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ABSTRACT

We review the description and modeling of transport phenomena among
the  electron  systems  coupled  via  scalar  or  vector  photons.  It  consists  of
three  parts.  The  first  part  is  about  scalar  photons,  i.e.,  Coulomb  interac-
tions.  The  second  part  is  with  transverse  photons  described  by  vector
potentials.  The  third  part  is  on ϕ = 0 or  temporal  gauge,  which  is  a  full
theory of the electrodynamics. We use the nonequilibrium Green’s function
(NEGF) formalism as a basic tool to study steady-state transport. Although
with local equilibrium it is equivalent to the fluctuational electrodynamics
(FE), the advantage of NEGF is that it can go beyond FE due to its general-
ity.  We have given a few examples in the review, such as transfer of  heat
between  graphene  sheets  driven  by  potential  bias,  emission  of  light  by  a
double  quantum  dot,  and  emission  of  energy,  momentum,  and  angular
momentum  from  a  graphene  nanoribbon.  All  of  these  calculations  are
based on a generalization of the Meir–Wingreen formula commonly used
in  electronic  transport  in  mesoscopic  systems,  with  materials  properties
represented by photon self-energy, coupled with the Keldysh equation and
the solution to the Dyson equation.
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 1   Introduction

Electron and photon interaction plays an important role
in  our  understanding  of  basic  physics  in  condensed
matter, atomic physics, and nano-optics [1, 2]. It is also
the principle governing photosynthesis and thermal radi-
ation,  and  underpins  many  functioning  devices  such  as
lasers and solar cells. This review focuses on one aspect
of  the  electron-photon  interaction,  that  is,  the  transfer
of  energy  and  other  conserved  quantities  mediated  by
photons between metals in local thermal equilibrium and
nonequilibrium states.

Radiation  of  energy  happens  for  any  object,  due  to
the electrically charged nature of ions and electrons that
make  up  materials  microscopically.  The  fluctuation  of
charge and thus current is inevitable, leading to thermal
radiation. At the turn of the twentieth century, Planck,
in  attempting  to  understand  blackbody  radiation,
discovered  the  quantum  nature  of  radiation  and
proposed  his  famous  formula  for  the  intensity  of  the
radiation [3]. He is aware of the limitation of his theory,
i.e.,  the  cavity  of  the  blackbody  or  the  length  scale  of
the object should be much larger than the wavelength of
the  photons.  But  it  took  70  years  to  see  the  effect  of
geometry from so-called near-field radiative heat transfer.
Heat  transfer  increases  when  the  distance  between
objects decreases. Motivated by the earlier experimental
results [4, 5], Polder and van Hove worked out a theory
[6],  now  known  as  fluctuational  electrodynamics  (FE),
which in turn is based on the idea of Rytov of Maxwell’s
equations  with  stochastic  random  currents  [7, 8].
Together  with  the  fluctuation  dissipation  theorem  as  a
corner stone [9], the theory is complete. The theory has
been  applied  to  a  variety  of  situations  and  geometries
[10–12]  and  has  been  reviewed  extensively  [13–20].
Recent  experiments  [21–24]  mostly  confirm  the  theory,
but there remain some controversies [25–27]. An interesting
recent development is the super-Planckian heat transport
[28, 29],  e.g.,  two sheets  side  by side  instead of  face  to
face, where it is found that the enhancement of transport
occurs even for the far field [30].

N

N + 1/2

Another  line  of  research,  developed in  parallel  to  the
radiation  problem,  is  the  Casimir  force.  Casimir
predicted,  for  ideal  metal  surfaces  with  a  vacuum  gap,
there  is  an  attractive  force  between  them,  due  to
vacuum fluctuations  of  the  field  [31].  A  more  complete
theory  is  developed  by  Lifshitz  from  fluctuational  elec-
trodynamics for nonzero temperatures [32]. The effect is
small,  and  experimental  verification  was  only  attained
much  later  in  the  1980s  and  90s  [33–38].  These  forces
can be utilized for ultra-sensitive measuring devices [39].
The  recent  development  has  been  in  the  dynamic
Casimir  effect  [40–42],  where the objects  can move and
couple to the vacuum fluctuations. There is a close rela-
tionship between the two problems above. The radiation
is due to thermal fluctuations, thus, a nonzero temperature
is  necessary.  But  the  force  can  exist  even  at  zero
temperature.  Both  problems  share  some  common
features.  Their  solutions  all  require  knowledge  of  the
response  functions  of  the  materials  and  solutions  to
Maxwell’s equations. They differ in that energy radiation
is  related  to  the  difference  of  the  Bose  functions  at
different  temperatures,  while  the  force  is  related  to

,  the  Bose  function  with  the  zero-point  motion
contribution. It is important that we see these connections
and have a unified theory.

Another transport quantity is the angular momentum
related to the rotational symmetry of the problem. The
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radiation carries, in addition to energy and momentum,
angular momentum [43–45]. The radiation field patterns
are related to the orbital  angular momentum [46].  This
can be used for transfer of information as extra commu-
nication  channels  [47].  It  turns  out  that  emission  of
angular  momentum  requires  a  broken  time  reversal
symmetry.  More  generally,  nonreciprocity  has  been  an
emerging  area  of  active  research  [48, 49].  Both  the
momentum and angular momentum radiation of a single
object require nonreciprocity.

T

In  the  theoretical  and  computational  approaches  for
radiative heat and momentum transfers, earlier theories
have been developed for the special geometry of parallel
plates  with  solutions  to  the  scattering  problems.  For
arbitrary geometries, Messina et al. [50, 51] and Krüger
et  al. [10, 52]  developed  a  formalism  based  on  the 
operators  and  Lippmann-Schwinger  equation  [53].  The
fluctuation  of  the  electromagnetic  field  can  also  be
viewed as coming from dipoles [54]. A general theory for
many  objects  is  developed  and  recently  reviewed  [17].
Other computational techniques are developed from the
continuum engineering perspectives [55, 56].

Dr =

v + vΠrDr v

D< = DrΠ<Da

D

Π

Π

In this review, we systematically develop a nonequilib-
rium  Green’s  function  approach  with  the  aim  of  going
beyond  fluctuational  electrodynamics  (FE).  The
nonequilibrium  Green’s  function  has  been  the  standard
approach to study mesoscopic electron transport [57, 58],
and  also,  to  some  extent,  phononic  transport  in  the
ballistic  regime  [59, 60].  For  some reason,  the  use  of  it
for  photon  transport  is  rather  scarce  [61, 62].  The
nonequilibrium  Green’s  function  method  is  a  powerful
tool to study transport as transport, by its very nature,
must  deal  with  nonequilibrium  situations.  Since  Max-
well’s  equations  are  linear,  the  associated  equations  for
the  Green’s  functions  are  also  linear.  This  implies  a
formally  exactly  solvable  problem,  just  like  in  the  free
electron  or  ballistic  phonon  case.  The  solutions  are
encapsulated as a pair of equations for two Green’s func-
tions,  namely,  retarded  and  lesser  [63].  The  retarded
Green’s  function  satisfies  a  Dyson  equation, 

,  where  is  the  free  Green’s  function  of
photons  when  the  materials  are  absent.  This  equation
describes  the  “dynamics”.  A  related  equation,

,  known  as  the  Keldysh  equation,
describes the thermal distribution. Finally, the transported
physical observables can be expressed in terms of  and
materials  properties  known  as  the  Meir–Wingreen
formulas. Here  is the charge-charge or current–current
correlation  under  a  random  phase  approximation.  The
advantage of this language and methodology is that it is
fairly  general:  i)  it  is  fully  quantum-mechanical  with
quantum  electrodynamics;  ii)  local  equilibrium  or  not,
where  the  fluctuation-dissipation  theorem  may  or  may
not hold, the theory remains the same; iii) reciprocal or
not, the formalism applies to both; iv) the nonequilibrium
system  is  set  up  explicitly  by  modeling  the  electrons

D< = N(Dr −Da) Π< = N(Πr −Πa)

connected  to  fermionic  baths;  v)  change  of  materials
properties  Π  due  to  extreme  proximity  can  be  handled
self-consistently via many-body formalism. These are not
in  the  usual  spirit  of  FE,  which  requires  explicit  local
equilibrium  assumptions  and  sometimes  explicit  reci-
procity.  However,  if  local  equilibrium  is  assumed,  we
recover  the  standard  fluctuational  electrodynamics
results. The global or local equilibrium implies the fluc-
tuation-dissipation  theorem  [64].  In  the  language  of
NEGF,  this  is,  and ,
in a concise form for the field correlation and materials
properties.

E B

Unlike FE formulated in a gauge independent manner
in  the  electric  field  and  magnetic  induction ,  the
NEGF theory is formulated in terms of the gauge dependent
scalar and vector potentials. This is necessary for a more
fundamental theory as quantization requires a specification
or  choice  of  gauge.  Our  review  consists  of  three  parts.
Part I is a theory based purely on Coulomb interaction
for the electrons, which we can also formulate as a scalar
field  theory.  In  Part  II,  the  quantization for  the  vector
field in transverse gauge is presented. This is a standard
choice in condensed matter physics and quantum optics.
In  the  last  Part  III,  we  develop  a  full  theory  in  the
temporal,  or  also  called  axial  gauge,  which  sets  the
scalar field to zero. The last choice is more economical,
and is very closely related to the gauge independent FE.
For  example,  the  Green’s  function  here  is  the  same  as
the dyadic Green’s function in FE up to a constant. In
order  not  to  make  the  paper  too  long,  we  do  not
attempt to review the basics of NEGF. Reader unfamiliar
with the general NEGF method should consult the relevant
literature  cited  [59, 63, 65, 66].  We  believe  that  the
NEGF approach is not reinventing the wheel, but rather,
opens  up  new  avenues  to  study  transport  in  more
general settings.

 Part I
Scalar photons

c

−∇2ϕ = ρ/ϵ0

ϕ

cτ τ

The electromagnetic field, in the limit that the speed of
light  goes to infinity, reduces to a rather simple theory
of  the  Poisson  equation, ,  relating  charge
density and scalar potential  instantaneously. We shall
call such an approximation to electrodynamics the non-
retardation  limit.  This  is  not  a  bad  approximation;  in
fact  the  whole  of  electronic  structure  theories,  such  as
the density functional theory, and the bulk of condensed
matter physics, are based on such Coulomb interactions.
When the typical distance is much smaller compared to

,  where  is  some  characteristic  time  scale,  the  non-
retardation  limit  is  a  good  approximation.  For  heat
transport  mediated  by  electromagnetic  fields,  this
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λ ≈ cℏ/(kBT )
distance  scale  is  the  thermal  de  Broglie  wavelength  for
the massless photon, . Here the time scale is
identified with the thermal energy scale. At 300 K it is
about  a  few  micrometers.  In  this  first  part,  we  discuss
theories  for  the  pure  Coulomb  problems  which  is  the
dominant mechanism of near-field heat transport [67] at
sub-micron distances.

 2   Heat transfer from capacitor physics

ϕi qi

Consider a collection of good conductors, each of which
is  characterized by a constant potential  on the conduc-
tor, ,  and  the  charge  on  the  conductor, .  Given  the
potentials  on  the  conductors  and at  infinity,  as  well  as
the geometry of the setup, the Poisson equation determines
the potential distribution in space everywhere, thus also
determines  the  charges  on  the  conductors  by  Gauss’s
law. For this electrostatic equilibrium and time-indepen-
dent situation, the charges are related to the potentials
linearly by [68, 69]

qi =
∑
j

Cijϕj , (1)

Cij i

j

q = v−1ϕ q ϕ

v−1

Cij

ϕ = vq 1
2

∑
i,j Cijϕiϕj

Cij = Cji

q1 + q2 = 0

ϕi → ϕi + const

C11 = C22 = −C12 = −C21

C = C11 = ϵ0A/d ϵ0

A d

C = q/∆ϕ

where  is  defined  as  the  capacitance  of  conductor 
induced  by .  Symbolically,  we  will  write  the  above
equation  as ,  where  and  denote  column
vectors  and  is  a  matrix  formed  by  the  capacitance

.  Formally,  the  potential  produced  by  the  charges  is
just . The total electrostatic energy is .
It is clear that the matrix must be symmetric, .
In  a  simple  parallel  plate  capacitor,  we  have  two
conductors  1  and  2.  The  overall  charge  neutrality
requires , and the charges should only depend
on  the  potential  difference  due  to  gauge  invariance
( ). If the total charge is not zero, it would
mean that the total electrostatic energy is infinite due to
a  nonzero  electric  field  outside  the  capacitor,  which  is
unreasonable. These conditions imply that the four coef-
ficients  of  capacitance  are  not  independent,  and  should
satisfy ,  given  by  the  usual
formula  of .  Here  is  the  vacuum
permittivity,  is  the  area  of  the  plate,  and  is  the
distance between the plates. This recovers the textbook
definition of capacitance by .

Can  the  capacitor  system  be  considered  as  a  heat
transfer system mediated by the Coulomb force? In prin-
ciple,  yes;  the  charges  on  the  conductors  can  fluctuate
and thus transfer energy. If each conductor is maintained
at a different temperature, there will be a net transfer of
energy.  However,  if  the  conductors  are  macroscopic  in
size,  the  fluctuation  will  be  very  small.  We  expect
substantial  fluctuations  only  when the  system is  at  the
nanoscale. There is one constraint it must fulfill; this is
the  total  charge  conservation.  We  imagine  that  each
conductor  is  connected  to  a  battery  maintained  at  a

certain temperature and chemical  potential.  If  we focus
only  on  the  conductor,  the  charge  on  the  conductor  is
not  conserved  as  it  can  go  into  or  out  of  the  battery
from time to time. So, we need an equation to describe
this  process.  We look towards the fluctuational  electro-
dynamics [7], in the non-retardation limit.

