks [25]. These are a type of supervised learning
used to minimize errors, and the algorithm is trained by the
BP algorithm [26]. In the BP algorithm, signals propagate
forward and errors propagate in reverse during the learning
process [27]. The BP network structure consists of at least
three layers: an input layer, hidden layer, and output layer,
as shown in Fig. 2(b). The BP network learning model for
this study was built using the neural network toolbox in the
MATLAB R2019 software.
The process diagram of the BP network simulation

model used in this study is shown in Fig. 2(c). The input
sample data set was obtained from the pile hit experiments.
The size of this data set was 17 � 7188 (7188 columns of
data with 17 AE parameters).
The outputs were considered based on three target cases.
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Fig. 1 Experimental setup for the pile hit tests. (a) Diagrammatic sketch of test setup (cm); (b) specimen and testing; (c) hit directions;
(d) AE system; (e) AE sensor; (f) hammer; (g) diagrammatic sketch of top sensors installation (cm); (h) diagrammatic sketch of bottom
sensors installation (cm); (i) installation of top sensors; (j) installation of bottom sensors.
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For Case 1, a data set with a size of 2 (PL and DS) � 7188
was used to predict both PL and DS, where PL represents
the pile location, and DS represents the damage distance
from the pile cap. PL was set as the output for Case 2, and
DS was considered in Case 3. All three case targets were
output independently by three different training networks

with the same input sample data set. The network structure
built in this study is shown in Fig. 2(d).
The feed-forward BP network learning model was

selected in this study, and its specific details are listed in
Table 2. The model included 14 different training
functions. To select the best training function to achieve

Fig. 2 BP neural network modeling. (a) Total number of data points obtained in the AE test; (b) topology of the BP neural network; (c)
learning process of the BP neural network; (d) schematic concept of the three-layer BP neural network model; (e) schematic concept of the
four-layer BP neural network model.
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high accuracy, all of the functions were tested in the BP
network learning model; Table 3 lists the regression values
(R-values) for each function (a higher regression value
indicates a higher accuracy of the neural network
simulation model). The TRAINGLM training function,
which had the highest R-value, was selected to build the
BP network.
The TRAINGLM function is an artificial neural network

training function in which the weight and basis values are
updated via the Levenberg–Marquardt optimization. This
function is regarded as the fastest BP algorithm for neural
networks. Although it requires more memory than other

algorithms, it is strongly recommended to use TRAINGLM
as the preferred supervision algorithm.
The number of hidden layers and number of neurons in

the hidden layers will affect the prediction accuracy of a
given BP network learning model. To investigate the best
combination of hidden layers and neurons, the R-values
were determined for varying numbers of hidden layers (1
or 2) and neurons (10, 20, or 30) with the TRAINGLM
training function. Table 4 indicates that the combination of
two hidden layers with 20 neurons in each layer provided
the highest regression value (0.8076). The final BP
network structure established in this study is shown in
Fig. 2(e).

2.4 Verification of the damage location

2.4.1 Result validation

The BP neural network deep learning model was built
according to Fig. 2(e) and trained using the test data set
(size: 17 � 7188). The output of this training model was

Table 1 AE parameters with statistical values of the data set

no. AE parameter definition minimum maximum mean median standard
deviation

1 arrival time (µs) time at which an AE wave reaches the sensor 1.2 39.5 17.6 17.6 9.6

2 channel no. also referred to as the sensor number; different sensors are
connected to the AE system by different channels

1.0 10.0 5.0 6.0 2.8

3 rise time (µs) time between the first signal crossing the threshold and the
maximum amplitude

60.0 15960.0 1754.3 1570.0 1279.5

4 counts number of oscillations of the signal over the threshold 11.0 364.0 125.0 126.0 38.0

5 energy area under the signal detection envelope 421.0 65535.0 16161.0 14245.0 10849.0

6 duration (µs) time between the first and last threshold crossing 4140.0 56950.0 20619.0 19880.0 6746.0

7 amplitude (dB) maximum voltage of the AE waveform 65.0 99.0 91.3 93.0 6.7

8 RMS (V) root mean square (RMS) value of the detected signal 0.4 � 10–3 0.7 0.2 0.1 0.1

9 ASL (dB) average signal level (ASL) of the detected signal 18.0 79.0 64.6 66.0 7.2

10 counts to peak number of threshold crossings from the first to maximum voltage 1.0 118.0 18.5 17.0 10.4

