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ABSTRACT The creation of the new “Ferry-Free Coastal Highway Route E39” in southwest Norway entails the
production of a remarkable quantity of crushed rocks. These resources could be beneficially employed as aggregates in
the unbound courses of the highway itself or other road pavements present nearby. Two innovative stabilizing agents,
organosilane and lignosulfonate, can significantly enhance the key properties, namely, resilient modulus and resistance
against permanent deformation, of the aggregates that are excessively weak in their natural state. The beneficial effect
offered by the additives was thoroughly evaluated by performing repeated load triaxial tests. The study adopted the most
common numerical models to describe these two key mechanical properties. The increase in the resilient modulus and
reduction in the accumulated vertical permanent deformation show the beneficial impact of the additives. Furthermore, a
finite element model was created to simulate the repeated load triaxial test by implementing nonlinear elastic and plastic
constitutive relationships.

KEYWORDS organosilane, lignosulfonate, crushed rocks, pavement unbound layers, repeated load triaxial test, finite element
analysis

1 Introduction

1.1 Project background

According to the Norwegian Public Roads Administration
(NPRA), the overarching aim of the “Ferry-Free Coastal
Highway Route E39” project is to enhance the condition of
the existing road network along the coast of southwest
Norway by revamping the highway infrastructure present
between Trondheim and Kristiansand [1]. This project is
highly significant for the Norwegian economic system [2].
The widespread tunneling blasting operations that are
being conducted to create new and faster routes generate
considerable quantities of crushed rocks. These resources
could be employed as aggregates in the unbound courses of

the highway itself or other road pavements present nearby,
thus curtailing the use of non-local materials, promoting a
sustainable construction [3–5], and consequently bolster-
ing Norway’s national goal of becoming carbon neutral
during this decade [6].
To avoid the formation of excessive distresses in the

road structure [7], the NPRA demands that the aggregates
(unbound granular materials, UGMs) meet some qualifica-
tion tests [8,9] regarding shape [10], flakiness [11],
resistance to fragmentation (Los Angeles test, LA) [12],
and resistance to wear (micro-Deval test, MDE) [13,14].
Previous research [15] has investigated the geological

origin of rocks present along the E39 highway. Three rock
types (referred to as M1, M2, and M3) were collected and
characterized according to the aforementioned standard
tests. The qualification tests are met by M1 (“strong”
aggregates), whereas M2 and M3 exceed the limit values
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therefore cannot be employed in their natural status in the
unbound courses of road pavements.

1.2 Stabilization technologies

In recent decades, different stabilization solutions for
unbound materials have been investigated, e.g., bitumen,
cement, fly ash, and lime, just to mention a few [16–23].
Furthermore, two innovative technologies have exhibited
preliminary positive outcomes when it comes to enhancing
the mechanical properties of “weak” aggregates [24].
These stabilizing agents are based on organosilane and
lignosulfonate, and are designated as polymer-based (P)
additive and lignin-based (L) additive in this study,
respectively. These technologies modify the mechanical
performance of aggregates entailing macroscopic enhance-
ment [25–29]. The P agent promotes the creation of strong
siloxane (= Si-O-Si =) chemical polar bonds. The L agent
is an organic product comprising both hydrophilic and
hydrophobic linkages [30,31].

1.3 Objectives

The effectiveness of the stabilizing agents was investigated
in the laboratory by means of repeated load triaxial tests
(RLTTs), which evaluated the resilient modulus and
resistance against permanent deformation. The most
common numerical models were adopted to describe
these two key mechanical properties, thus expanding the
research accomplished thus far [32].
Furthermore, a finite element model simulating the

RLTTwas created. Numerical analyses were carried out to
study the behavior of UGMs, and non-linear elastic and
plastic constitutive relationships were considered [33]. The
experimental and numerical results were compared in
terms of vertical permanent deformation.

2 Materials and methods

2.1 Materials tested

Referring to the three crushed rock types (M1, M2, and
M3) initially collected [15] to represent the geology spread
along the highway alignment, this study focuses on the
weak material M2. It has a metamorphic origin and is a
fine-grained felsic and micaceous rock. The numerical
models adopted and discussed for M2 in the following
sections could also be analogously extended to M3 (or
other aggregate types).