On  a  phenomenological  ground,  we  put  down  the
following Langevin-like  stochastic  equation for  the  fluc-
tuating charge capacitor system [70],

v−1ϕ = δq +Πϕ. (2)

v−1 δq

Πϕ

ϕ

ϕ

δq

Πϕ

Here  is  the  capacitor  matrix,  is  a  vector  of  the
fluctuational  charges,  gives  the  induced  charge
response  when  the  potential  is  changed  by .  In  the
above  equation,  we  use  the  symbol  to  mean  the
change  relative  to  the  static  value  due  to  the  time-
dependent  change  in  charge.  The  charge  response  is
retarded, in the sense that  depends on the history of
the potential,

Πϕ →
∫ t

Π(t− t′)ϕ(t′)dt′. (3)

Equation (2) generalizes the static case, Eq. (1), for the
fluctuational charge and field in time. It is best to think
of  the  stochastic  equation  in  the  frequency  domain,
defined by

ϕ(t) =

∫ +∞

−∞

dω
2π

ϕ(ω)e−iωt, (4)

δq(t) Π(t)

(
Dr
)−1

= v−1 −Π

Π

Dr = v + vΠDr

ϕ = Drδq

and similarly for  and , then the convolution in
time  becomes  multiplication  in  the  frequency  domain.
Note  that  we  can  think  of  as  a
frequency-dependent  capacitance  matrix.  It  is  this
frequency dependence of the material response  to the
field fluctuations that gives rise to energy transfer. The
Green’s function  will be needed to express
the  energy  transport.  The  solution  to  Eq.  (2)  is

.
No  matter  what  the  detailed  mechanisms  are  for  the

charge  fluctuation,  in  thermal  equilibrium,  the  charge
fluctuations  must  be  related  to  the  linear  response  by
the fluctuation-dissipation theorem [9, 71],

1

iℏ
⟨δq δqT⟩ω =

[
N(ω) +

1

2

] [
Π(ω)−Π†(ω)

]
= Π̄.

(5)

T
† ⟨

δq(t)δq(t′)T
⟩
/(iℏ)

ω N(ω) =

1/ [exp(βℏω)− 1]

T = 1/(kBβ)

Here,  the  superscript  “ ” is  matrix  transpose,  and  the
dagger “ ” is for Hermitian conjugate. The left-hand side
is  the fluctuational  charge correlation, ,
which is a function of the time difference in steady state,
Fourier  transformed  into  space. 

 is  the  Bose  (or  Planck)  function  at
temperature .  In  many-body  theory,  the
charge-charge  correlation  is  the  susceptibility
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χ = Π+ΠvΠ+ · · · Π

ϕ

Π

 [72], but here it is the polarizability 
in  the  fluctuational  electrostatics.  The  reason  is  that 
here  is  the  total  actual  field  on the  matter.  As  we will
see,  this  is  consistent with the Dyson equation and the
Keldysh  equation  in  a  more  rigorous  treatment  later.
For  the  moment,  we  consider  as  a  phenomenological
function  that  is  given.  Subsequently,  when  we  build  a
microscopic (quantum) model, its functional form can be
worked  out.  Here  with  this  minimum information,  how
can  we  describe  the  transfer  of  energy  among  the
conductors when they are out of equilibrium?

L R Π

In order  not to deviate  too much from thermal  equi-
librium, we assume local equilibrium. This is possible if
the  charge-charge  correlation  can  be  localized  so  that
different regions are not correlated, and each region has
its  separate  temperature  and  chemical  potential.  To  be
definite,  let  us partition the conductors as belonging to
the left ( ) or right ( ) such that  is block-diagonal,

Π =

(
ΠL 0

0 ΠR

)
. (6)

TL TR

The  fluctuation-dissipation  theorem,  Eq.  (5),  remains
the  same,  except  that  it  is  applied  to  the  left  sites  or
right  sites  separately  with  or ,  and  the  charge
correlation is zero between the left side and right side.

j ·E

E = −∇ϕ

ρ̇+∇ · j = 0

−ρ̇ϕ

−q̇Tϕ ϕ

δqR
δqL

Next,  we  consider  the  average  energy  transfer  from
left to right, based on Joule heating, and the local fluc-
tuation-dissipation  theorem.  On  a  continuum,  is
the work density done by the field to the charge. Using
the  relation  between  the  field  and  potential ,
the continuity equation  for charge conserva-
tion, and an integration by parts, we also have the work
as  per unit volume [73]. For discrete charge, this is

.  Since  Eq.  (2)  is  linear  in ,  we  can  consider  the
effect of random noises of two regions separately. Turning
off ,  the  energy  transfer  to  the  right  side  per  unit
time due to the fluctuation of charge  of the left side
is

IL→R = −⟨q̇TRϕR⟩, (7)

qR = ΠRϕR ϕR = Dr
RLδqL

ϕR qR

where  and .  Here  we  collect  all
the  values  of  discrete  potentials  on  the  right  side  as  a
column  vector .  The  charge  in  Eq.  (7)  is  the
induced  one  due  to  the  field.  These  are  time  domain
quantities, for example,

ϕR(t) =

∫
Dr

RL(t− t′)δqL(t
′)dt′. (8)

IL→R

This is the solution to Eq. (2) restricted to the right side
for  the  potential.  We  assume  that  the  system  is  in
steady  state  and  is  in  fact  independent  of  time.
Representing  all  the  time  domain  quantities  by  their
Fourier  transforms  in  frequency  domain,  after  some
lengthy but straightforward algebra, we find

IL→R =

∫ +∞

−∞

dω
2π

ℏωTr
(
Da

LRΠ
a
RD

r
RLΠ̄L

)
. (9)

Tr Πa
R = (ΠR)

†

Da
LR = (Dr

RL)
†

Here  stands  for  matrix  trace, ,  and
. The last factor is due to the noise correlation

by the local fluctuation-dissipation theorem.
R L δqR

L ↔ R

IL = IL→R − IR→L

IL→R IR→L

Dr Π

Da = (Dr)† = (Dr)∗

ω

The  energy  pumped  from  to  by  can  be
obtained  similarly  by  swapping  the  index .  The
overall net heat current from left to right is given by the
difference, .  The  expression  can  be
simplified using the fact that (i)  and  are real,
so  that  we  can  take  the  Hermitian  conjugate  of  the
factors  inside  the  matrix  trace  and  add  them,  then
divide  by  2;  (ii)  we  can  perform  cyclic  permutation
under trace; (iii) both  and  are symmetric matrices,
thus,  e.g., .  [This  last  condition  of
reciprocity is  not really necessary;  we can replace it  by
the fact that when all the baths are at the same temper-
ature,  the  heat  transfer  must  be  zero,  to  be  consistent
with the second law of thermodynamics.] (iv) The integrand
is  even  in .  With  these  manipulations,  the  expression
can be simplified to a standard Caroli form,

IL =

∫ ∞

0

dω
2π

ℏωTr
(
Dr

LRΓRD
a
RLΓL

)
(NL −NR).

(10)

ΓL = i(ΠL −Π†
L) ΓR

NL TL NR

TR

Here we define  and similarly for , and
 is the Bose function at temperature , and  is at
.  We  shall  call  this  result  the  Landauer/Caroli

formula, although the original formula was for mesoscopic
electron transport [57, 74, 75].

Let us consider the simplest possible case of a parallel
plate  capacitor  represented  as  two  dots  [76]  with  the
Dyson equation in the form

(Dr)
−1

=

(
C −C

−C C

)
−
(

ΠL 0

0 ΠR

)
, (11)

C = ϵ0A/dwhere  is the capacitance of the parallel plate
capacitor.  The  retarded  Green’s  function  can  be  solved
explicitly, given

Dr =
1

ΠLΠR − (ΠL +ΠR)C

(
C −ΠR C

C C −ΠL

)
(12)

2× 2as a  matrix. With this, the heat transfer takes the
Landauer form, Eq. (10), with the transmission function
given by

Tr
(
DrΓRD

aΓL

)
=

4C2ImΠL ImΠR∣∣ΠLΠR − (ΠL +ΠR)C
∣∣2 . (13)

1/d2

C ∝ 1/d

This formula tells us, at long distances, the heat transfer
is  proportional  to  and  is  constant  for  short
distances,  simply  because  the  capacitance .  The
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Eα ∼ e2/C

crossover  distance  of  the  two  types  of  behaviors  is
controlled  by  the  energy  scale  [see  Eq.  (14)
below].  The  distance  dependence  behavior  also  appears
in  many  more  realistic  systems,  such  as  between  two
graphene sheets [77, 78].

Πα α = L,R

ω

Πα

ω

ω

kBT

A  simple  model  for  with  can  be  given
based on the  analytic  properties  over  frequency .  The
polarizability  is from a correlation of real quantities,
thus the real part must be symmetric in  and the imaginary
part  must  be  antisymmetric  in ,  so  for  low  enough
thermal energy , we can take

Πα = − e2

Eα
− i

e2ℏω
U2
α

, (14)

e Eα Uα

Πα

T 4

where  is the magnitude of electron charge,  and 
are some constants of order eV. This assumption for 
leads  to  a  robust  Stefan-Boltzmann  law  of  with  a
coefficient that depends on the details. Fig. 1 illustrates
the results of heat current as a function of distance and
temperature for the simple capacitor model.

vij = 1/(4πϵ0rij)

i j rij

Is the assumption that the left dot and right dot are
uncorrelated  realistic?  If  the  capacitor  is  connected  to
the  same  battery,  the  individual  fluctuations  of  the
charges on the two plates seem to violate charge conser-
vation. However,  if  the systems are more complex than
two  dots,  the  charge  conservation  can  be  fulfilled  by
moving  the  charge  on  the  same  side  from one  place  to
another. In fact, the derived Landauer/Caroli formula is
generally  valid  for  a  tight-binding  model  of  a  system
with  as  the  bare  Coulomb  interaction
between two electrons at site  and  with a distance .
Here a conductor becomes a hopping site. Although the
validity  to  a  two-dot  capacitor  can  be  doubtful,  the
validity  of  the  theory for  general  electron systems with
two  sides  not  directly  connected  can  be  proved  rigor-
ously. This will be the subject of the next section.

 3   Coulomb interaction model

N

c†Hc =
∑

α c†αHαcα
α

H

In  this  section,  we  consider  the  following  model  of 
pieces  of  metal  objects  described  by  a  free  electron
Hamiltonian , plus a Coulomb interac-
tion.  We  assume  that  each  object  labeled  by  is  not
directly  connected  to  other  objects  such  that  electric
currents are absent so that we can focus on the energy
(or heat) transport among the objects. This means that
the  matrix  is  block-diagonal.  An  example  of  such  a
system  is  two  graphene  sheets  with  a  vacuum  gap.
Although the electrons cannot jump from one object to
another,  they  can  still  exchange  energy  through  a
Coulomb interaction. We take the electron to be spinless,
and the Coulomb term is

e2

2

∑
i,j

1

4πϵ0|ri − rj |
c†i c

†
jcjci. (15)

i j

ri rj

Here  and  run over all the sites of all the objects. This
is just the standard sum of Coulomb interaction between
two charges at the position  and  in the second quan-
tization notation, excluding the self-interaction terms.

Tα µα

α

If  our  system  of  interest  is  finite,  it  is  impossible  to
maintain a local thermal equilibrium and a steady-state
heat  transport.  To  realize  heat  transport,  we  connect
each  object  to  a  bath  so  that  an  infinite  amount  of
energy can be supplied. This is done in the nonequilibrium
Green’s function approach (NEGF) [63] by giving a self-
energy of the bath to the degrees of the particular object
while  the  bath  is  maintained  in  thermal  equilibrium at
temperature  and  chemical  potential .  Thus,  the
object  before turning on the Coulomb interaction and
in local thermal equilibrium is described by two Green’s
functions, the retarded one, according to

Gr
α(E) =

[
(E + iη)I −Hα − Σr

α

]−1
, (16)

I η > 0where  is  the  identity  matrix,  is  an infinitesimal
quantity  describing  the  electron  relaxation,  and  the
lesser  Green’s  function  describing  the  electron  occupa-
tion,

G<
α (E) = −fα(E)

[
Gr

α(E)−Ga
α(E)

]
, (17)

Ga
α = (Gr

α)
†

fα(E) = 1/
(
eβα(E−µα) + 1

)
α µα

G< = GrΣ<Ga

Π

where  is the advanced Green’s function, and
 is the Fermi distribution function

of  the  bath  connected  to  object ,  is  the  chemical
potential. If the object is not in thermal equilibrium, e.g.,
one  object  connected to  two baths,  we  need to  use  the
Keldysh equation  instead [65]. The electron
Green’s  functions  are  our  starting  point  to  characterize
the materials properties, such as the polarizability .