11 signal strength (pV$s) time integral of the absolute signal voltage 2.6 � 106 4.6 � 108 1.0 � 108 8.9 � 107 6.8 � 107

12 absolute energy (aJ) time integral of the square of the unamplified signal voltage,
expressed in attojoules

2.5 � 105 1.7 � 109 2.0 � 108 1.2 � 108 2.3 � 108

13 average frequency
(kHz)

ratio of the counts to duration, divided by 1000 2.0 12.0 6.2 6.0 1.5

14 reverberation
frequency
(MHz)

(counts-counts to peak) divided by (duration-rise time) 1.0 11.0 5.3 5.0 1.5

15 initiation frequency
(MHz)

counts to peak divided by the rise time 2.0 26.0 10.9 11.0 3.1

16 frequency centroid
(kHz)

centroid of the power spectrum 5.0 21.0 10.2 10.0 2.3

17 peak frequency
(kHz)

greatest power point of the spectrum 1.0 17.0 6.6 4.0 4.8

Table 2 Specific details of the BP network

network type feed-forward BP

adaption learning function LEARNDM

performance function MSE

number of layers 2

transfer function TANSIG
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designed as target case 1 (output: both PL and DS). The
regression value of the training model was 0.8076. Twelve
data groups (size: 17 � 12) were applied to validate the
trained model, and the PL and DS values were predicted, as
listed in Table 5. PL and DS were subsequently extracted
from the output data separately, and a comparison of the
predicted and actual values is shown in Fig. 3. It is clear
that the predicted values of DS are in good agreement with
the actual values; however, this is not the case for the
predicted PL values, in which only three data groups
(groups 5, 7, and 8) are in good agreement. As such, PL

cannot be accurately predicted by the trained BP network
deep learning model.

2.4.2 Influences of individual parameters on the regression
values

The AE data comprise 17 parameters. However, the
influence of each parameter has yet to be verified to
determine the weighting that will result in the highest
regression value for the developed model. It is crucial to
explore the impact weight of each parameter to achieve the
BP network learning model with the best performance for
damage location prediction. To determine the sensitivity of
each AE parameter in the built network model, a single
parameter was removed from the input data set to generate
new simulation data sets (refer to Table 6).
The 14 cases with different input parameters are listed in

Table 6; test case 1 was represents the group containing all
parameters. The ‘rise time’ was removed from test case 2,
and in a similar manner, ‘counts’ was removed from test
case 3. Subsequently, different parameters were removed
from each of test cases 4 to 14 in the same manner. In test
case 12, the five types of frequency parameters (‘average
frequency’, ‘reverberation frequency’, ‘initiation fre-

Table 3 Comparison of different training functions for the BP network

No. training function regression value

1 TRAINBFG 0.7077

2 TRAINBR 0.7088

3 TRAINCGB 0.7028

4 TRAINCGF 0.6977

5 TRAINCGP 0.7038

6 TRAINGD 0.6902

7 TRAINGDM 0.6932

8 TRAINGDA 0.6787

9 TRAINGDX 0.6849

10 TRAINGLM 0.7579

11 TRAINOSS 0.4741

12 TRAINR 0.6845

13 TRAINRP 0.7066

14 TRAINSSG 0.7114

Table 4 Comparison of varying numbers of hidden layers and neurons

hidden layers 10 20 30

1 0.7579 0.7825 0.7835

2 0.7737 0.8076 0.8051

Table 5 Validation results for PL and DS

data group PL
a) (pile no.) DS

b) (cm)

actual predicted actual predicted

1 1.00 3.02 20.00 5.38

2 1.00 2.04 80.00 80.55

3 2.00 2.85 40.00 33.80

4 2.00 4.19 100.00 95.89

5 3.00 3.17 0.00 0.33

6 3.00 3.68 60.00 57.34

7 4.00 4.31 20.00 21.44

8 4.00 3.98 40.00 29.01

9 5.00 2.71 80.00 87.48

10 5.00 1.05 100.00 99.98

11 6.00 5.25 0.00 1.10

12 6.00 3.83 60.00 50.18

Notes: a) PL: pile location; b) DS: damage distance from the pile cap.