2.2 Repeated load triaxial test

The stiffness and the resistance to permanent deformation
of UGMs were thoroughly investigated using RLTTs. The
stress level, moisture content, dry density, grading, and

mineralogy [34–37] are the most relevant variables that
determine the mechanical performance.
Figure 1 displays the preparation procedure for running

a RLTT. Initially, 7300 g of aggregates were blended
(Fig. 1(a)) considering the selected gradation depicted in
Fig. 2 with the reported upper and lower grain size
distribution curves for a base layer [7,8]. Water and
additive, if necessary, are added to the aggregates, which
rest for 24 h to allow the moisture to be distributed
uniformly inside plastic bags (Fig. 1(b)). Both organosi-
lane and lignosulfonate were blended with M2 at the
optimum moisture content (OMC), which is equal to 5% in
mass for the considered grading curve distribution. The
quantity of organosilane mixed with the crushed rocks was
0.5% (40 g), and the amount of lignosulfonate added was
1.5% (120 g). The former admixture is effective after
application, whereas the latter admixture requires curing to
attach to the aggregates. A Kango 950X vibratory hammer
(total weight 35 kg, frequency 25–60 Hz, amplitude 5 mm)
compacted the specimen layers for 30 s (Fig. 1(c)); the bulk
density and dry density were assessed as specified by
Ref. [38]. The sample was fully compacted inside the steel
mold (Fig. 1(d)); afterwards, it was extracted vertically by
means of a dedicated ejecting tool and the specimen was
encapsulated in a latex membrane (Fig. 1(e)). In the last
step, another latex membrane, two metal end plates, four
plastic rings, and two hose clamps sealed the sample, thus
avoiding the penetration of the water used to exert the
confining pressure (Fig. 1(f)). Three and three linear
variable differential transducers (LVDTs) evaluated the
axial and radial deformations, respectively (Fig. 1(g)).
Finally, the test was ready to run (Fig. 1(h)).
Two types of stresses were applied during the RLTT:

uniform confining stress (σt, triaxial or confining) and
vertical dynamic stress (σd, deviatoric); the latter varied
following a sinusoidal pattern. According to the multi-
stage low stress level (MS LSL) testing procedure, five σt
values (σt = 20, 45, 70, 100, and 150 kPa) defined as many
testing sequences: each sequence comprised six steps and
each step was characterized by a precise σd peak value
[39]. Figure 3 reports the stress path for the MS LSL
procedure considering σd and the bulk stress θ (θ = σ1+ s2

+ σ3 = σd + 3σt, where σ1, σ2, σ3 are the principal stresses).
One RLTT included up to 30 loading steps; for each of
them, the peak value of σd was applied 10000 times with a
frequency of 10 Hz. The overall results were assessed by
testing two replicate specimens for each studied propor-
tioning. For example, Figure 4 shows three investigated
samples after completion of the RLTT.
As previously mentioned, the L additive requires curing

to attach to the material particles. Therefore, the samples
(Figure 1(f)) treated with this agent were conditioned at
50°C for 24 h and subsequently at 22°C for 24 h, reaching
a water content of approximately 2%. Their performance
was compared to that of untreated samples with water
content w = 1% in mass. This is a conservative evaluation
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as the mechanical properties reduce when w augments
[40]. In contrast, the P additive is effective after its
application; therefore, these treated samples were com-
pared to untreated samples with w = 5%. Because of the
differences in w, the results described in Sections 3.1 and
3.2 are portrayed with two plots each time: one referring to
organosilane, and one referring to lignosulfonate.

2.3 Resilient modulus

Given a dynamic deviatoric stress Δσd and a constant σt,
the resilient modulus MR is expressed as

Fig. 1 RLTT specimen preparation phases. (a) Preparation of the aggregates; (b) aggregates mixed with water/additive; (c) hammer for
specimen compaction; (d) mold with compacted specimen; (e) extraction of the specimen from the mold; (f) placement of the specimen
inside the triaxial chamber; (g) mounting of LVDTs on the specimen; (h) specimen ready for triaxial testing.

Fig. 2 Grading curves for road base layer.

Fig. 3 Loading sequences and steps for the MS LSL procedure.