We  now  derive  the  Meir–Wingreen  formula  [79, 80]
for  the energy current  which is  an exact  formula if  the
Coulomb problem can  be  solved  exactly.  To  derive  the

 

IL d

TL = 1000 TR = 300 IL TL

d = 1 TR = 300 A = 1

EL = ER = UL = UR = 1

Fig. 1  Heat  current  of  the  simple  capacitor  model,  from
Eqs.  (10),  (13),  and  (14). (a) Current  vs.  distance  at

 K and  K. (b) The current  vs.  while
fixing  nm,  K. Parameters are area  nm2,
energy scale  eV.
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equation,  we  first  make  a  notational  simplification  and
consider  only  one  bath  and  one  object  with  the  one-
particle Hamiltonian

H = Hd + V =

(
HO 0

0 HB

)
+

(
0 V OB

V BO 0

)
,

(18)

HO HB

V
here  is the Hamiltonian of the object, and  is the
isolated bath, and  is the coupling between the object
and the bath.  The energy transfer  per unit  time out of
the bath is obtained by the average decrease of the bath
Hamiltonian,

IB = −
⟨

dĤB

dt

⟩
=

1

iℏ

⟨
[V̂ , ĤB ]

⟩
=
⟨
c†V OB ḋ+ ḋ†V BOc

⟩
. (19)

ĤB = d†HBd c, c† d, d†

ĤB

Here we use a convention that the hatted operators are
in second quantization notations with the creation oper-
ators multiplied from the left and the annihilation operators
multiplied  from  the  right  to  the  one-particle  matrix
elements  of  the  same  letter  without  the  hat,  e.g.,

. We use  for the object and  for the
bath,  all  of  these  are  column  or  row  vectors.  We  have
used  the  Heisenberg  equation  for  the  rate  of  changes.
Here  the  dot  means  evolution  by  only,  holding  the
system fixed. We can replace it by the full evolution of
the  full  Hamiltonian,  including  a  possible  Coulomb
interaction at the dot or center (but not at the bath or
between dot and bath), we obtain

ḋ =
d d
dt

− 1

iℏ
V BOc. (20)

d/dt
ḋ†

c†V OBV BOc

Here  represents  the  full  evolution.  Similarly,  we
obtain  by Hermitian conjugation.  Putting this  result
into  the  energy  current  expression,  we  see  that

 terms cancel, we obtain

IB =

⟨
c†V OB d d

dt
+

d d†

dt
V BOc

⟩
. (21)

GOB,<
kj (t, t′) = −

⟨
d†j(t

′)ck(t)
⟩
/(iℏ)

GBO

This expression can be further expressed in terms of the
lesser  Green’s  function  connecting  the  bath  with  the
object, ,  or  the  reversed
version .  A  key  step  is  to  remove  the  reference  to
the bath variables by using the Green’s function of the
object only. It will have taken us too long here to repeat
this  argument,  thus  we  refer  to  the  standard  NEGF
textbooks  [63, 81]  on  this,  given  then  by  the  so-called
Langreth rule [59, 82]

GBO,< = grBV
BOG< + g<BV

BOGa, (22)

gB
G

here  the  small  is  the  Green’s  function  of  the  bath
when it is isolated from the object, and capital  is the
Green’s function of the object when it is interacting with

t = 0

the  bath  (as  well  as  internal  Coulomb  interaction  and
other  baths  not  in  our  focus).  The  product  of  two
Green’s  functions  means  a  convolution  in  time  domain
and  a  multiplication  in  the  energy  domain.  Then  we
have  [83],  using  the  Fourier  representation  of  Green’s
functions at time ,

IB = −iℏ
∂

∂t
Tr
(
V OBGBO,<(t)−GOB,<(t)V BO

) ∣∣∣
t=0

=

∫ +∞

−∞

dE
2πℏ

E Tr
(
(Gr −Ga)Σ<

B −G<(Σr
B − Σa

B)
)

=

∫ +∞

−∞

dE
2πℏ

E Tr
(
G>Σ<

B −G<Σ>
B

)
.

(23)

ΣB = V OBgBV
BO

Gr −Ga = G> −G<

B α

α

We  have  used  the  fact  that  the  bath  self-energy  is
related  to  the  isolated  bath  Green’s  function  by

, and used the relations among Green’s
functions that , also valid for the self-
energies. For a multiple-lead (or bath) setup, we simply
replace  by  a  more  general  index  for  the  bath  or
object .  The  formalism  is  also  valid  if  we  connect
several baths to the same object, in order to establish a
situation that is not in local equilibrium for the object.

Σn

Π

D Πα α

As we can see from the derivation, we have not used
specific properties of the objects other than the fact that
the  couplings  between  the  object  and  bath  are  bilinear
in  the  creation  and  annihilation  operators.  As  a  result,
the Meir-Wingreen formula is valid, having the Coulomb
interaction or not. However, the Coulomb interaction is
one of the hardest problems in condensed matter physics,
and  it  cannot  be  solved  exactly.  Here  we  use  the
simplest  and  also  standard  approximation  for  the
Coulomb  interaction  self-energy  by  the  Fock  term
and  for  the  electron  screening  by  the  random  phase
approximation  (RPA) [84].  The  main  point  below is  to
get  rid  of  the  electron  Green’s  functions,  and  to  relate
the energy current to the (scalar) photon Green’s functions
and  polarizability.  From  this,  we  obtain  a  similar
Meir–Wingreen formula in terms of  the photon Green’s
function  and  polarizability  of  object .  Further
approximation  with  the  local  thermal  equilibrium gives
the Landauer/Caroli  formula.  The Meir–Wingreen form
is  more  general  as  no  local  equilibrium  is  assumed
(although each object still needs to be connected to one
or more baths, the bath is in thermal equilibrium).

L R

To  make  progress  with  the  Coulomb  problem  in
energy  transport,  one  further  approximation  is  needed,
which is  the  lowest  order  expansion approximation [85]
in terms of the Coulomb interaction. Such approximation
preserves energy conservation exactly. An alternative to
this  is  the  self-consistent  Born  approximation  through
iterative  solutions;  we  will  make  a  comment  on  this
latter approach at the end of this section. For notational
simplicity, we will here consider two-bath situation with
two objects,  call  them  and .  The  Green’s  functions
for  the  electrons  and  self-energies  are  block  diagonal
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α

L G>
L

since two sides are not directly connected, and the Meir-
Wingreen formula needs only the block .  We focus on
the object , and Green’s function  can be expressed
by the Keldysh equation as

G>
L =

[
Gr(Σ>

L +Σ>
R +Σ>

n )G
a
]
LL

. (24)

Σ>
L,R Σ>

n

LL ΣR

R L

Gr

Here  are the lead self-energies, and  is the Fock
term of Coulomb interaction. For the -subblock,  is
0  since  bath  is  not  directly  connected  to  object .
This  expression  requires  the  knowledge  of  the  full
retarded Green’s function  with Coulomb interaction.
We prefer  to  work  with  the  free  electron  Green’s  func-
tions. An approximation we can use is the lowest order
expansion,

G> ≈ G>
0 +Gr

0Σ
r
nG

>
0 +Gr

0Σ
>
nG

a
0 +G>

0 Σ
a
nG

a
0 . (25)

G = G0 +G0ΣnG ≈ G0 +G0ΣnG0 + · · ·

0

c†Hc

We obtain such terms if we expand the contour ordered
Dyson  equation, ,
and then take the greater component using the Langreth
rule. The subscript  denotes the left system that is free
of  Coulomb  interaction,  i.e.,  a  perfect  ballistic  system
with quadratic Hamiltonian  (with baths). We drop
the subscript 0 from now on.

It  is  useful  for  symmetry  reason  we  express  the
current  by  vacuum  diagrams  in  time  domain.  We  use
the  inverse  Fourier  transform to  change  the  integral  in
energy  to  time,  and  also  the  Fock  diagram  result  [83,
86],

Σ>
n (t, t

′) = iℏ
∑
l,l′

M lG>(t, t′)M l′D>
ll′(t, t

′). (26)

MGM

Σr
n ∝ GrD<+

G>Dr Σa
n ∝ GaD< +G>Da

∑
l c

†M lcϕl c

c†

ϕl l M l

ϕ

GD

D = v + vΠD

W v

5 1′ 5′

(iℏ)2/T

A matrix multiplication, , is implied in the electron
index  space.  Similar  expressions  are  given  for  the
retarded  and  advanced  self-energies  as 

,  and .  Here  for  generality,  we
assume that  the  interaction  bare  vertex  takes  the  form

, where  is a column vector of electron anni-
hilation  operators  and  is  a  row  vector  of  Hermitian
conjugate,  and  is  a scalar  field at  site ,  and  is  a
Hermitian  matrix.  We will  explain  the  scalar  field  in
more  detail  in  the  next  section.  Here  it  is  sufficient  to
know that the electron Fock diagram is given by  (in
electron  many-body  theory  is  called
screened Coulomb  where  is the bare Coulomb inter-
action).  We  have  also  ignored  the  Hartree  diagram  as
the Hartree term only shifts the energy levels of single-
particle Hamiltonian and does not contribute to transport
in our order of approximation. By plugging Eq. (25) into
(23), the expansion leads to 10 terms, represented by the
10 diagrams in Fig. 2. We will label these diagrams as 1
to ,  and  to ,  as  shown.  The  diagrammatic  rule
follows the usual convention with all the (real) times as
dummy integration variables and space indices summed.
The current is obtained by  times the value of the

1/T∫ T/2

−T/2
dt · · ·

diagram. Since all the times are integration variables on
an equal footing, the integral diverges due to time trans-
lational invariance, the  factor cancels the last integral
interpreted  as .  As  an  example,  the  graph  3
represents the contribution to current as

3) =
(iℏ)2

T

∫
dtdt′dt1dt2

∑
l,l′

D>
ll′(t, t

′)

×Tr
[
M lG>(t, t′)M l′Ga(t′, t1)

∂Σ<(t1, t2)

∂t1
Gr(t2, t)

]
.

(27)

Σ<

GaΣ<Gr G<

Note the partial derivative on the first argument of ,
which  is  represented  by  a  dot  in  the  diagram.  The
partial  derivative  can  be  moved  around  with  repeated
integration by parts. The trouble with this expression is
that  is in the wrong order to be a .

A crucial identity [57],

Gr(Σ> − Σ<)Ga = Ga(Σ> − Σ<)Gr

= Gr −Ga = G> −G<, (28)

L

(Gr)−1 = (grc )
−1 − Σr grc

is  needed  to  show  that  the  10  diagrams  cancel  among
themselves  and  reduce  to  only  two  with  the  correct
order.  Here  the  self-energies  are  total  lead  self-energy
(for object  only). This identity is a simple consequence
of  the  Dyson  equation ,  where  is
the  Green’s  function  of  the  isolated  center.  From  the
above equation we can show that

GaΣ<Gr = G< + C, (29)

C = GaΣ>,<Gr −GrΣ>,<Gahere  we  define ,  and  is  the

 

M l

Fig. 2  Diagrams  for  the  heat  current  in  the  lowest  order
expansion.  The solid lines  denote the electron Green’s  func-
tions,  and  the  dash  lines  for  the  photon  Green’s  functions.
The boxes denote derivative of the bath self energy. The end
of the arrow is associated with the first argument and beginning
of the arrow with the second argument of the Green’s functions
or  self  energies.  The  electron–photon  vertex  is  associated
with the matrix .
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C

C† = −C C = 0

(Gr)T = Gr (G<)T = G<

M

same for greater and lesser components.  is anti-Hermi-
tian, .  if matrices are actually 1 by 1, or if
the  system  is  reciprocal  (i.e., , ),
but  not  so  in  general.  From  this,  ignoring  the  propor-
tionality constant, integration variables,  and  factors,
we can write, symbolically,

∆3 +∆3′) = Tr
[
(D>G> −D<G<)C

]
. (30)

∆ Ga

Gr G> G<

Here the notation  means that the term when  and
 are  swapped to form  or  has  been subtracted

off.  We  show  that  Eq.  (30)  cancels  all  the  other  8
diagrams. To this end, we define

B = G>Σ< −G<Σ>. (31)

BGr = −C

BGr −GaB† = −2C BGr +GaB† = 0

Using  the  same  identities,  we  have ,  thus
, and .

B

We  can  factor  out  common  factors  in  the  remaining
diagrams. Using , we can write

1+1′) + 2+2′) = D<Tr(GrBGr) +DrTr(G>BGr),

4+4′) + 5+5′) = D<Tr(GaGaB†) +DaTr(G>GaB†).

Further simplification is possible because

D<Gr+DrG>=D>G>−D<G<+D<Ga+DaG>.
(32)

∆3 +∆3′)

Now, putting all the terms together, and using the identities
obtained,  we  see  cancels  all  the  rest  as
claimed.

GrΣ>,<Ga

3−∆3)

The  remaining  two  terms  in  the  correct 
order  can  be  transformed  into  the  desired  form.  First,
we  need  to  move  the  derivative  to  other  places,  for
example, from graph , we can write

−D>(t, t′)Tr
[
G>(t, t′)

∂

∂t
G<(t′, t)

]
. (33)

3′ −∆3′)

∂Π<(t′, t)/∂t

The extra minus sign is due to an integration by parts.
We can combine a similar term from  so that it
becomes ,  using  integration  by  parts  and
cyclic permutation of trace whenever needed. We define
the polarization or charge-charge correlation as

Π<
l′l(t

′, t) =
1

iℏ
⟨
ql(t)ql′(t

′)
⟩

= −iℏTr
[
M l′G<(t′, t)M lG>(t, t′)

]
, (34)

ql = c†M lc

Π>

G< ↔ G>

where the charge operator is , and the second
line is obtained assuming that Wick’s theorem [87, 88] is
valid.  This  is  called  RPA.  is  obtained  by  swapping
the  positions  of  the  charge  operators  and  by  swapping

.  Fourier  transforming  the  final  expression  to
frequency domain, we obtain [89]

IL = − 1

4π

∫ +∞

−∞
dω ℏω Tr

(
D>Π<

L −D<Π>
L

)
. (35)

GW

Π

G

D

The derivation under the lowest order of expansion for
the electron Green’s function is rather long and compli-
cated. In fact, if we take a self-consistent Born approxi-
mation  [83]  (also  known  as  the  self-consistent 
method),  we  obtain  the  same  result,  with  being
computed  by  a  self-consistent .  To  this  end,  we  note
that  since  we  do  not  allow  the  electrons  to  jump  from
one object to another, the Green’s functions and electron
self-energies are block diagonal. We can treat each as a
separate system, although they are connected through .
As a result, we have the following identity [63],

Tr (G>
αΣ

<,tot
α −G<

αΣ
>,tot
α ) = 0, (36)

Σ>,<tot
α = Σ>,<

α +Σ>,<
n,α . (37)

α

G ΣL

G> G<

E ω

E → E − ℏω(
D>(ω)

)T
= D<(−ω)

Since the isolated center is non-dissipative, the equation
reflects  the  conservation  laws.  The  self-energy  is  the
total,  including  baths  and nonlinear  term,  for  object .
Using  this  identity,  starting  with  the  Meir–Wingreen
formula in  and bath self-energy , Eq. (23), we can
replace the bath self-energy with the nonlinear Coulomb
self-energy, keeping  or  as it  is.  The next step is
to  use  the  self-consistent  Fock  term  to  replace  the
nonlinear self-energy. This results in a double integral in
energy  and  frequency .  With  a  change  of  variable,
such  as ,  and  the  symmetry  of  the  Green’s
function ,  we  can  rewrite  the  result
in the form of Eq. (35).