Fig. 3 Model validation results for PL and DS. (a) Validation results of PL; (b) validation results of DS.
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quency’, ‘frequency centroid’, and ‘peak frequency’) were
removed together, as they have the same frequency
characteristics and were thus regarded as a single
parameter.
Figures 4(a) and 4(b) shows the regression plot for Case

1. The 7188 data groups in Case 1 were separated into
three sets: a training set (70%), validation set (15%), and
testing set (15%). Subsequently, a regression plot was
generated for each set. In the regression plot of DS, the
regression values of the three sets were approximately the
same (R ≈ 0.9800). In the regression plot of PL, the training
set (R = 0.6346) performed better than the validation set (R
= 0.5009) and test set (R = 0.4749).
In the training process for the neural network, more

epochs of training were effective for reducing the error.
However, as overfitting or underfitting problems occur in
the neural network, the error in the validation set may
begin to increase. In the default setup of the neural network
applied in this study, the training stopped after six
continual increases in the validation error. The best
validation performance of the neural network was
determined at the epoch with the minimum validation
error. Figures 4(c) and 4(d) shows the performance of the
neural network for Case 1. The training of the neural
network for the prediction of DS was stopped at epoch 32,
and the best validation performance was determined at
epoch 26. The training of the neural network for the
prediction of PL was stopped at epoch 31, and the best

validation performance was determined at epoch 25.
The mean square error (MSE) and root mean square error

(RMSE) were used to evaluate the regression model in this
study. MSE is a measure of the distance between a fitting
line and a data point. RMSE is the root of MSE. Smaller
MSE and RMSE values indicate a higher accuracy of the
neural network simulation model. MSE and RMSE are
defined as follows [28]:

MSE ¼ 1

n

Xn

i¼1

ŷi – yiÞ2,
�

(1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ŷi – yiÞ2,
�

s
(2)

where ŷ ¼ ŷ1,ŷ2,:::,ŷngf (predicted value), y ¼ fy1,y2,:::,
yng (true value), and n ¼ number of data groups.

The test results show that, with the exception of Case 13,
the regression values for the prediction of DS remained
mostly high (≈0.9800, refer to Fig. 5). For Case 13, the
regression value of DS dropped to 0.69 when the ‘arrival
time’ was removed from the full data set; the MSE
increased from 43.87 to 641.46, and the RMSE increased
from 6.62 to 25.32. This implies that the ‘arrival time’ is an
important and sensitive parameter for DS, more so than the
other parameters. The regression values for PL vary within
a small range.

Table 6 Comparison of the test groups to evaluate parameter sensitivity

test
case

input parameters data set size PL DS

regression value MSEa) RMSEb) regression value MSE RMSE

1 all 17 � 7188 0.5801 1.91 1.38 0.9814 43.87 6.62

2 remove (rise time) 16 � 7188 0.5950 1.93 1.39 0.9801 42.55 6.52

3 remove (counts) 16 � 7188 0.5628 1.97 1.40 0.9817 44.18 6.69

4 remove (energy) 16 � 7188 0.5272 2.01 1.42 0.9811 44.06 6.64

5 remove (duration) 16 � 7188 0.5857 1.92 1.39 0.9810 41.38 6.43

6 remove (amplitude) 16 � 7188 0.5554 1.98 1.41 0.9824 42.02 6.48

7 remove (RMS) 16 � 7188 0.5868 1.92 1.38 0.9809 44.14 6.64

8 remove (ASL) 16 � 7188 0.5750 1.96 1.40 0.9828 44.27 6.53

9 remove (counts to
peak)

16 � 7188 0.5777 1.95 1.39 0.9821 41.38 6.43

10 remove (signal
strength)

16 � 7188 0.6132 1.86 1.36 0.9800 44.53 6.67

11 remove (absolute
energy)

16 � 7188 0.5858 1.92 1.39 0.9820 43.03 6.5594

12 remove frequencies 12 � 7188 0.5251 2.16 1.47 0.9804 44.78 6.69

13 remove (arrival
time)

16 � 7188 0.5555 2.05 1.43 0.6931 641.46 25.32

14 remove (channel
no.)