Fig. 4 Three illustrative RLTT samples: untreated, with organo-
silane, with lignosulfonate.
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MR ¼ Δ�d

εve
, (1)

where εve is the vertical resilient strain. The resilient
modulus represents the UGM behavior under repeated
traffic loading and is a key parameter for any mechan-
istically based design method [33,41,42].
MR can be efficiently described by non-linear relation-

ships considering a variety of different parameters [35]; the
equations presented in the following subsections are used
to evaluate the MR of the RLTT samples. All regression
parameters are obtained through the least-square method.

2.3.1 Hicks and Monismith model

Hicks and Monismith formulated a simple and effective
connection between MR and θ [43].

MR ¼ k1,HM�a
�

�a

� �k2,HM

, (2)

where σa is the reference pressure (100 kPa) and k1,HM, and
k2,HM are regression parameters. This relationship proposes
a neat evaluation of the mechanical performance in anMR–θ
plot. Owing to its simplicity, this model is mostly used to
interpret the resilient modulus of UGMs [35].

2.3.2 Uzan model

The Uzan model considers the presence of three
parameters, namely, MR, θ, and σ, as in Ref. [44]

MR ¼ k1,UZ�a
�

�a

� �k2,UZ �d

�a

� �k3,UZ

, (3)

where k1,UZ, k2,UZ, and k3,UZ are regression parameters. In
addition to the formulation proposed by the Hicks and
Monismith model, the one suggested by Uzan considers
the bulk stress and deviatoric stress at the same time. These
two factors are the most important factors affecting the
resilient modulus of UGMs [35]. The Uzan model enables
a useful comparison in a three-dimensional MR, θ, and σd
plot. It is also worth mentioning the Uzan and Witczak
model, which takes into consideration the octahedral shear
stress τoct instead of the deviatoric stress σd in order to
include full three-dimensional conditions [45]. Never-
theless, the application of the Uzan and Witczak model is
of limited interest in this study, as τoct can be easily
correlated to σd as follows: τoct =

ffiffiffi
2

p
σd/3, for σ2 = σ3

(condition valid for the performed RLTTs).

2.4 Accumulated permanent deformation

The deformational response of UGMs can be divided into
two parts: elastic (or resilient) and plastic (or permanent).
The latter, occurring due to the wearing and crushing of the

grains, may lead to pavement distress (rutting, potholes,
cracking, etc.) [36]. Moreover, the UGM permanent
deformation consists of two phases. In the first phase,
there is a rapid increase in permanent strain with the
application of load; in the second phase, the deformation
rate becomes constant and is characterized by volume
change [46,47]. The permanent deformation increases with
moisture content, as water reduces the effective stress and
friction [40].
A number of formulations can be employed to describe

the development of vertical permanent deformation εvp
based on the applied load pulses N or as a combination of
one or more of the following parameters: mean bulk stress
θm (θm = θ/3), mean deviatoric stress σd,m (σd,m = σd/3), and
vertical resilient deformation εve [48].

εvp ¼ f1ðNÞf2ð�m,�d,m,εveÞ: (4)

This study takes into consideration the models described
in the following subsections. All regression parameters are
obtained through the least-square method. As illustrated in
Section 2.2, an RLTT is composed of 30 steps (or,
equivalently, 30 stress-paths); the data obtained for each
step are fitted, which may create discontinuities between
the end of a step and the beginning of the following one, as
displayed in the images in Section 3.2.

2.4.1 Coulomb model

The Coulomb formulation considers that the mobilized
angle of friction ρ and the angle of friction at incremental
failure φ describe the degree of mobilized shear strength
and the maximum shear strength, respectively [49].
Consequently, these two angles define the material
according to three types of performance (elastic, elasto-
plastic, and failure) as presented in Table 1, in which each
loading step is classified based on the average strain rate _ε
developed between the cycles from 5000 to 10000 [49].

The elastic limit and the failure limit are defined by the
following equations, respectively:

�d ¼
2sin�ð�3 þ aÞ

1 – sin�
, (5)

�d ¼
2sinφð�3 þ aÞ

1 – sinφ
, (6)

where the apparent attraction a is specified as 20 kPa [37].