Π<
α = −iNαΓα Π>

α = −i(Nα + 1)Γα

α = L,R D>,< =

Dr
∑

α Π>,<
α Da

Finally, if we can assume local thermal equilibrium for
each  object,  i.e., , ,

,  together  with  the  Keldysh  equation 
,  the  equation  can  be  put  into  the

Landauer/Caroli form, as [90]

IL =

∫ ∞

0

dω
2π

ℏωTr
(
DrΓRD

aΓL

)
(NL −NR), (38)

ω

R α′

α Iα =
∫∞
0

dω/(2π) ℏω·∑
α′ Tr

(
DrΓα′DaΓα

)
(Nα −Nα′)

here we have used a fact that the integrand is  an even
function of the frequency , thus, we can perform inte-
gration  over  the  positive  frequency,  and  times  2.  A
multiple lead formula of Büttiker type [91] is obtained if
we  replace  by  a  summation  index ,  i.e.,  for  the
current  out  of  lead ,  it  is 

.

G

ΣB

Π

If  we apply the formula to a parallel  plate geometry,
the result is  identical to the usual fluctuational electro-
dynamics  result  [15–17],  taking  the  speed  of  light  to
infinity.  Unlike  the  original  Meir–Wingreen  formula  in
terms of  the electron Green’s  function  and bath self-
energies ,  this  final  expression  cannot  be  an  exact
result (even in the non-retardation limit) mainly due to
approximations in . Let us recapitulate the approxima-
tions going into the derivations. i) From the Hedin equa-
tions  [92]  point  of  view,  which  give  a  formally  exact
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solution  to  the  Coulomb  problem,  we  have  disregarded
vertex  corrections,  so  that  the  electron  interaction  self-
energy  is  of  the  Fock  form ,  and the  polarization  is
the RPA form . We also ignored the Hartree term. ii)
To  compute  the  transport  quantities,  we  have  further
used the lowest order of expansion in terms of the inter-
action  strength .  Alternatively,  we  can  also  use  the
more accurate self-consistent  [93]. iii) To obtain the
Landauer  form,  we  have  assumed  local  equilibrium  for
each  object.  iv)  The  vertex  correction  as  well  as  the
Hartree  potential  can  be  incorporated  with  Eq.  (35)
remaining  valid.  The  most  severe  limitation  appears  to
be the assumption of additivity of . At the RPA level
of  approximation,  is  block-diagonal;  but  this  is  not
true  at  higher  order  in  charge .  It  will  be  helpful  to
think of these approximations used here, when we assess
the  validity  of  the  usual  fluctuational  electrodynamics
approach.

 4   Scalar field model

ϕ

A

D

ϕ D
ϕ

G

D

D

ϕ

The  usual  approach  to  study  the  Coulomb  interaction
[94]  in  condensed  matter  physics  is  to  eliminate  the
scalar field  and to focus on the instantaneous charge-
charge  interaction  as  given  by  expression  (15).  The
quantization of  the electromagnetic  field is  only for  the
transverse  vector  field .  One  disadvantage  in  this
approach is that the (scalar) photon Green’s function 
appears  to  be  somewhat ad  hoc as  a  convoluted
construction  out  of  the  electron  screening  perspective,
unrelated  to  the  scalar  field.  Here  in  this  section,  we
take the scalar  as fundamental [76, 95] and define  in
terms of  in the usual way of NEGF. As a result,  the
electron Green’s function  and photon Green’s function

 stand  on  an  equal  footing.  This  also  makes  the
symmetry properties of the Green’ function  transpar-
ent.  The  only  technical  problem  with  this  is  that ,
because  it  is  instantaneous,  does  not  have  a  free  field
dynamics.

ϕ c̃

c̃

c → ∞

c̃ → ∞

To overcome the difficulty of no conjugate momentum
for , we introduce a fictitious speed of light . Then the
usual machinery of quantum field theory applies [1, 96].
We take  the  limit  that  goes  to  infinity  at  the  end of
the calculation. In this limit, the theory becomes equivalent
to the instantaneous Coulomb problem. But it turns out
that  the  free  field  energy  must  be  negative  definite,  in
order  to  be  consistent  with  the  Poisson  equation,  and
removing  the  zero-point  motion  contribution  to  the
Poynting  vector  (in  the  limit,  it  becomes  the
“Poynting” scalar),  we  must  use  an  anti-normal  order,
instead  of  the  usual  normal  order.  A  photon  bath  at
infinity  must  have  a  negative  temperature.  All  these
exotic  features  actually  disappear  and have no physical
consequences  if,  at  the  end  of  the  calculation,  we  take
the limit  [95].

The electron and scalar photon coupled system can be
described by the following Lagrangian:

L =

∫
dV

ϵ0
2

(
− ϕ̇2

c̃2
+ (∇ϕ)2

)

+ c†
(
iℏ

dc
dt

−Hc

)
+ e

∑
j

c†jcjϕ(rj). (39)

−e

−
∑

l c
†M lcϕl

r

δ
∫
Ldt = 0

ϕ

ϕ c†

c ϕ

Here  the  first  term  is  for  the  free  photons,  the  second
term  is  for  the  free  electrons,  and  the  last  term  is  the
electron-photon interaction (electron charge is ). This
last  term  is  expressed  as  in  the  previous
section. This Lagrangian is equivalent to a Lorenz gauge
choice  with  the  vector  field  setting  to  zero.  While  the
electrons  are  allowed  to  sit  on  a  set  of  discrete  lattice
sites with a tight-binding Hamiltonian, the field exists in
the whole space and the contribution to the Lagrangian
is  an  integration  over  all .  We notice  that  the  kinetic
energy  of  the  scalar  photons  is  negative.  With  this
Lagrangian,  the  variational  principle, ,  repro-
duces  the  Poisson  equation  for  and  the  Schrödinger
equation in a field of  for the electrons. Here we treat ,
,  as independent variables.

L

ϕ

The reason we start with the Lagrangian  instead of
Hamiltonian  is  that  we  need  to  identify  the  proper
conjugate  momenta  for  the  fundamental  dynamic  vari-
ables, and to aid us for the canonical quantization. It is
clear that the electrons are already in the quantum form
with  the  anti-commutation  relations.  Here  we  mainly
focus on the scalar field .  The conjugate momenta are
given by

Pcj =
∂L

∂ċj
= iℏc†j , (40)

Pc†j
=

∂L

∂ċ†j
= 0, (41)

Πϕ(r) =
δL

δϕ̇(r)
= −ϵ0

ϕ̇

c̃2
. (42)

δ

L ϕ(r)

Πϕ

ϕ̇

H =
∑

pq̇ − L

The  in the last equation means a functional derivative,
as  depends  on  functionally.  The  ominous  minus
sign,  which  says  that  the  momentum  is  opposite  to
the  velocity ,  already  is  an  indication  of  something
unusual.  From  the  conjugate  momenta  we  obtain  the
Hamiltonian as , or

Ĥ =−
∫

dV
ϵ0
2

[
ϕ̇2

c̃2
+ (∇ϕ)2

]
+ c†Hc− e

∑
j

c†jcjϕ(rj). (43)

The Hamiltonian for the electrons takes a familiar form
with  a  potential  applied  to  the  diagonal  elements,  but
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c̃ → ∞

1
2ϵ0(∇ϕ)2 ∑

j qjϕj

cic
†
j + c†jci = δij

cicj + cjci = 0 c†i c
†
j + c†jc

†
i = 0

the  scalar  photons  take  a  strange  negative-definite
energy.  Such a Hamiltonian of  the scalar  photons gives
rise  to  the  “inverted  oscillators” [97]  for  the  free  field
modes. When , due to the existence of the Poisson
equation,  we can think of  the  total  Coulomb energy as
being  purely  due  to  charges,  summed  over  each  pair
once,  as  in  Eq.  (15).  Alternatively,  we  could  attribute
the energy completely to the field, with a positive energy
density of . The Hamiltonian above has a third
interpretation: the charge-field interaction is , but
this  overcounts  the  energy  by  a  factor  of  2,  thus,  we
need to subtract a half in the field term. The canonical
quantization  means  that,  in  addition  to  the  usual
fermionic  anti-commutation  relations, ,

, and , we impose

[ϕ(r),Πϕ(r
′)] = iℏδ(r − r′). (44)

ϕ

Π

ϕ̈ = [ϕ̇, Ĥ]/(iℏ)

c̃ → ∞
iℏċ = [c, Ĥ]

(−e)ϕ

All the rest of the operators commute, i.e.,  between s,
or between s, or between the field and fermionic electron
operators.  These  commutation  relations  completely
define the quantum mechanical problem. If the commu-
tation  relations  are  postulated  correctly,  we  should
obtain the correct equations of motion in operator form
with the Heisenberg equation. In our case, 
gives  a  wave  equation  with  charges  of  the  electrons  as
source,  reducing to the Poisson equation in ,  and

 is the Schrödinger equation of the electron in
a potential of .

We are now in a position to define the scalar photon
Green’s function,

D(rτ, r′τ ′) =
1

iℏ
⟨
Tτϕ(r, τ)ϕ(r

′, τ ′)
⟩
, (45)

r r′ τ τ ′

Tτ

τ = (t, σ)

⟨ · ⟩ = Tr(ρ · )

ρ

δϕ = ϕ− ⟨ϕ⟩
ϕ ⟨ϕ⟩

ϕ

ϕ

D

here ,  are  space  positions,  and ,  are  Keldysh
contour  times.  is  the  contour  order  super-operator.
The  contour  time  is  the  pair  of  real  time  and
branch index. The average  is unspecified at
the  moment;  it  could  be  a  thermal  equilibrium  or  in
general  of  nonequilibrium  steady  state  with  a  density
matrix . At this point, we need to pause and ask if we
should  define  the  Green’s  function  by  deviations,

.  For  noninteracting  free  fields,  since  the
Hamiltonian  is  quadratic  in ,  the  average  is  zero,
the  subtraction  is  not  necessary.  For  an  interacting
system with  an  interaction  term odd  in ,  without  the
subtraction, we do not even have a proper Dyson equa-
tion. In such case  should be understood to be a deviation
from  the  average.  These  two  definitions  differ  by  a
constant. An additive constant term in  independent of
the  time  produces  a  delta  function  in  the  frequency
domain,  thus  in  any  way  does  not  contribute  to  trans-
port.

We briefly summarize some of the key definitions and
properties  of  the  Green’s  functions.  Readers  unfamiliar
with the concept should consult the literature on NEGF
[59, 63, 66, 98].  For  notational  brevity,  we  often  omit

r, r′

D(τ, τ ′) = Dσ,σ′
(t, t′)

D++ = Dt

D−− = Dt̄ D+− = D<

D−+ = D>

Dt +Dt̄ = D> +D< = DK

DK

Dr =

Dt −D< = θ(D> −D<)

θ = θ(t− t′) = 1 t > t′

Da = D< −Dt̄ = −(1− θ)(D> −D<)

D> −D< = Dr −Da 1 = (rt) 2 = (r′t′)

D>(1, 2) = D<(2, 1) Dr(1, 2) = Da(2, 1)

the  arguments, and treat them as indexing a matrix.
Due to the + (forward) and – (backward) branches the
contour  Green’s  function  gives  four
Green’s functions in real time,  is time ordered,

 is  anti-time  ordered,  is  lesser,  and
 is greater. The four are not linearly independent

and  are  constrained  by .  The
symmetric  correlation  is  known  as  the  Keldysh
component.  The  retarded  Green’s  function  is 

,  where  the  step  function
 if  and  0  otherwise.  And  the

advanced  is ,  such
that .  Letting  and ,
we  have  the  symmetry  in  time  domain  as

,  and .  The  Fourier
transform into frequency domain is defined by

D(ω) =

∫ +∞

−∞
dtD(t− t′)eiω(t−t′). (46)

Dr(ω)† = Da(ω) D<(ω)† = −D<(ω)

In  frequency  domain,  we  have  the  Hermitian  conjugate
, .

D

D = v + vΠD Π

The  reason  for  introducing  the  contour  ordered
Green’s  function is  that  it  facilitates  systematic  pertur-
bative  expansion  at  any  temperature,  as  in  a  quantum
field theory at zero temperature. The Green’s function 
can  be  determined  with  a  Dyson  equation  on  contour,

, if we know the self-energy , which we can
determine  by  a  standard  diagrammatic  expansion  [99,
100].  To  the  lowest  order  of  approximation,  it  is  given
by the RPA expression, Eq. (34). The contour version of
this equation means, written out in full,

D(rτ, r′τ ′) = v(rτ, r′τ ′)

+
∑
j,k

∫
dτ1
∫

dτ2 v(rτ, rjτ1)Πjk(τ1, τ2)D(rkτ2, r
′τ ′).

(47)

D v

rj
v

v

t

Here we use a mixed representation,  while  and  are
defined on the whole space, since the electrons are on a
set of discrete sites , the self-energy is defined only on
the discrete sites.  is the free Green’s function, i.e., the
Green’s  function  when  the  electrons  are  absent.  Since
the thermal state is essentially fixed by the electrons, we
only  need  the  retarded  version  of ,  which  can  be
obtained  by  an  equation  of  motion  method.  If  we
compute the derivative with respect to the first argument
of time, , twice, we find

ϵ0

(
1

c̃2
∂2

∂t2
−∇2

)
v(rt, r′t′) = δ(r − r′)δ(t− t′).