16 � 7188 0.5396 2.09 1.45 0.9808 43.52 6.60

Notes: a) MSE: mean square error; b) RMSE: root mean square error.
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To analyze the possibility of using a single parameter to
predict PL or DS, the BP neural network deep learning
model was trained using each of the individual parameters.
The BP neural network deep learning model was built as
described previously, and a selected single parameter was
set as the input parameter. In contrast to the previous tests
presented in Table 6, only a single parameter was input for
each case in this model with the same output target case
(Table 7). Case 1 represents the data set containing all
parameters for comparison, whereas the other cases
represent the single input parameters; for example, only
the ‘rise time’ was input in Case 2.
The validation results show that the regression value of

PL for Case 12 (i.e., frequency) was 0.35, whereas the
values for the other cases were approximately 0.1, except
for Case 1 (Table 7). This implies that the frequencies
slightly affected PL. The regression value of DS was

Fig. 4 Regression and performance plot for Case 1. (a) Regression plot for predicting DS; (b) regression plot for predicting PL; (c) ANN
training performance for predicting DS; (d) ANN training performance for predicting PL.

Fig. 5 Regression values for the prediction of DS and PL

according to the test group number (refer to Table 6 for definitions
of the test group numbers).
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similar to that in the previous test for Cases 1 and 13;
however, the other cases exhibited low accuracy for DS.
The ‘arrival time’was a key parameter for the prediction of
DS; in other words, DS can be predicted by a BP neural
network deep learning model using the ‘arrival time’ of an
AE signal. In contrast, there were no key parameters for the
prediction of PL, and even the use of all parameters cannot
satisfy the accuracy requirements, as the regression value
was limited to only 0.58.

2.4.3 Influences of the installation location and number of
sensors

The influences of the installation location and number of
sensors were explored using BP neural network deep

learning. Ten AE sensors were installed on the pile
foundation specimen. Six sensors were installed on the top
surface of the pile cap, which are defined as the ‘top
sensors’. The remaining four sensors were installed on the
artificial bedrock and are referred to as ‘bottom sensors’
(Fig. 1(j)).
As summarized in Table 8, the data sets gathered from

each sensor were prepared as ten cases. Each data group
was composed of 720 columns of data with 16 parameters.
As there is no ‘channel no.’ in the single-sensor data sets,
the number of parameters was reduced to 16 compared
with the data sets for all sensors.

The ten data sets from the individual sensors were used
to generate a new BP neural network deep learning model
in the same manner as described previously. The neural

Table 7 Regression values with single parameters

test
case

input parameters data set size output regression

PL DS

1 all 17 � 7188 0.5801 0.9814

2 rise time 1 � 7188 0.0965 0.0868

3 counts 1 � 7188 0.0739 0.1140

4 energy 1 � 7188 0.1062 0.1257

5 duration 1 � 7188 0.1695 0.1448

6 amplitude 1 � 7188 0.0782 0.1179

7 RMS 1 � 7188 0.1158 0.0946

8 ASL 1 � 7188 0.1168 0.0984

9 counts to peak 1 � 7188 0.0692 0.0913

10 signal strength 1 � 7188 0.1114 0.1257

11 absolute energy 1 � 7188 0.1131 0.0940

12 frequency (Aa)-Rb)-Ic)-Cd)-Pe)) 5 � 7188 0.3500 0.3291

13 arrival time 1 � 7188 0.1454 0.9760

14 channel no. 1 � 7188 0.0016 0.0012

Notes: a) A: average frequency; b) R: reverberation frequency; c) I: initiation frequency: d) C: frequency centroid; e) P: peak frequency.

