Valorization of horticultural food waste: Significance and future perspectives

Abirami Ramu Ganesan

Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 158 -160.

PDF
Future Postharvest and Food ›› 2024, Vol. 1 ›› Issue (1) : 158 -160. DOI: 10.1002/fpf2.12003
COMMENTARY

Valorization of horticultural food waste: Significance and future perspectives

Author information +
History +
PDF

Keywords

bioactives / biorefining / food security / food waste / valorization

Cite this article

Download citation ▾
Abirami Ramu Ganesan. Valorization of horticultural food waste: Significance and future perspectives. Future Postharvest and Food, 2024, 1(1): 158-160 DOI:10.1002/fpf2.12003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alder, C. M., Hayler, J. D., Henderson, R. K., Redman, A. M., Shukla, L., Shuster, L. E., & Sneddon, H. F. (2016). Updating and further expanding GSK's solvent sustainability guide. Green Chemistry, 18(13), 3879–3890.

[2]

Antonic, B., Jancikova, S., Dordevic, D., & Tremlova, B. (2020). Apple pomace as food fortification ingredient: A systematic review and meta-analysis. Journal of Food Science, 85(10), 2977–2985.

[3]

Asioli, D., & Grasso, S. (2021). Do consumers value food products containing upcycled ingredients? The effect of nutritional and environmental information. Food Quality and Preference, 91, 104194.

[4]

Cseri, L., Kumar, S., Palchuber, P., & Szekely, G. (2023). NMR chemical shifts of emerging green solvents, acids, and bases for facile trace impurity analysis. ACS Sustainable Chemistry & Engineering, 11(14), 5696–5725.

[5]

Dulf, F. V., Vodnar, D. C., & Dulf, E. H. (2023). Solid-state fermentation with Zygomycetes fungi as a tool for biofortification of apple pomace with γ-linolenic acid, carotenoid pigments and phenolic antioxidants. Food Research International, 173, 113448.

[6]

Gema, H., Kavadia, A., Dimou, D., Tsagou, V., Komaitis, M., & Aggelis, G. (2002). Production of γ-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Applied Microbiology and Biotechnology, 58(3), 303–307.

[7]

Grasso, S., Fu, R., Goodman-Smith, F., Lalor, F., & Crofton, E. (2023). Consumer attitudes to upcycled foods in US and China. Journal of Cleaner Production, 388, 135919.

[8]

Guo, J., Tong, M., Tang, J., Bian, H., Wan, X., He, L., & Hou, R. (2019). Analysis of multiple pesticide residues in polyphenol-rich agricultural products by UPLC-MS/MS using a modified QuEChERS extraction and dilution method. Food Chemistry, 274, 452–459.

[9]

Hellali, W., & Korai, B. (2023). Understanding consumer’s acceptability of the technology behind upcycled foods: An application of the technology acceptance model. Food Quality and Preference, 110, 104943.

[10]

Klempová, T., Slaný, O., Šišmiš, M., Marcinčák, S., & Čertík, M. (2020). Dual production of polyunsaturated fatty acids and beta-carotene with Mucor wosnessenskii by the process of solid-state fermentation using agro-industrial waste. Journal of Biotechnology, 311, 1–11.

[11]

Kuvvet, C., Uzuner, S., & Cekmecelioglu, D. (2019). Improvement of pectinase production by co-culture of Bacillus spp. using apple pomace as a carbon source. Waste and Biomass Valorization, 10(5), 1241–1249.

[12]

Mohan, K., Ganesan, A. R., Muralisankar, T., Jayakumar, R., Sathishkumar, P., Uthayakumar, V., Chandirasekar, R., & Revathi, N. (2020). Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends in Food Science & Technology, 105, 17–42.

[13]

Muthuvelu, K. S., Ethiraj, B., Pramnik, S., Raj, N. K., Venkataraman, S., Rajendran, D. S., Bharathi, P., Palanisamy, E., Narayanan, A. S., Vaidyanathan, V. K., & Muthusamy, S. (2023). Biopreservative technologies of food: An alternative to chemical preservation and recent developments. Food Science and Biotechnology, 32(10), 1–14.

[14]

Piwowarek, K., Lipińska, E., & Hać-Szymańczuk, E. (2016). Possibility of using apple pomaces in the process of propionic-acetic fermentation. Electronic Journal of Biotechnology, 19(5), 1–6.

[15]

ReFresh. (2023). Valorising unavoidable food waste. Retrieved from

[16]

Sharma, M., Usmani, Z., Gupta, V. K., & Bhat, R. (2021). Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Critical Reviews in Biotechnology, 41(4), 535–563.

[17]

Swami, S., Muzammil, R., Saha, S., Shabeer, A., Oulkar, D., Banerjee, K., & Singh, S. B. (2016). Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits. Environmental Monitoring and Assessment, 188(5), 1–11.

[18]

Ubando, A. T., Africa, A. D. M., Maniquiz-Redillas, M. C., Culaba, A. B., & Chen, W. H. (2021). Reduction of particulate matter and volatile organic compounds in biorefineries: A state-of-the-art review. Journal of Hazardous Materials, 403, 123955.

[19]

Upadhyay, N., & Tiwari, S. (2023). Valorization of cellulose-rich solid bio-waste to produce chitin: An important aminopolysaccharide. In Valorization of biomass to bioproducts (pp. 423–440). Elsevier.

[20]

Yang, T., Doherty, J., Zhao, B., Kinchla, A. J., Clark, J. M., & He, L. (2017). Effectiveness of commercial and homemade washing agents in removing pesticide residues on and in apples. Journal of Agricultural and Food Chemistry, 65(44), 9744–9752.

[21]

Yilmaz, E., & Kahveci, D. (2022). Consumers’ purchase intention for upcycled foods: Insights from Turkey. Future Foods, 6, 100172.

[22]

Zhang, A. A., Sutar, P. P., Bian, Q., Fang, X. M., Ni, J. B., & Xiao, H. W. (2022). Pesticide residue elimination for fruits and vegetables: The mechanisms, applications, and future trends of thermal and non-thermal technologies. Journal of Future Foods, 2(3), 223–240.

RIGHTS & PERMISSIONS

2024 The Authors. Future Postharvest and Food published by John Wiley & Sons Australia, Ltd on behalf of International Association of Dietetic Nutrition and Safety.

AI Summary AI Mindmap
PDF

210

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/