(48)

v

Dr = vr + vrΠrDr

We see that  is  essentially the Green’s function of the
wave  equation.  The  contour  Dyson  equation  implies  a
pair of real time equations as the retarded Dyson equa-
tion, ,  and  the  Keldysh  equation,
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D< = DrΠ<Da v<

c̃ → ∞
ϕ

, so  is never needed (this is because in
the limit , the bath at infinity has no effect. Or in
other  words,  the  Coulomb  field  cannot  propagate  to
infinity).

 4.1   “Poynting scalar”

u = − 1
2ϵ0

(
ϕ̇2/c̃2 + (∇ϕ)2

)
How do we describe the energy flux in a pure scalar field
theory?  We  start  from  first  principles.  The  energy
density, according to our separation of the free field and
electron-photon  interaction,  is .
From this expression, we can obtain a conservation law
in differential equation form,

∂u

∂t
= −ϵ0

(
ϕ̇ ϕ̈

c̃2
+∇ϕ̇ · ∇ϕ

)
= −∇ · j − ρϕ̇. (49)

j = ϵ0ϕ̇∇ϕ

ϕ

ρϕ̇

−ρ̇ϕ

Here  we  define  the  Poynting  scalar  as .  The
dot  denotes  partial  derivative  with  respect  to  time.  In
obtaining  the  second  line,  we  note  that  satisfies  a
wave equation with the charge density as a source. Here
we treat the expression as a classical equation. To make
a quantum equivalent, we need to symmetrize the prod-
ucts.  The  last  term  in  the  expression  is  for  Joule
heating. If we are calculating the steady-state work, we
can perform “integration by parts,” so the average Joule
heating is also , consistent with the expression given
earlier in Section 2.

ϕ

We  can  express  the  quantum  dynamic  variable,  i.e.,
quantum field of , in terms of the creation and annihilation
operators in the usual way,

ϕ(r) =
∑
k

√
ℏc̃2

2ϵ0ω̃kV

(
bkeik·r + h.c.

)
, (50)

except  that  the  commutation  relation  acquires  a  minus
sign, due to Eq. (44), namely,

[bk, b
†
k′ ] = −δk,k′ , [bk, bk′ ] = 0, [b†k, b

†
k′ ] = 0.

(51)

k

V

ω̃k = c̃|k| ∫
u dV = −

∑
k ℏω̃k(bkb

†
k + 1/2)

b†k|0⟩ = 0

ℏω̃k

Here  the  wave  vector  is  box  quantized  in  a  finite
volume  of ,  and  the  mode  frequency  is  given  by

. With this transformation, the free field term is
an inverted oscillator form, .
Because of the minus sign in the commutation relation,
and because of the negative-definite nature of the Hamil-
tonian, the role of creation and annihilation is reversed.
The ground state is defined by . This is because
the creation operator still has the meaning of increasing
energy  by  one  unit  of ,  and  annihilation  operator
decreasing the energy by one unit, but due to the negative
definiteness, one cannot increase forever. The implication
of this feature is that in order to remove the zero-point
contribution  to  the  Poynting  scalar,  we  must  take  an

anti-normal order.

ϕ

ϕ b b†

bb b†b† bb† b†b

⟨0| · |0⟩

Let us explain this point more carefully. We see that
the  Poynting  scalar  is  a  quadratic  form  of .  If  we
expand  in terms of  and , we get four types of terms,

, , ,  and .  The  vacuum  expectation  value
 is  not  zero  for  the  last  type.  The  anti-normal

order is to swap the last case into the third case, removing
the  zero  point  contribution  from  the  field.  This  anti-
normal  order  (denoted  by  three  vertical  dots  below)  is
also used on general states, so we calculate the heat flux
using Poynting scalar as [95]

⟨j⟩ = 1

2
ϵ0
⟨ ... ϕ̇∇ϕ+∇ϕ ϕ̇

...
⟩

= ϵ0

∫ ∞

0

dω
π

ℏω Re∇r′D>(ω, r, r′)
∣∣∣
r′=r

, (52)

−iω

which  we  can  express  in  terms  of  the  greater  Green’s
function  and  integrate  over  the  positive  frequencies.
Here  we  transform  the  Green’s  function  into  frequency
domain,  then  the  derivative  with  respect  to  time
becomes .  The  gradient  operator  is  acting  on  the
second  argument  of  the  position.  After  the  operation,
both  positions  are  set  to  be  equal.  The  use  of  greater
instead  of  lesser  Green’s  function  is  due  to  the  anti-
normal order requirement.

b ϕ

bk(t) = bke−iω̃kt

Equation (50) is  not the solution to the problem but
only defines a transformation from  to . However, for
the  free  field  which  has  the  time  dependence

,  we can obtain the free  retarded Green’s
function from the definition,

v(rt, r′t′) = θ(t− t′)
1

iℏ
⟨
[ϕ(r, t), ϕ(r′, t′)]

⟩
=

c̃2

ϵ0

∑
k

θ(t− t′) sin
(
ω̃k(t− t′)

)
ω̃kV

eik·(r−r′)

=
1

4πϵ0|r − r′|
δ(t− t′), c̃ → ∞.

(53)

ω

c̃ → ∞
k v(k) = 1/(ϵ0k

2)

⟨bkb†k⟩
v< v<

If we Fourier transform the expression into  space, and
then  take  the  limit ,  we  recover  the  Coulomb
interaction  in  space,  as ,  and  the  usual
expression for  the Coulomb potential  in  real  space.  We
see also that the free retarded Green’s function is inde-
pendent of the distribution, no matter what meaning we
give to the average.  The free  retarded Green’s  function
is  determined  solely  by  the  equal-time  commutators,
unrelated to the distribution controlled by , which
determines . We do not need the free  as mentioned
earlier.

 4.2   A parallel plate capacitor as two quantum dots,
scalar field

In  this  subsection,  we  treat  the  parallel  plate  capacitor
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z

A
v−1D = 1 + ΠD

problem  again,  but  this  time,  by  the  scalar  field
approach  [76].  Since  in  a  parallel  plate  capacitor,  the
field is a function of only one variable, we call it , the
transverse direction can be integrated, giving the area of
the  capacitor .  As  a  result,  the  retarded Dyson equa-
tion, in differential form, , becomes

− ϵ0A

[(ω
c̃
+ iη

)2
+

∂2

∂z2

]
Dr(z, z′, ω)

= δ(z − z′) +
∑

α=L,R

δ(z − zα)Πα(ω)D
r(zα, z

′, ω).

(54)

η

z′

zL = 0

zR = d

α

δqα = Παϕ(zα) Πα

Here  we  have  transformed  the  equation  into  frequency
domain,  and  introduced  an  infinitesimal  small  damping
 so that the solution is the retarded one. This equation

can be interpreted as the scalar potential generated by a
unit active (external) charge located at , together with
the  induced  extra  charges  at  the  electron  sites, ,

,  due  to  the  linear  response  to  the  internal  field.
Indeed,  the  induced  charge  at  site  is  given  by

,  and  is  the  associated  response  func-
tion.

j

D D
z = 0 d D

Dr(z, z′, ω) = Dr(z′, z, ω)

0 < z < d

To  compute  the  energy  current  density  using  the
solution  of ,  we  note  that  the  dots  are  coupled  to 
only at  and . As a result, we only need to know 
at  one  of  these  points.  Also,  is
symmetric,  thus  the  following  solution  for  is
sufficient:

Dr(z, 0, ω) =

(
γ2 − λ2

γ
ΠR + 2γΩ

)
1

D
, (55)

Dr(z, d, ω) =
[
(1− γ2)ΠL + 2Ω

] λ

γD
, (56)

k̃ = ω
c̃ + iη λ = eik̃d γ = eik̃z Ω = iϵ0Ak̃where , , , , and

D = (λ2 − 1)ΠLΠR − 2Ω (ΠL +ΠR)− 4Ω2. (57)

z′ = 0 d

z < 0

re−ik̃z Aeik̃z +Be−ik̃z

0 < z < d

z > d teik̃z 0 d

δ

To  obtain  the  solution,  we  set  or ,  assuming
backward moving and decaying wave to the left for ,

,  standing  wave  in  the  middle
segment, ,  and  decaying  wave  to  the  right  for

, .  The wave has to be continuous at  and .
But  the  first  derivatives  are  discontinuous  with  the
discontinuities  determined  by  the -functions  on  the
right-hand side of the equation. This gives four boundary
condition  matching  algebraic  equations,  uniquely  deter-
mining the coefficients.

In the next step, we use the Keldysh equation

D>(z, z′) =
∑
α

Dr(z, zα)Π
>
αD

r(z′, zα)
∗, (58)

ω

Da = (Dr)† D>

where  we  have  omitted  argument  for  simplicity  and
used . We can now plug  into the expression
for heat current density, Eq. (52). Since our problem is

∇r′ ∂/∂z′

c̃ → ∞
η → 0+ z

quasi-one-dimensional,  is  just .  At  this  point
after  the space derivative,  we can take the limit 
and , the result becomes independent of location ,
and [76]

⟨j⟩ =
∫ ∞

0

dω
πA

Re
[
iℏω|DRL|2

(
Π>

RImΠL −Π>
L ImΠR

)]
.

(59)

DRL = DLR = 1/
[
ΠLΠR/C − (ΠL +ΠR)

]
C =

Aϵ0/d

Π>
α

where ,  and 
 is  the  capacitance.  If  we  assume  local  thermal

equilibrium with the fluctuation-dissipation theorem for
, we obtain the same Laudauer formula of Section 2.

If we adopt a self-consistent calculation, local equilibrium
is  not  a  valid  assumption,  then  the  above  equation  is
suitable  for  a  self-consistent  calculation.  We  note  that
the  above  formula  agrees  trivially  with  the  photon
version of  the Meir–Wingreen formula,  Eq.  (35),  and it
also agrees with the electron version, Eq. (23), when the
self-consistent iterations are converged.

 4.3   Quantum dot model of Π

Q

e ϵαc
†
αcα α = L R

GW

We consider each of the plates as a single quantum dot
with maximum charge , not necessarily the unit charge
, with the Hamiltonian  for each dot  or .

To set up a  calculation (also known as self-consistent
Born  approximation,  see Fig.  3),  we  start  from  the
retarded Green’s function

Gr
α(E) =

1

E − ϵα − Σr
α(E)− Σr

n,α(E)
. (60)

For  bath  self-energies,  we  take  a  phenomenological
Lorentz–Drude model [101],

 

Π

G

v

D

Fig. 3  The  self-consistent  Born  approximation  diagrams.
(a) The  Hartree  self-energy  diagram, (b) the  Fock  self-
energy  diagram, (c) the  polarization  bubble .  The  double
line with arrows signifies the full electron Green’s function ,
the  single  dotted  line  denotes  bare  Coulomb ,  while  the
double dotted line is the screened Coulomb .
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Σr
α(E) =

Γα/2

i+ E/E0,α
. (61)

E0,α → ∞

E0,α

t

If ,  it  is  called  a  wide-band  model,  as  the
coupling with the lead is independent of energy. Here we
cut  off  to  the  energy  scale  of .  This  gives  a  better
physical  picture  in  real  time ;  the  self-energy takes  an
exponential decay form.

If  the  dot  is  not  in  local  thermal  equilibrium,  we
cannot  use  the  fluctuation-dissipation  theorem  for  the
electron Green’s  function,  and have to use  the Keldysh
equation

G<
α (E) = Gr

α(E)
(
Σ<

α (E) + Σ<
n,α(E)

)
Ga

α(E). (62)

Σ<
α (E) = −fα(E) (Σr

α(E)−
Σa

α(E)) fα(E) = 1/(eβα(E−µα) + 1)

Σn,α

The  lead,  since  it  serves  as  a  bath,  by  definition  is  in
equilibrium,  so  we  can  use 

,  where  is  the  Fermi
function. The nonlinear interaction self-energy , the
Hartree and the Fock term coupling the two dots cannot
be  in  local  equilibrium,  thus  no  fluctuation-dissipation
theorem for it. The nonlinear self-energy can be calculated
in real time as

Σ<
n,α(t) = iℏQ2G<

α (t)D
<(zα, zα, t), (63)

Σ>
n,α(t) = iℏQ2G>

α (t)D
>(zα, zα, t), (64)

Σr
n,α(t) = θ(t)

(
Σ>

n,α(t)− Σ<
n,α(t)

)
+ (−iℏ)Q2δ(t)

∑
α′

v(zα, zα′)G<
α′(t = 0). (65)

δ(τ, τ ′)

v

There  is  no  Hartree  contribution  to  lesser  and  greater
components  of  the  interaction  self-energy,  since  the
Hartree  term  is  proportional  to  on  contour.  We
also  note  that  the  Hartree  potential  should  be  the
unscreened one of . For the capacitor model, this is

v =
1

2ϵ0Aη

( 1 e−ηd

e−ηd 1

)
, η → 0+, (66)

which  is  divergent.  Since  the  Hartree  potential  only
renormalizes  the  onsite  energy,  and  charge  neutrality
also  requires  it  to  be  zero,  we drop this  term in  actual
calculation.  Finally,  the  scalar  photon  self-energy  or
polarizability is calculated according to

Π>
α (t) = −iℏQ2G>

α (t)G
<
α (−t), (67)

Π<
α (t) = −iℏQ2G<

α (t)G
>
α (−t), (68)

Πr
α(t) = θ(t)

[
Π>

α (t)−Π<
α (t)

]
. (69)

Π Dr

Σn G

With  this  new ,  we  need  to  recalculate ,  and  thus
new  and , until convergence.

Since  the nonlinear  self-energy is  easy to  calculate  in
time domain, it is natural we adopt a fast Fourier transform
method  to  go  between  energy  and  time  domain.
However,  the  errors  are  sometimes  hard  to  control.  An
alternative to the Fourier transform is to perform convo-
lution  in  energy  space,  never  going  into  time  domain.
Energy domain functions are relatively smooth functions,
but time domain function can be highly oscillatory, thus
hard to control.