Table 8 Comparison of the results for test groups comprising individual channels

data set sensor number data size PL DS

regression value MSE RMSE regression value MSE RMSE

all channels 17 � 7188 0.5801 1.91 1.38 0.9814 43.87 6.62

S1 sensor 1 16 � 720 0.6762 1.65 1.28 0.9862 39.91 9.32

S2 sensor 2 16 � 720 0.6501 1.69 1.30 0.9832 37.49 6.12

S3 sensor 3 16 � 720 0.6209 1.79 1.34 0.9815 44.41 6.66

S4 sensor 4 16 � 720 0.6635 1.64 1.28 0.9840 38.57 6.21

S5 sensor 5 16 � 720 0.6917 1.54 1.24 0.9858 33.01 5.75

S6 sensor 6 16 � 720 0.6695 1.62 1.27 0.9853 34.69 5.89

S7 sensor 7 16 � 720 0.7926 1.08 1.04 0.9849 35.45 5.95

S8 sensor 8 16 � 720 0.7854 1.12 1.06 0.9847 36.24 6.02

S9 sensor 9 16 � 720 0.7957 1.09 1.05 0.9848 38.23 6.18

S10 sensor 10 16 � 7 20 0.7976 1.06 1.03 0.9833 39.19 6.26
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network evaluation metrics, i.e., the regression, MSE, and
RMSE values, are listed in Table 8. The regression values
for the prediction of PL were significantly greater for the
four bottom sensors: the average values for the top and
bottom sensors were 0.6620 and 0.7928, respectively. The
MSE and RMSE for the prediction of PL were significantly
lower for the four bottom sensors: the averageMSE values
for the top and bottom sensors were 1.65 and 1.09,
respectively, and the average RMSE values for the top and
bottom sensors were 1.29 and 1.05, respectively. For DS,
the average values of the evaluation metrics were
maintained at the same level in both the top and bottom
sensors. These results demonstrate that the installation
location and number of sensors influence PL but do not
affect DS (Fig. 6). Regardless of the number or location of
the sensors used, the regression value of DS remained
almost constant.
Given these results, it seems likely that a single-sensor

data set is sufficient for the prediction of DS using the BP
network deep learning model. For PL, data sets from the
individual channels resulted in varying degrees of
improvement in terms of the regression value. The four
bottom sensors installed on the artificial bottom bedrock
resulted in significant improvements, with the regression
value reaching 0.7976. The remaining six top sensors
installed on the pile cap also improved the regression
value, but were not sufficient to meet the prediction
requirements.

2.4.4 Comparison of ‘time difference’ and ‘arrival time’

In this study, the ‘arrival time’ data were used for BP neural
network deep learning. However, ‘arrival time’ does not
refer to the actual time of the signal wave, as it includes the
waiting time of each hit. Previous studies often used the
‘time difference’ of different sensors to calculate the
location of the AE source [29,30]. To verify the influences

of the ‘arrival time’ and ‘time difference’ on the regression
values of the BP deep learning model, a comparison study
was conducted.
The six top sensors were selected for this comparison

study, and a deep learning data set was prepared. The size
of the new data set was 17 � 4320 (4320 columns of data
with 17 parameters). The ‘arrival time’ was used in the
original group, and the ‘time difference’ was used in the
comparison group. As the AE signals were received by the
six sensors, the first ‘arrival time’ was set as the base time,
and the ‘time difference’ was calculated for each sensor
according to the base time. Here, the first ‘arrival time’was
set to zero.
The results of this comparison study shows that when

the ‘time difference’ was used instead of the ‘arrival time’,
the regression value of PL increased from 0.5362 to
0.7472, whereas the regression value of DS decreased from
0.9823 to 0.7198. This implies that using the ‘time
difference’ can improve the accuracy of the BP neural
network deep learning model for the detection of PL.
However, it has the opposite influence on the detection of
DS. Thus, separate BP neural network deep learning
models should be built to detect PL and DS. The ‘arrival
time’ should be used to detect DS, and the ‘time difference’
should be used to detect PL.

3 Damage step prediction

3.1 Data collection from failure experiments

To obtain experimental data for the damage step prediction
with deep learning, a UCS test was performed using
concrete specimens. As illustrated in Fig. 7, the test setup
consisted of a compressive testing system and an AE
system. Six sensors were installed on the cylindrical
specimen, and the installation locations of the sensors are
shown in Fig. 7(a). The cylindrical specimens (dimensions:
5 cm in diameter � 10 cm in height) were placed on the
loading cell and acted on by the compressive press with a
loading rate of 0.15 mm/min (Fig. 7(c)).
Table 9 lists the physical properties of the specimens

with different mixing ratios. The samples were prepared in
three groups according to the mixing ratio (water: cement:
sand): Group A, Group B, and Group C had mixing ratios
of 1:2:0, 1:2:2, and 1:2:4, respectively. Each group
included five different specimens with the features of
UCS and P-waves.

3.2 Data set for the classification learner

The data set for the classification learner was built by
combining all of the data acquired by the six installed
sensors. This data set contained all of the parameters
except for the ‘arrival time’ and ‘channel no.’ as these two
parameters had no influence on the damage step clarifica-

Fig. 6 Change in the regression value with different sensor
locations (refer to Table 8 for definitions of the test groups).
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tion. Instead of ‘arrival time’ and ‘channel no.’, the UCS
and P-wave velocity data were added to the classification
data set to identify different types of concrete.
The data set was 166000 � 18 in size, i.e., it contained

166000 rows of data with 18 columns. Columns 1 to 17 are
the observations to classify, and column 18 is the labeled
layer. Each row represents one sample, and each column
represents a different parameter. The labeled layer defines
the damage step. The damage step was identified by the

stress ratio (applied stress/failure stress) acquired during
the test (Table 10) [31].
Dimension reduction is effective for improving the

classification accuracy of high-dimensional data. Neigh-
borhood component analysis (NCA) is an effective
dimension reduction method for high-dimensional data
[32,33]. In this study, NCA was applied to reduce the
dimensions of the data set.
Figure 8 shows the average values of the normalized

Fig. 7 Illustration of the UCS tests used to obtain AE signals. (a) Sensor installation; (b) test setup; (c) testing.