Table 1 Material classification based on the development of plastic
deformation

_ε performance

_ε< 2.5 � 10–8 elastic range

2.5 � 10–8< _ε< 1.0 � 10–7 elasto-plastic range

_ε> 1.0 � 10–7 failure range
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2.4.2 Barksdale model

Barksdale studied the UGM behavior by means of RLTTs
and found that the accumulation of permanent vertical
strain εvp is proportional to the logarithm of the number N
of load cycles [50] as follows:

εvp ¼ aBA þ bBALogðNÞ, (7)

where aBA and bBA are regression parameters.

2.4.3 Sweere model

Sweere also performed a series of RLTTs on UGMs and
found that the logarithm of permanent vertical strain εvp is
proportional to the logarithm of the number N of load
cycles [51] as follows:

logðεvpÞ ¼ aSW þ bSWLogðNÞ, (8)

where aSW and bSW are regression parameters.

2.4.4 Time hardening approach for Barksdale and Sweere
models

Both the Barksdale and Sweere models have been
developed to fit the data of a single-stage (SS) RLTT.
The results are plotted in a graph with the number N of load
repetitions along the x-axis and the accumulated vertical
permanent deformation εvp along the y-axis, where the first
value is equal to zero. In a multi-stage (MS) RLTT, the first
εvp of each loading step is different from zero (except for
the first RLTT step). As this study performs MS RLTTs, the
time hardening approach is adopted to describe the
experimental data [52,53]. According to the time hard-
ening approach, the εvp values corresponding to each
loading step are treated as the last part of as many curves;
each of them ideally corresponds to an SS RLTT, in which
the first εvp is zero. This study calculates 30 curves (one for
each loading step). Each curve is evaluated using the least-
square method with a third-order polynomial expression.
The data used to evaluate this third-order polynomial curve
are the experimental εvp values for the specific step.
Finally, for each loading step, the parameters of the chosen
model (aBA, bBA for the Barksdale model or aSW, bSW for
the Sweere model) are calculated through a least-square
regression considering the experimental εvp values of the
specific loading step and the first point of the ideal curve
(with the first εvp value equal to zero).

2.4.5 Hyde model

Hyde established the following formulation for permanent
vertical strain εvp encompassing the mean deviatoric stress
σd,m and triaxial stress σt [54]:

εvp ¼ aHY
�d,m

�t
, (9)

where aHY is a regression parameter.

2.4.6 Shenton model

Shenton proposed the following formulation for permanent
vertical strain εvp including the maximum mean deviatoric
stress σd,m,max, and triaxial stress σt [55]:

εvp ¼ aSH
�d,m,max

�t

� �bSH

, (10)

where aSH and bSH are regression parameters.

2.5 Finite element method RLTT modeling

The RLTT is modeled using COMSOL Multiphysics
software [56]. The goal is to describe the accumulation of
vertical permanent deformation, and the numerical and
experimental results are compared. Figure 5 shows a
portion of the model; the problem is two-dimensional
axisymmetric, and quadrilateral elements are used in the
mesh (height 180 mm, radius 75 mm, Poisson’s ratio 0.3,
and density 2300 kg/m3). A fixed boundary constraint was
applied at the bottom.

Different models can describe the UGM behavior: non-
linear elastic [33,57] and plastic [58,59] relationships have
been used by researchers to interpret the UGM behavior.
The following subsections detail the constitutive relation-
ships implemented in this study.
A time-dependent analysis is performed and the total

time is 30000 s, which is the actual duration of an RLTT.
Each loading step, as reported in Section 2.2, corresponds
to a specific combination of σt and σd and lasts for 1000 s;
the repetition of the deviatoric pulse is not considered.

Fig. 5 Mesh of the finite element method RLTT model.
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2.5.1 Modeling non-linear elasticity

COMSOL Multiphysics enables the implementation of a
non-linear elastic model by specifying the elastic modulus
law. The resilient moduli obtained by the Hicks and
Monismith and Uzan models are implemented.