Π

d−2

We show in Fig. 4 the real and imaginary parts of the
retarded  for the single quantum dot, which is typical
of the photon self-energy. Figure 5 presents the distance
dependence of heat current density in a double logarithmic
plot, calculated with the self-consistent Born approxima-
tion.  For  large  distances,  the  heat  current  density
decreases  like .  Such  a  scaling  law  arises  from  the

 
ΠL

ω

Fig. 4  The  retarded  of  the  left  quantum  dot.  For
parameter, see next Fig. 5. Note that the real part is symme-
try, while the imaginary part is anti-symmetric with respect
to the frequency . Reproduced from Ref. [95].

 

L

1000 R 300 L

0 R 0.02 Q = 1e

ϵL = ϵR = 0 A = 19.2× 19.2

ΓL = 1 ΓR = 0.5 E0,L = E0,R =

Fig. 5  Energy  current  calculation  under  SCBA  and  the
blackbody limit in log–log plot. The temperature of dot  is

 K and dot  is  K. The chemical potential of dot  is
 eV  and  dot  is  eV.  Charge ,  onsite  energy

 eV,  and  plate  area  is  nm2.  The
bath  coupling  is  eV,  eV,  and 
50 eV. Reproduced from Ref. [95].
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capacitor  property,  as  mentioned  earlier,  which  can  be
manifested in the expression for the transmission coeffi-
cient. Our choice of the parameters should be considered
typical. Figure  5 shows  a  large  enhancement  of  heat
transfer mediated by the scalar photons. Comparing the
red solid and blue dashed-dotted lines at  nm, we find
that  the  heat  current  density  is  two  thousand  times
larger than the blackbody limit. This result demonstrates
that  the  heat  transfer  channel  provided  by  electron-
photon interaction is the dominant one for nano-capacitors
at small separations.

 5   Heat transport without local equilibrium
by current drive

Earlier in Section 3 we derived a Landauer-like formula
and  the  Meir–Wingreen  formula  based  on  Coulomb
interaction  for  an  electron  system.  The  Landauer
formula assumes the local thermal equilibrium, while the
Meir–Wingreen formula is a more general formula without
the  use  of  local  thermal  equilibrium.  As  an  application
of  the  Meir–Wingreen  formula,  Eq.  (35),  we  consider
two graphene layers separated by a vacuum gap, one of
them  is  driven  by  a  current  [89].  Since  the  system  is
under  a  current  drive,  this  is  truly  a  nonequilibrium
problem  and  we  cannot  use  the  Landauer  formula.
However, something very close to it does exist, which is
a “Doppler” shifted version. The basic idea is the follow-
ing: under the external field drive, the layer is nearly in
equilibrium,  satisfying  the  Kadanoff-Baym  ansatz  [102]
in the sense,

G< = −f(Gr −Ga), (70)

G> = (1− f)(Gr −Ga), (71)

fhere  is  not  the  equilibrium  Fermi  function  but  a
shifted one,

f(ϵ) = f0 − df0

dϵ
Φ ≈ f0(ϵ− Φ). (72)

f0

f0 = 1/
(
eβ(ϵ−µ) + 1

)
f

Φ

f

Φk

G>,<(k, E) i(Gr −Ga)

δ E ϵk

Here  is  the  usual  equilibrium  Fermi  function,
, while the nonequilibrium distribution

 is obtained by deforming the dispersion relation by an
amount .  In principle,  we should solve the Boltzmann
equation for , but a single-mode relaxation approximation
which  is  equivalent  to  the  choice  of  below  is  more
practical  and  simpler  to  use.  In  order  for  the  “fluctua-
tion-dissipation” theorem  above  to  make  sense,  the
Green’s  functions  are  in  mode  space,  i.e.,  it  is  for

 and the spectrum function  is essen-
tially a -function of  peaked at the electron band .
Only  the  distributions  are  shifted;  the  band stays  as  it
is.

Φ

To the lowest order of approximation, we can expand
 by  Legendre  polynomials,  and  keep  only  the  most

important angular dependence as [103]

Φk = ℏk · v1 = ℏv1k cos θ. (73)

v1 θ

k

G>,<

Π>,< (q, ω)

Here  is  the drift  velocity and  is  the angle between
the wavevector  and the drift velocity. The drift velocity
is related to the electric current by multiplying it by the
carrier charge density. Using this version of , we can
compute  by  the  usual  formula,  which  is,  in 
space,

Π<
q (ω) =

e2

iN
∑
k

∫
dE
2π

G<
k+q(E)G>

k (E − ℏω). (74)

G>,<
l (t) = 1

N

∑
k

∫ dE
2πℏG

>,<
k (E)ei(k·Rl−Et)/ℏ

Rl

N

k

f0(ϵ)[1− f0(ϵ′)] = N0
[
ϵ− ϵ′)/ℏ

] [
f0(ϵ′)−

f0(ϵ)
]

The real space Green’s function is related to the Fourier
space  one  by .
Here for simplicity of notation, we assume one atom per
unit cell at location of Bravais lattice point , and the
summation  is  over  the  first  Brillouin  zone.  is  the
number  of  points.  Using  the  Kadanoff–Baym  ansatz
and  the  identity 

, one can show that a shifted fluctuation-dissipation
theorem also exists, i.e.,

Π<
q (ω) = Ñ(ω)

[
Πr

q(ω)−Πa
q(ω)

]
, (75)

Π> Ñ + 1and similarly for  with , where we have

Ñ(ω) =
1

eℏ(ω−q·v1)/(kBT ) − 1
. (76)

Φk k

ϵ′ − Φ′ − ϵ+Φ = ℏω − Φk+q +Φk = ℏ(ω − q · v1)

q Ñ

k

f0 → f Πr

N0(ω)

Ñ(ω) =

N0(ω − q · v1)

ω −∞ +∞
ω → −ω

−∞ +∞

This  is  a  Doppler  shifted  Bose  distribution  [104–107].
The linearity of  with respect to  is  important here
as  depends
only  on ,  otherwise  cannot  be  factored  out  of  the
summation  over .  Note  that  due  to  the  replacement

,  the  retarded  for  graphene  is  no  longer
Doppler  shifting  the  equilibrium  one,  but  needs  to  be
computed afresh. Plugging in these formulas satisfying a
modified  version  of  the  fluctuation-dissipation  theorem,
we  still  have  a  Landauer  formula,  just  like  Eq.  (38),
except  that  the  Bose  distribution  function  is
replaced  by  the  Doppler  shifted  one  of 

.  However,  since  the  original
Meir–Wingreen  formula  is  an  integration  of  the
frequency  from  to ,  and  the  Doppler  shift
breaks  the  symmetry  of ,  the  Landauer  version
also  needs  to  integrate  from  to  just  like  the
Meir–Wingreen  version.  This  ends  our  theory  for  near-
field heat transfer under current drive.

Tr(DrΓRD
aΓL)

To  make  a  concrete  calculation,  we  need  to  simplify
our  Caroli  expression  for  transmission, ,
using the fact that we have a lattice symmetry. Here the
trace  is  over  the  collection  of  all  electron  sites.  Since
trace is invariant with respect to a similarity transform,
it  is  more  efficient  if  we  perform  the  trace  in  wave-
vector  space  for  the  transverse  directions  using  lattice
symmetry.  Then  the  trace  on  the  sites  becomes  a  sum
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Rl

Π

d

Π Dr

q z

over  the  wavevectors.  To  simplify  the  treatment,  we
ignore possible local inhomogeneous effect and treat each
site  as  on a Bravais  lattice.  What does  this  amount
to is for the self-energy  we consider all the charges in
a  unit  cell  as  one  single  unit,  by  summing  over  all  the
charges  in  the  unit  cell  as  if  it  is  located at  the  lattice
site. The error introduced is negligible when the distance
 involved is much larger than the lattice constant. The

lattice symmetry implies  a translation invariance which
means  that  correlation  functions  such  as  and  are
function of the relative distance between two points. We
can  make  a  discrete  Fourier  transform  into  the  two-
dimensional  wavevector  space,  still  keeping  the
transport direction in real space, as

D(q, z, z′) =
∑
l

D(Rl, z;0, z
′)e−iq·Rl . (77)

Rl = l1a1 + l2a2

l = (l1, l2)

q

q

[D] = [Π−1] = [U/e2]

Dr Π q

q

q

Here  is  a  two-dimensional  lattice  vector
running  through  index  on  the  crystal  lattice
sites,  runs over the reciprocal space in the first Brillouin
zone, laying in the plane of graphene. This convention of
discrete  Fourier  transform  ensures  that  the  dimensions
in  real  space  and  in  are  the  same,  i.e.,  the  inverse
capacitance, .  As  a  result  of  this
transformation for  as well as for , we can work in 
space, in which each value of  is block-diagonal and we
can  focus  on  one  particular .  The  three-dimensional
problem reduces to a quasi-one-dimensional problem.

r

D

r (Rl, z)

z = 0 d

Dr = v + vΠDr

(Dr)−1 = v−1 −Π Π = Πr

q z

δ

We  note  that  in  our  original  definition  of  the  scalar
photon  Green’s  function,  Eq.  (45),  it  is  defined  on  the
continuum  for  any  real  space .  Fortunately,  in  the
Caroli formula, we only need to know the values of  on
the lattice sites where electrons exist. As a result, we do
not need to solve the Dyson equation covering the whole
space  but  just  over  these  discrete  points  with

 for the left  and  for the right sheet of  graphene.
The Dyson equation still  takes the form ,
or , here  is the retarded version.
The free Green’s function for the transverse directions in
 space and  direction in real space is obtained by solving

the  Poisson  equation  in  mixed  representation  with  a 
source, as(

q2 − ∂2

∂z2

)
v(q, z, z′) =

1

ϵ0Ω
δ(z − z′). (78)

q = |q| Ω

Ω

q

1/Ω

δ

q q z

d 2× 2

Here  is the magnitude of the wave vector,  is the
area of one unit cell. This extra  factor in the denominator
on the right-hand side has to do with the fact that our 
is  not  continuous,  but  discretized  on  a  grid  and  our
Fourier  transform  is  the  discrete  version.  Putting  it  in
another  way,  is  the  value  of  the  discretized  two-
dimensional Dirac -function in the transverse direction,
Fourier transformed in  space. In the space of , and 
taking 0 and , the matrices are , as

(Dr)−1=

[
1

2ϵ0qΩ

(
1 e−qd

e−qd 1

)]−1

−
(
ΠL 0

0 ΠR

)
.

(79)

v−1 = C

C11 = C22 = 2ϵ0qΩ/(1− e−2qd)

C12 = C21 = −e−qdC11

q → 0

ϵ0Ω/d

Dr

For the first term as , the inverse can be worked
out  to  give ,  and

.  We note that if  we take the limit
,  we  obtain  the  same  matrix  as  before  with  a

capacitance in this case as , i.e.,  the effective area
of  the  capacitor  is  the  area  of  a  unit  cell.  The  explicit
expression for  matrix elements can be easily worked
out, e.g.,

Dr
LR = Dr

RL =
−C21

(C11 −ΠL)(C22 −ΠR)− C12C21
.

(80)

The  advanced  version  is  obtained  by  Hermitian  conju-
gate. We define the reflection coefficient as

rα =
vαΠα

1− vαΠα
= vαχα, α = L,R. (81)

vα = 1/(2ϵ0qΩ)

q χα

Πα

ϵα = 1− vαΠα

Here,  is  the  Coulomb  potential  in  two-
dimension in  space,  is charge-charge correlation or
susceptibility,  while  is  the self-energy or polarizabil-
ity.  is  the  dielectric  function.  Using  the
reflection coefficients with some algebra, we can simplify
the transmission as [108]

Tq(ω) =
4 Im rL Im rR e−2qd

|1− rLrR e−2qd|2
. (82)

rα q

ω

rα

s

p

c → ∞

Of course,  is a function of the wave-vector  as well
as  the  angular  frequency  which  we  have  suppressed.
One might be curious about why  is called a reflection
coefficient.  Indeed,  it  does  have  to  do  with  the  wave
reflection. In the traditional approach to near-field heat
transfer  of  Polder  and  van  Hove  [6, 109],  one  solves  a
wave scattering problem with transmission and multiple
reflections  between  the  plates.  Ignoring  the -wave
polarization, which is small at near distance, and focusing
on the -wave (electric field is in the plane of incidence)
and  at  the  non-retardation  limit  of ,  one  obtains
exactly the same result as above using the fluctuational
electrodynamics. Here our approach is based on NEGF,
which in some way is simpler.

q N

IL =
∫ +∞
−∞ dω/(4π) ℏω

∑
q Tq(ω)(ÑL − ÑR) q

A = NΩ

(1/A)
∑

q · · · =
∫
d2q/(2π)2 · · ·

q

Γ

Finally,  to  obtain  the  total  heat  current,  one  sums
over  all  the  modes  in  the first  Brillouin zone with 
sampling points, and integrates over the frequency, i.e.,

. The number of 
points  is  related  to  the  actual  area  of  the  plates  by

.  To  obtain  the  heat  transfer  per  unit  area,  we
divide by the area, i.e., . It is
important that the points of  are in the first Brillouin
zone, i.e.,  the Wigner–Seitz cell with the -point at the
cell center. This is because although the materials have
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Πq

v

Dr

lattice  periodicity  with  a  periodic  function  in  the
reciprocal space, the photon free Green’s function  does
not  has  such  periodicity,  our  forcing  running  on
lattice sites is an approximation.