Table 9 Physical properties of the concrete specimens

group sample UCS (MPa) P-wave velocity (m/s) density (g/cm3) mixing ratio (water:cement:sand)

A a-1 25.0 2861 1.59 W:C:S = 1:2:0

a-2 26.8 2951 1.57

a-3 20.9 2171 1.67

a-4 28.8 4353 1.67

a-5 12.4 3800 1.71

B b-1 26.4 4519 2.02 W:C:S = 1:2:2

b-2 19.3 4977 1.98

b-3 26.7 4895 1.96

b-4 28.7 5057 1.99

b-5 39.5 4949 2.02

C c-1 23.2 4910 2.03 W:C:S = 1:2:4

c-2 21.9 4493 2.07

c-3 6.0 3968 1.95

c-4 15.3 5057 1.97

c-5 18.4 4811 1.99
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weights for the 17 AE parameters computed 50 times using
the NCA. The normalized weights of nine AE parameters
were greater than 0.01. Thus, the following parameters
were determined to be effective parameters for the damage
step: the ‘UCS’ (0.39), ‘P-wave velocity’ (0.52), ‘ampli-
tude’ (0.65), ‘average frequency’ (0.29), ‘ASL’ (1),
‘reverberation frequency’ (0.54), ‘initiation frequency’
(0.25), ‘frequency centroid’ (0.68), and ‘peak frequency’
(0.42). The normalized weights of eight AE parameters
were less than 0.01. These were determined to be
ineffective parameters for the damage step: the ‘rise
time’, ‘counts’, ‘energy’, ‘duration’, ‘RMS’, ‘counts to
peak’, ‘signal strength’, and ‘absolute energy’. The eight
ineffective parameters were removed from the data set. As

a consequence, the dimension of the data set was reduced
from 17 to 9 parameters.

3.3 Prediction model

A classification learner is a type of supervised machine
learning that offers learnable algorithms for classifying
new observations based on given labeled data. The
accuracy of the result can be provided directly by the
classification learner, and the confusion matrix plot and
receiver operating characteristic (ROC) curve can also be
explored [34]. The ROC is a metric used to evaluate the
output quality of the classifier. The ROC area refers to the
area enclosed by the ROC curve, X axis, and Y axis. The
range of the ROC area is [0,1]. The output quality of the
classification depends on the ROC area: a higher value of
the ROC area indicates a higher classification output
quality.
Different classifiers have different performance for the

prediction of the damage step. Table 11 lists the average
value of the classification accuracy and ROC area for six
different classifiers after performing the classification 50
times. The classification accuracy of the decision tree,
support vector machine (SVM), and ensemble classifier
were greater than 70%. The ensemble classifier has the
highest accuracy (78.2%) compared with the other
classifiers. The classification accuracies of the naive
Bayes classifier, nearest neighbor classifier, and discrimi-
nant analysis were lower than 70%. Consequently, the
ensemble classifier was determined to be an effective
classifier for predicting the damage step.

3.4 Verification of the damage step

The classification accuracy of the ensemble classifier was
78.2% with 5-fold cross-validation. The confusion matrix
of the ensemble classifier and the prediction results are
shown in Fig. 9. The positive predictive value of damage
step I was 83%, which is a reliable value that is of great
importance in SHM because damage step I is the critical
step for fixing structures. The positive predictive values of
damage steps II and III were 75% and 77%, respectively.
These values, although not ideal, can offer reference values
for evaluating the damage steps, as both are greater than

Table 10 Damage step identification

stress ratio damage step phenomenon

0%–35% I no crack generation

35%–97% II crack generation and expansion

97%–100% III structure failure

Fig. 8 Normalized weights of 17 AE parameters (1. UCS (MPa);
2. P-wave velocity (m/s); 3. rise time; 4. counts; 5. energy; 6.
duration; 7. amplitude; 8. average frequency; 9. RMS; 10. ASL; 11.
counts to peak; 12. reverberation frequency; 13. initiation
frequency; 14. signal strength; 15. absolute energy; 16. frequency
centroid; 17. peak frequency).