2.5.2 Modeling plasticity

Tresca and von Mises yield criteria are used to model the
associated flow plasticity. Each model requires the
definition of two parameters, the initial yield stress σy
and plastic tangent modulus, to define the linear isotropic
hardening. The initial yield stress σy is equal to the
deviatoric stress σd of each loading step because plastic

deformation takes place from the beginning of each step.
The plastic tangent modulus is evaluated as a secant value
using the least-squares method in a graph displaying
σ1 – σ3 along the y-axis and εvp along the x-axis for the
Tresca model or (2/3)$εvp along the x-axis for the von
Mises model, as illustrated in Figs. 6 and 7, respectively.
Even if UGMs derive the bulk of their strength from

friction, and the Tresca and von Mises criteria contain no
frictional strength components, these models can represent
the cohesion generated by the stabilizing additives.
Furthermore, UGMs are not regarded as viscous materials

in the sense that applying a constant load does not cause a
time-dependent deformation. It may be worth mentioning
that models for viscosity could be adapted to account for the
gradual increase in εvp per RLTT load cycle [60].

Fig. 6 Evaluation of Tresca plastic tangent modulus.

Fig. 7 Evaluation of Von Mises plastic tangent modulus.
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3 Test results and discussion

3.1 Resilient modulus

Figures 8(a) and 8(b) display MR based on the Hicks and
Monismith formulation. The black and magenta colors
correspond to untreated and treated materials, respectively.
In addition to the Hicks and Monismith model, the Uzan

model takes into consideration the deviatoric stress σd as a
further parameter to characterize MR. The three-dimen-
sional plots reported in Figs. 9(a) and 9(b) refer to P and L
additives, respectively.

Table 2 presents the values of the regression parameters
for the Hicks and Monismith and Uzan models.
All the models clearly show that the additives are

effective solutions to enhance the resilient modulus MR of
the aggregates.

3.2 Accumulated permanent deformation

The use of the stabilizing technologies also leads
to significative improvements when it comes to the
deformation properties of the aggregates. Figure 10
shows the mobilized angle of friction ρ and the angle of

Fig. 8 Resilient modulus based on Hicks and Monismith formulation: (a) polymer-based (P) additive; (b) lignin-based (L) additive.

Fig. 9 Resilient modulus based on Uzan and Witczak formulation: (a) P additive; (b) L additive.

Table 2 Regression parameters for Hicks and Monismith, Uzan models

material Hicks and Monismith Uzan

k1,HM k2,HM k1,UZ k2,UZ k3,UZ

M2 (w = 5%) 2467 0.56 1577 1.06 –0.47

M2-P 5206 0.65 4813 0.74 –0.08

M2 (w = 1%) 2860 0.66 2216 0.92 –0.25

M2-L 4530 0.52 4881 0.45 0.06
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friction at incremental failure f for the untreated and
treated materials; both angles, ρ and f, are enhanced by
applying the additives. Table 3 details the values of the
boundary angles.

The accumulated vertical permanent deformations
evaluated according to the Barksdale and Sweere models
are shown in Figs. 11 and 12, respectively. These criteria fit
the experimental data corresponding to each single loading
step with the time hardening approach discussed in
Subsection 2.4.4. The treated materials show considerably
less permanent deformation than the untreated materials.
The Hyde model results are displayed in Figure 13. Each

loading sequence corresponds to a straight line; therefore,
five straight lines correspond to the MS RLTT.

Table 4 reports the regression parameter aHY corre-
sponding to each RLTT loading sequence.
The Shenton model results are displayed in Fig. 14. Each

loading sequence corresponds to a curve; therefore, five
curves correspond to the MS RLTT.
Table 5 reports the values of the regression parameters

aSH and bSH for each loading sequence. All the models
adopted to describe the accumulation of permanent
deformation indicate that the treated aggregates perform
better than the untreated ones.

3.3 Finite element method RLTT modeling

The aim of the modeling is to evaluate the permanent
vertical deformations εvp and compare the numerical
and experimental results. The choice of the nonlinear
elastic model (Hicks and Monismith, Uzan) is irrelevant,
as this part does not entail plastic deformations. The
first modeling attempt implements the Tresca plasticity
criterion. Figure 15(a) displays the results for the P
additive, whereas Fig. 15(b) shows the results for the L
additive.
The second modeling attempt implements the von Mises

plasticity criterion. Figure 16(a) displays the results for the

Fig. 10 Mobilized angle of friction ρ and angle of friction at incremental failure φ: (a) P additive; (b) L additive.