Π

r

Πα rα

ω − q · v1 = 0

v1 x

q

q ω

q f(ω) ω

qx qy
ω qx

qx = 0

After this long preparation, in Fig. 6, we illustrate the
effect  of  drift  velocity  to  heat  transfer  in  the  two-layer
graphene  setup.  We  emphasize  that  the  current  drive
not  only  changes  the  Bose  distribution  by  a  Doppler
shift, but also, the self-energy  or in turn the reflection
coefficient  needs to be recalculated anew. The changes
in  or  are  necessary so that  the integrand for  the
heat transfer is not divergent or at least still  integrable
at the point when . Details are in [89]. Here
we drive with velocity  in  direction for the left layer
(called  1  in  the  original  paper),  and  compute  the  heat
transfer out of the left layer. Although the drive breaks
symmetry in frequency for each given , after integration
over  all ,  the  even  symmetry  in  is  restored. Figure
6(a)  plots  the  integrated  result  for  fixed .
Further  integration  over  frequency  gives  the  total  heat
transfer. We notice originally without drift, heat is flowing
from right to left (negative value on the plot) since the
right  is  hotter.  But  as  the  drift  velocity  increases,  the
heat transfer reverses sign, going from cold to hot. This
is  understandable  as  the  left  layer  of  graphene  is  no
longer  in  local  thermal  equilibrium,  and  it  is  not  a
broken  down  of  the  second  law  of  thermodynamics.
Figure 6(b) demonstrates the effect of drift to the distri-
bution of  the total  integrand over  integrated over 
and . Without drift, the distribution in  is symmetric
with respect to , while drift breaks this symmetry,
and  it  turns  into  having  both  positive  and  negative

v1contributions  when  is  large,  causing  a  cancellation
effect for the total heat transfer.  In Fig. 7,  the reversal
of the heat transfer direction is clearly shown when the
temperature of the right-side sheet is varied. There is a
particular  balance  temperature  where  heat  transfer  is
zero even though the temperatures of the two sheets are
different. Above this temperature, we have a net cooling
effect for the right side due to the current driven on the
left  side.  We  comment  that  driving  a  conductor  with
current  will  produce  Joule  heat  as  well  as  electro-lumi-
nescence,  the  effects  of  electron–phonon  and  electron-
transverse-photon  interactions.  This  extra  heat  has  not
been taken into account in our theory.

 6   Full counting statistics for energy transfer

Q

ĤL

t0 t

ĤL

(t− t0) → ∞

At the nanoscale due to thermal agitation, the measured
results themselves are fluctuational quantities [110, 111].
The  full  counting  statistics  [112, 113]  here  means  that
we  compute  not  only  energy  but  also  high  order
moments  in  a  transport  setup.  To  compute  the  higher
moments, it is convenient we compute the total heat 
of  a  fixed duration in a two-time measurement [114]  of
the left bath . The energy of the left bath is measured
at an earlier time  and then measured again at time ,
the decrease in energy is the transfer of the heat to the
right  out  of  the  left  bath.  According  to  the  standard
measurement  interpretation  of  quantum mechanics,  the
result of a measurement is an eigenvalue of . We will
be interested in the long time  which gives a
simpler result. Other protocols of measurements are also
possible,  but  the  two-time  measurement  results  in  a

 
f(ω)

g(qx)

IL/A = −0.84 v1 = 5.0× 105 m/s −0.30

v1 = 9.0× 105 m/s +0.09

TL = 300 TR = 320

µ

d η = 9

Fig. 6  (a) Integrated  spectral  transfer  function  as  a
function  of  frequency  and (b)  as  a  function  of  wave
vector in the driven direction, with different drift velocities:
no  drift  (blue  dash-dot  line),  total  heat  current  density

 MW/m2;  (red dash line), 
MW/m2; and  (black solid line),  MW/
m2.  The  temperatures  are  K  and  K.  The
chemical  potential  of  graphene  is  set  as  0.1  eV.  Gap
distance  is set as 10 nm. The damping parameter is 
meV. Reproduced from Ref. [89].

 

TR

v1 = 9.0× 105 m/s

µ

TL d

Fig. 7  Heat  current  density  from  left  to  right  layer  as  a
function  of  (temperature  of  the  right  layer)  with  drift
velocity  (red solid line). The dotted line is a
reference line for zero current density. The green circle indicates
the  point  for  “off  temperature”.  The  chemical  potential  of
graphene  is  set  as  0.1  eV.  Temperature  of  left  layer  of
graphene  is set as 300 K. Vacuum gap distance  is set as
10 nm. Reproduced from Ref. [89].
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simpler  mathematics,  although  it  is  not  clear  how  this
measurement of energy of the bath can be done experi-
mentally when the bath is supposed to be infinitely large.
For  the  long-time  result,  the  details  of  measurement
protocols should not matter.

ĤL + ĤR + Ĥγ + V̂ = Ĥ0 + V̂ Ĥγ

V̂

V̂ =
∑

jkl M
l
jkc

†
jckϕl

We consider the system as two blocks of metal with a
Hamiltonian .  is the nega-
tive-definite  free  scalar  photon  Hamiltonian.  The  last
term  is  the  Coulomb  interaction  in  the  scalar  field
form, . Only parts of the sites near the
interface  between  the  left  and  right  blocks  have  the
Coulomb  interaction.  Deep  into  the  baths,  we  set  the
Coulomb  interaction  to  zero  (due  to  screening).  We
prepare the system to be in the decoupled product initial
state given by the density matrix

ρ̂(t0) ∝ e−βL(ĤL−µLN̂L) e−βR(ĤR−µRN̂R) e−βγĤγ ,

(83)

βγ = 0

here the left and right baths are in the grand-canonical
ensembles and the last factor is for the scalar photons in
canonical  ensemble.  We  can  set  without  loss  of
generality.

We  can  prove  a  very  general  formula  by  defining  a
“partition function” or moment generating function as

Z(ξ) = ⟨Tτe−
i
ℏ

∫
dτV̂ x(τ)⟩Ĥ0

. (84)

t0 t

t0 V̂ x

ℏx

Here, the exponential is contour ordered, and the integral
is over the contour from  on the upper branch to  and
then back to  from the lower branch.  is the interaction
term,  but  Heisenberg  evolved  by  in  the  interaction
picture by the left bath, i.e.,

V̂ x = eixĤL V̂ e−ixĤL . (85)

x −ξ/2

(+) ξ/2 (−)

Z n Q

n Z ⟨Qn⟩ = ∂nZ(ξ)/∂(iξ)n

ξ = 0 n

The amount of  is contour dependent, it is  on the
upper  branch and  on the lower  branch. With
this  definition  of ,  the -th  moment  of  is  obtained
by -th  derivative  of ,  evaluated
at  and the -th order cumulant is

⟨⟨Qn⟩⟩ = ∂n lnZ(ξ)

∂(iξ)n
∣∣∣
ξ=0

. (86)

t− t0

⟨Q⟩ = ⟨⟨Q⟩⟩ = ∂ lnZ/∂(iξ) = (t− t0)IL IL

⟨⟨Q2⟩⟩ = ⟨Q2⟩ − ⟨Q⟩2 = (t− t0)σ
2

The advantage of working with the cumulants instead of
moments is that they are all linear in  at long time.
The  first  order  moment  and  cumulant  are  the  same,

,  is  the  current.
The second cumulant is just the variance or the fluctuations
of the current,  .

ĤL|φa⟩ = a|φa⟩
a

|φa⟩ t0
a

t b

To  show  the  validity  of  Eq.  (84),  let ,
here  is the eigenvalue of the isolated left side with the
eigenstate . If a measurement is performed at time 
obtaining the eigenvalue , and then measured again at
time  obtaining the eigenvalue , the generating function
is

Z(ξ) =
∑
a,b

ei(a−b)ξP (b, a)

=
∑
a,b

ei(a−b)ξTr
[
ρ̂(t0)ΠaU(t0, t)ΠbU(t, t0)

]
. (87)

P (b, a) b

t a t0
U

Here  is the probability of being in state  at time
 given that it  is  in state  at  an initial  time ,  which

can be expressed by the evolution operator  of the full
Hamiltonian and the projectors of the respective states,

Πa = |φa⟩⟨φa|. (88)

Z(0) = 1

(iξ) n

ξ

Qn = (a− b)n P (b, a)

[Πa, ĤL] = 0 [
Πa, ρ̂(t0)

]
= 0

We see  that  due  to  the  probability  normaliza-
tion. Taking the derivative with respect to   times,
and then set  to 0, we obtain the expectation value of

 over  the  probability .  we  have
,  and  because  of  the  choice  of  the  product

initial state, we also have . Since∑
a

eiaξΠa = eiξĤL ,
∑
b

e−ibξΠb = e−iξĤL , (89)

Z(ξ)we can express  as

Z(ξ) = Tr
[
ρ̂(t0)eiξĤLU(t0, t)e−iξĤLU(t, t0)

]
= Tr

[
ρ̂(t0)U

ξ
2 (t0, t)U

− ξ
2 (t, t0)

]
. (90)

U

ĤL Ux = eixĤLUe−ixĤL x

U

Ĥx = Ĥ0 + V̂ x Ĥ0

ĤL

ĤL ĤR Ĥγ

Ĥ0

cL(τ) = cL(t− ℏξ/2)
cL(t+ ℏξ/2)

ΠL

Here  we  have  split  the  exponential  factors  into  two
halves  and used a  cyclic  permutation  of  the  trace.  The
superscript on  denotes an extra Heisenberg evolution
with , i.e., . This extra  dependence
can be transferred from  into the Hamiltonian, to give

.  Here  the  noninteracting  Hamiltonian 
is unaffected as  commutes with the three free terms,

, , and . At this point, we transform the expression
into  the  interaction  picture,  given  Eq.  (84)  with  the
average evaluated with respect to . In the interaction
picture, the effect of the Heisenberg evolution is to shift
the time argument of the left side as 
on  the  upper  branch,  and  on  the  lower
branch.  This  in  turn  means  a  corresponding  shifts  of
time argument for the self-energy .

ϕ V̂

1/[2(iℏ)2]·∫
dτ1
∫
dτ2⟨Tτ V̂ (τ1)V̂ (τ2)⟩0

The rest of the steps follow a standard diagrammatic
expansion.  We  work  at  the  level  of  RPA  for  the
Coulomb  interaction.  Since  the  photon  Hamiltonian  is
quadratic in the scalar field , an odd number of  evaluates
to  zero.  Thus  the  lowest  order  of  nonzero  term,  when
the  exponential  is  expanded,  is 

.  Applying  Wick’s  theorem,  we

 

ln Z

Fig. 8  The  first  few  terms  of  diagrammatic  expansion  of
.
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1
2Trτj(vΠ

(0)) v

j τ δ

τ

Π(0)

(0)

1/n

n

can  write  the  result  as ,  here  is  the  bare
Coulomb in  and  space which contains a  function in
the  variable as Coulomb interaction is  instantaneous,
and  is the RPA bubble diagram result. We will drop
the  superscript  for  notational  simplicity.  If  we
continue the expansion to higher orders, and collect only
these bubble diagrams that form a ring (see Fig. 8), we
can  sum  the  diagrams  as  a  logarithm  due  to  the 
factor at the -th order. These diagrams are the same as
the RPA result  for  the grand potential  in a Matsubara
Green’s  function  formulation  [94].  Finally,  we  have  the
RPA expression for the generating function as

lnZ(ξ) = −1

2
Tr ln

[
I − v(Πx

L +ΠR)
]
. (91)

τ j Tr(·) =
∑

j

∫
dτ (·) I

t0 → −∞ v

D ΠA
L = Πx

L −ΠL

I − v(Πx
L +ΠR) = v(v−1 −ΠL −ΠR)− vΠA

L = v(D−1−
ΠA

L) = vD−1(I −DΠA
L) vD−1

ξ lnZ

Here  the  trace  is  performed  in  the  combined  contour
time  and site  space, that is, .  is the
identity  is  this  space.  To  aid  the  Fourier  transform  in
the  full  time domain,  it  is  convenient  to  take  the  limit

.  We eliminate  the bare  Coulomb  in favor  of
the  screened  Coulomb  by  introducing ,
then 

.  Since  the  factor  does  not
depend on ,  it  is  an additive constant to  and will
not  contribute  to  the  derivatives,  so  we  drop  it  and
redefine the generating function as

lnZ(ξ) = −1

2
Tr ln

(
I −DΠA

L

)
. (92)

ξ

IL

ξ

DrΓRD
aΓL

If  we  Taylor  expand  in ,  the  linear  term  gives  the
current .  After  simplifying  from  the  contour  time  to
real  time,  and  then  Fourier  transform  to  frequency
domain  for  the  Green’s  functions  and  self-energies,  we
recover  the  Meir–Wingreen  formula,  Eq.  (35).  If  we
expand up to second order in , we obtain the variance.
Explicit  formula  for  the  variance  of  heat  transfer  has
been  derived  by  Herz et  al. [110]  within  a  scattering
operator  formalism.  If  we use  local  equilibrium,  we can
express  the  generating  function  in  terms  of  a  matrix

 which is identical to the usual Levitov–Lesovik
formula [113, 115, 116].

 7   Density functional theory calculation
based on Coulomb interaction

So far, our electron models have been in the tight-binding
form  where  the  electrons  are  allowed  to  sit  only  at  a
discrete set of sites. This has the computational efficiency
advantage  of  dealing  with  finite-dimensional  Hermitian
matrices, enough to capture the solid-state band structure
for  a  lattice,  for  example.  In  fact,  our  systems  can  be
any  structure  unrestricted  by  lattice  periodicity,  e.g.,
tips  of  two triangles  made of  graphene [117].  Assuming
that  electrons  sit  only  at  certain  discrete  places  is  an
approximation.  The  density  functional  theory  (DFT)

D Π

[118]  offers  a  parameter-free  approach  to  real  complex
materials. In DFT approach the electrons are treated as
distributed  in  the  whole  space  continuously.  Another
feature  of  the  plane-wave  based  DFT  is  that  we  must
work on a periodic unit cell or super-cell. As a result, we
must  consider  the  fluctuations  of  the  electron  density
within a cell. The theory developed earlier based on the
Green’s  function  and  the  self-energy  needs  some
revisions, but it is only of a technical nature and no new
conceptual difficulty remains.