Table 11 Comparison of different classifiers

classifier tree accuracy ROC area

decision tree fine tree 73.4% 0.86

SVM quadratic SVM 72.7% 0.85

naive Bayes classifier Gaussian naive Bayes 59.2% 0.74

nearest neighbor classifier fine KNNa) 63.4% 0.72

ensemble classifier bagged tree 78.2% 0.90

discriminant analysis quadratic discriminant 64.2% 0.79

Notes: a) KNN: k-nearest neighbors.
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50%. In summary, the trained classification learner can be
used to evaluate the damage step of concrete structures; in
particular, the classification learner can effectively evaluate
damage step I.

4 Discussion: detection and evaluation
method for pile foundations

Owing to the complexity of underground environments,
pile foundations are vulnerable to unexpected damage.
Thus, it is essential to perform continuous monitoring of
such structures during their service lives. This is
particularly important as pile foundations remain under-
ground, and thus it is difficult to excavate the surrounding
soil to monitor the foundations during their service life.
This study provides a practical detection method that
utilizes deep learning technology.
The detection method includes two steps (Fig. 10). The

first step is a damage-simulating phase in which data are
collected for varying damage locations and damage steps
of the target structure. This step is carried out during the
construction of pile foundations. The damage location
simulation test can be carried out using hammer hits or an
ultrasonic generator, and all potential source locations
must be covered. Damage step simulation tests are carried
out by conducting failure tests using target concrete
specimens. Subsequently, the data sets for deep learning
are produced after the two aforementioned simulation tests.

Fig. 9 Confusion matrix and prediction results.

Fig. 10 Conceptual diagram of the process for detecting the damage locations and steps of pile foundations.
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The second step is a deep learning training phase in
which BP neural network deep learning models are used to
predict PL and DS. Different BP networks are trained using
the data sets obtained in the previous step.
Models A1 and A2 are provided for the prediction of PL.

The difference between models A1 and A2 is that the data
set of the former is collected from the top sensors with
‘time difference’ as an input parameter, whereas the data
set of model A2 is acquired from the bottom sensors and
uses the ‘arrival time’ as an input parameter. Model B is
used for the prediction of DS. In this model, only the
‘arrival time’ is used as the input parameter, and there are
no prerequisites for the sensor installation location. Model
C is provided for the damage step evaluation.
The trained models can be used directly to detect the

damage location of in-service pile foundations without the
need for excavation, and can easily evaluate the damage
using the classification learning model. The accuracy ofDS

(model B) is very high and always satisfies the detection
requirement. The accuracy of PL cannot reach such
accuracy levels but can offer reference values for health
monitoring. The accuracy levels could be improved by
using high-quality sensors or modified deep learning
models.

5 Conclusions

This study performed experimental and analytical inves-
tigations to propose a new method for detecting and
evaluating damage in pile foundations. The main findings
are as follows.
1) The damage location was identified using the pile

location (PL) and the distance from the pile cap (DS). It was
found that PL and DS should not be predicted together by a
single trained BP neural network deep learning model;
specifically, two separate data set models are required to
predict PL and DS.
2) The ‘arrival time’ is a key parameter for detecting DS;

the BP neural network deep learning model achieves the
same regression value regardless of whether all parameters
are used or only ‘arrival time’ is used. Thus, using only
‘arrival time’ is sufficient for predictingDS. For PL, there is
no key parameter that can be used to predict the value,
unlike for DS. Using the ‘time difference’ instead of the
‘arrival time’ significantly increases the regression value of
PL, but decreases the regression value of DS. Thus, the
‘arrival time’ should be replaced by the ‘time difference’
when predicting PL.
3) The regression value of Ds is unaffected by the

number of sensors used. However, the number of sensors
slightly influences PL; a single sensor can increase the
regression value of PL.
4) The installation locations of the sensors did not

influence the regression value ofDS. On the other hand, the
regression value of PL increases significantly when using

the bottom sensors. This implies that bottom sensors are
required to detect PL with high accuracy.
5) The trained classification learner can be used to

evaluate the damage steps of concrete structures.
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