Table 3 Values of limit angles ρ and φ

material limit angles

ρ φ

M2 (w = 5%) 57.2 65.8

M2-P 64.6 67.8

M2 (w = 1%) 65.4 68.9

M2-L 64.4 70.3

Fig. 11 Accumulated vertical permanent deformation, Barskdale model: (a) P additive; (b) L additive.
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Fig. 12 Accumulated vertical permanent deformation, Sweere model: (a) P additive; (b) L additive.

Fig. 13 Accumulated vertical permanent deformation, Hyde model: (a) P additive; (b) L additive.

Table 4 Values of aHY for Hyde model

material seq 1 seq 2 seq 3 seq 4 seq 5

M2 (w = 5%) 1.74 4.60 6.60 9.23 11.18

M2-P 0.28 1.09 1.96 3.12 4.09

M2 (w = 1%) 0.18 0.49 0.92 1.46 2.39

M2-L 0.03 0.13 0.28 0.38 0.49

Fig. 14 Accumulated vertical permanent deformation, Shenton model: (a) P additive; (b) L additive.
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P additive, whereas Fig. 16(b) displays the results for the L
additive.
The Tresca plasticity criterion tends to overestimate the

results, whereas the von Mises plasticity criterion tends to
underestimate them. Table 6 reports the values of the
plastic tangent modulus.

4 Conclusions

This study investigated the use of two stabilizing agents

based on organosilane and lignosulfonate to enhance the
mechanical performance of aggregates to be employed as
construction materials in unbound courses of road
pavements. The investigation was achieved by means of
RLTTs.
The experimental data obtained were analyzed accord-

ing to the models available in the literature regarding both
the resilient modulus and accumulated vertical permanent
deformation. A finite element model was developed to
simulate the actual RLTT and compare the numerical and
experimental results in terms of accumulated vertical

Table 5 Values of aSH and bSH regression parameters for Shenton model

material seq 1 seq 2 seq 3 seq 4 seq 5

aSH bSH aSH bSH aSH bSH aSH bSH aSH bSH

M2 (w = 5%) 2.46E–54 1.79E2 3.13E–2 1.10E1 6.81E–1 7.24E0 1.69E0 8.90E0 4.89 E–2 1.73E1

M2-P 3.84E–65 2.14E2 6.10E–11 5.23E1 4.96E–4 2.78E1 6.48E–1 8.13E0 4.10E–3 2.18E1

M2 (w = 1%) 3.61E–29 9.20E1 5.02E–7 2.99E1 1.30E–2 1.38E1 4.07E–2 2.02E1 1.53E–4 3.09E1

M2-L 2.32E–59 1.94E2 3.36E–6 2.23E1 2.87E–2 7.23E0 1.34E–1 4.81E0 3.31E–3 1.53E1

Fig. 15 Accumulated vertical permanent deformation, Tresca plasticity model: (a) P additive; (b) L additive.

Fig. 16 Accumulated vertical permanent deformation, von Mises plasticity model: (a) P additive; (b) L additive.
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permanent deformation. Non-linear elastic and plastic
constitutive relationships were implemented. The follow-
ing conclusions can be drawn.
1) The outcomes of the RLTTs indicate that both the P

and L agents remarkably improve the mechanical proper-
ties of the aggregates, and the enhancement includes both
the resilient modulus and the development of permanent
deformation.
2) The models used to interpret the experimental data

referring to the resilient modulus (Hicks and Monismith,
Uzan) and vertical permanent deformation (Coulomb,
Barksdale, Sweere, Hyde, and Shenton) highlight that the
investigated additives are effective technologies for
enhancing the mechanical properties of crushed rocks.
3) In the finite element simulation of the RLTT, the

Tresca plasticity model tends to overestimate the experi-
mental results of permanent vertical deformation, whereas
the von Mises plasticity model tends to underestimate
them.
4) Both organosilane and lignosulfonate show promis-

ing results in stabilizing “weak” aggregates. The objective
of future research could, for example, deal with accom-
plishing full-scale tests. Moreover, the finite element
model can be expanded to the analysis of an actual road.
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UGM: Unbound granular material
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