D

ρ

Π

The  definition  remains  the  same  as  given  by  Eq.
(45),  whether  the  electrons  are  treated  as  discrete  or
continuous degrees of freedom. For a continuum of electron
density, , it is convenient to define the contour version

 as

Π(rτ ; r′τ ′) =
1

iℏ
⟨
Tτρ(r, τ)ρ(r

′, τ ′)
⟩
ir. (93)

ir

v

χ = Πϵ−1 ϵ = 1− vΠ

Ω

Π Πij = Ω2Π(ri, rj) ri i

∑
j,k

∫
dτ1
∫
dτ2v(rτ, rjτ1)Πjk(τ1, τ2)·

D(rkτ2, r
′τ ′)

Here the subscript  means that we take only the irreducible
diagrams  in  a  Feynman-diagrammatic  expansion  with
the Coulomb interaction. The irreducible ones are those
that  cannot  be  cut  into  two  disconnected  pieces  by  a
single bare scalar photon line . Without it, the charge-
charge correlation is ;  is the longitudinal
dielectric function. Under the random phase approxima-
tion, we just take the lowest order bubble diagram. We
can lump the charges in a cell to a point. Assuming all
the cells having the same volume , the relation between
a continuous description and the earlier discrete description
for  is . Here  is a point in the cell .
Exactly where it is in the cell does not matter provided
that  the  function  varies  with  the  position  smoothly
enough.  From this  relation,  we  can  see  that  the  Dyson
equation in  a  continuous charge description is  obtained
by replacing the summations by integrals over space, i.e.,
in Eq. (47), we replace 

 by the integral∫
d3r1

∫
dτ1
∫
d3r2

∫
dτ2v(rτ, r1τ1)Π(r1τ1, r2τ2)D(r2τ2, r

′τ ′).

r

q

The quantities like the above expressed in real space 
are not convenient for actual computation. The translation
invariance  in  a  crystal  means  we  should  evoke  the
convolution  theorem  in  Fourier  transform  so  that  it
becomes  multiplication  in  space.  However,  if  we  also
take into account the local  inhomogeneity inside a cell,
the  Fourier  transform  is  slightly  more  complicated  for
which we elaborate below.

ϕ(r) = eik·ru(r)

u(r) = u(r +R) R = l1a1 + l2a2 + l3a3

ai

li

For a periodic system, the single-electron wave function
satisfies the Bloch theorem [119], ; that is,
a  plane  wave  modulated  by  a  periodic  function,

.  Here  specifies  the
Bravais lattice sites by the unit cell vectors  and integers
. This fact implies that the average electron density is

a cell-periodic function,

⟨ρ(r)⟩ = ⟨ρ(r +R)⟩, (94)
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|ϕ(r)|2

ρ

since under the Kohn-Sham DFT framework, the electron
density  is  simply  the  sum  of  of  the  occupied
bands.  The  operator  itself  before  the  thermodynamic
average  does  not  have  this  cell  periodicity.  A  periodic
function can be Fourier expanded as

⟨ρ(r)⟩ =
∑
G

ρG eiG·r, (95)

G

G = n1b1 + n2b2 + n3b3 ni

ai · bj = 2πδij i, j = 1, 2, 3

ρG = (1/Ω)
∫
Ω
⟨ρ(r)⟩e−iG·rd3r

Ω

here the capital letter  is the reciprocal lattice vector,
running over all the values ,  are
integers and , . The Fourier coef-
ficients  are  obtained  by ,
integrating over one unit cell with cell volume .

f(r, r′) = ⟨ρ(r)ρ(r′)⟩

The  charge-charge  correlation  involves  two  positions,
possibly  in  different  unit  cells.  For  simplicity,  let  us
consider  the  static  correlation .  The
lattice cell translation means that, if we shift both positions
by  a  common  Bravais  lattice  vector,  the  correlation
between the new pair should be the same, i.e., we have

f(r +R, r′ +R) = f(r, r′). (96)

f r − r′

G G′

Note that this is different from a continuous translation
symmetry  of  being  a  function  of  the  difference 
only.  We  will  show  that  the  cell  translation  symmetry
can  be  Fourier  expanded  with  double  series  and 
and a Fourier integral in the first Brillouin zone, as

f(r, r′) =
∑
G,G′

∫
1BZ

d3q
(2π)3

F̃GG′(q)ei(G+q)·r−i(G′+q)·r′
.

(97)

G = G′ = 0

f(r, r′) =

f(r − r′)

G

F (r,∆) = f(r, r +∆) ∆

F

r ∆ = r′ − r F

r

In  the  above,  if  we  keep  only  the  term,  we
obtain  a  continuous  translation  symmetry, 

;  this  is  a  long-wave  approximation.  The  extra
nonzero -vector  terms  reflect  the  local  inhomogeneity
within a cell. To proof this result, first we can choose a
Bravais  vector  such  that  the  first  argument  is  in  the
first cell, and define . Here  is still
arbitrary running over the whole space. If we consider 
as a function of  fixing the difference ,  is a
periodic function of . So, we can write

F (r,∆) =
∑
G

cG(∆)eiG·r. (98)

cG ∆

∆ q

The  Fourier  coefficients  are  still  a  function  of 
which varies continuously in the full space. For the variable

 we can make a Fourier integral transform into . This
is

cG(∆) =

∫
d3q
(2π)3

f̃G(q) e−iq.∆. (99)

q

G′

q → G′ + q q

The  integral  over  the  full  Fourier  space  can  be  split
into  pieces  of  reciprocal  space  cell  with  a  change  of
variable to each cell by . Then the new  variable
varies  in  the  first  Brillouin  zone  only.  After  some

∆ = r′ − r

F̃GG′(q) = f̃G−G′(G′ + q)

regrouping  and  simplification,  noting  that ,
and  defining ,  we  obtain  the
desired result, Eq. (97). Tracing back the steps, we can
compute the Fourier expansion coefficient as

F̃GG′(q) =
∑
R

1

Ω

∫
Ω

d3r
∫
Ω

d3r′f(r +R, r′)e−iφ,

φ = (G+ q) · r − (G′ + q) · r′ + q ·R.

(100)

r r′

G G′ q

vΠD

G,G′ q

r

G q

Here  both  of  the  integral  variables  and  are  in  the
first  unit  cell.  With  the , ,  and  variables  for  the
correlation  functions,  we  also  have  a  convolution  theo-
rem.  That  is,  the  expression of  type  in  the  Dyson
equation  can  be  written  as  a  matrix  multiplication
indexed by  for each given . Similarly, a trace by
integration  over  position  can  now  be  expressed  as  a
trace in  as a matrix trace and integration of  in the
first Brillouin zone.

 7.1   Adler–Wiser formula

Πr

Πr(t) = θ(t)
(
Π>(t)−Π<(t)

)

Π>(t) = ⟨ρ(t)ρ(0)⟩/(iℏ) Π<(t) = ⟨ρ(0)ρ(t)⟩/(iℏ)
ρ

ρ = (−e)Ψ†Ψ Ψ

We now give a formula for the retarded  expressed by
the  Kohn–Sham  or  independent  single-particle  orbitals
known  as  the  Adler–Wiser  formula  [120, 121].  The
retarded  formula  can  be  computed  according  to

, and then Fourier transformed
into frequency domain. The lesser and greater components
can be read-off from the contour expression, Eq. (93), as

 and .  We
remind  the  reader  here  that  is  a  quantum  operator,
which  can  be  expressed  in  the  quantum  field  as

,  where  is  space  and  time  dependent
which we expand in the mode space,

Ψ(rt) =
∑
nkσ

cnkσ(t)ϕnkσ(r). (101)

n

k σ =↑, ↓

Πr

ϕnk

V = NΩ

cnk(t) = cnk e−iϵnkt/ℏ

ϵnk

Here  the  eigenmodes  are  labeled  by  the  band  index ,
the wave vector , and spin . However, for a spin-
independent problem, the net effect of spin degeneracy is
simply multiplying the final expression of the polarizability
by a factor of 2. In the following, we will treat our electrons
as spinless and then keep a factor of 2 for . The Kohn-
Sham wave function  must be normalized to 1 in the
whole  system  of  volume  in  order  to  give  the
correct electron density. In mode space, the Hamiltonian
is diagonal, thus the time-dependence for the annihilation
operator is simply the free evolution, ,
here  is the electron band energy.

⟨c†c c†c⟩
c

⟨cc⟩ ⟨c†c†⟩
⟨c†jcl⟩ = δjlfj ⟨cjc†l ⟩ =

δjl(1− fj)

j ≡ (nk) l ≡ (n′k′)

In  evaluating  the  density-density  correlation,  we
encounter  terms  of  the  form  which  we  apply
Wick’s theorem to factor into product of two ’s. Noting
that  or  is 0, the remaining terms are related to
the  Fermi  function,  i.e., ,  and 

.  Here  we  have  used  a  short-hand  notation
, .  With  some  algebra,  we  can  express

the  retarded  scalar  photon  self-energy  in  the  frequency
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domain as

Πr(r, r′, ω)=2e2
∑
jl

(fj − fl)ϕj(r)ϕ
∗
j (r

′)ϕl(r
′)ϕ∗

l (r)

ϵj − ϵl − ℏω − iη
.

(102)

iη

Πr(t) = 0 t < 0 η

(r, r′)

G,G′, q

Here  the  extra  small  damping  in  the  denominator  is
necessary,  so  that  the  poles  in  a  complex  frequency
plane  is  below  the  real  axis,  and  the  inverse  transform
has the property  when . This  parameter
also has a physical meaning. We can interpret it as the
inverse of electron lifetime of the quasi particle. Finally,
using  our  general  transformation  formula  for  the 
correlation to the  space, the self-energy becomes

Πr
GG′(q, ω)

=
2e2

NΩ

∑
j,l

⟨l|e−i(G+q)·r̂|j⟩⟨j|ei(G′+q)·r̂|l⟩
(
fj − fl

)
ϵj − ϵl − ℏω − iη

.

(103)

⟨l|Â|j⟩ ≡∫
NΩ

d3r ϕ∗
l Âϕj

N

Â

k j l k = k′ + q

G

Here  we  define  the  matrix  element 
;  the  integration  is  over  the  full  volume

with  unit cells. This is the Adler–Wiser formula. Note
that  the  single  particle  operator  is  a  shift  of  the
momentum,  so  the  matrix  elements  are  zero  unless  the
momentum  in  is  related  to  that  in  by 
modulo .  Efficient  evaluation  of  this  expression  with
massively  parallel  algorithms  has  been  implemented  in
the  well-known  BerkeleyGW  package  [122, 123],  but
only for zero temperature.

 7.2   Solving the Dyson equation

G⊥ z

Πr
G⊥G′

⊥
(q⊥, z, z

′, ω) z

Gz, G
′
z, qz

G⊥ = (Gx, Gy)

Here  we  consider  the  parallel  plate  geometry  for  near-
field heat transfer. Since the first-principles codes require
periodic  supercell  while  the  heat  transfer  problem  is
intrinsically  a  non-periodic  problem  in  the  transport
direction, there is a fundamental conflict. We can imagine
putting  two  slabs  of  materials  into  the  simulation  cell
with  sufficient  vacuum  gaps.  Although  the  transverse
directions are intrinsically periodic, the transfer direction,
if we still use periodic boundary condition, may requires
large  vacuum  gap  to  void  artificial  interactions.  As  a
result,  it  is  best  we  treat  each  slab  separately  by  DFT
and combine the results [124]. We also assume the peri-
odicity  in  the  transverse  directions  for  the  two  slabs  is
the same, otherwise, how to combine them is a problem.
Finally,  if  the  slab is  thick,  we work in  a  mixed repre-
sentation  of  and ,  and  consider  the  self-energy  in
the  form .  Here  the  dependence  is
obtained  by  Fourier  transforming  into  real
space, and  lays in the plane.

Very  likely  the  above  approach  is  still  too  computa-
tionally intensive; so far no one was able to do a calculation

z = 0

d z

z

σ =
∫
ρ dz

Π

q

c z

for  near-field  heat  transfer.  In  the  following,  we  make
further  approximation,  this  is  to  treat  the  slab  as
infinitely  thin,  in  such  a  way  that  the  density  of  the
electrons is confined strictly in 2D at location  and
. In this way, the  variables become discrete. We can

define surface charge density by integrating over  of the
volume density, , and define the surface version
of .  A careful  analysis  shows that this  surface version
can be obtained from the volume version in  space just
by multiplying the supercell length  in  direction, i.e.,
[125]

Π2D
G⊥G′

⊥
(q⊥, ω) = cΠ3D

(G⊥,0),(G′
⊥,0)((q⊥, 0), ω). (104)

q = (q⊥, qz) G = (G⊥, Gz)

z

Here in 3D the wave vector  and ,
and for both of  them the -components are set to 0 on
the right-hand side of the equation. This is a convenient
formula to  use  as  existing DFT codes  are  for  3D prob-
lems.

r⊥ = (x, y)

G⊥ q⊥ z

The  Dyson  equation  needs  to  be  transferred  into  a
mixed  representation,  that  is,  variables  are
transformed  to  and  and  variable  stays.  Using
our general transformation, Eqs. (97) and (100), specialized
to 2D, we obtain

D(q⊥, ω) = v(q⊥)+

v(q⊥)

(
Π0(q⊥, ω) 0

0 Π1(q⊥, ω)

)
D(q⊥, ω).

(105)

v D z,G⊥

z = 0 d G⊥

G⊥ = G′
⊥ = 0 v D

2× 2

Π0 Π1

z = 0 d

D (I − vΠ)D = v

Here  and  are matrices in the combined  space,
 and  only.  runs over an energy cut-off choice.

If we take only , our matrices  and  will
be  which gives a result where local inhomogeneity
is  ignored.  and  are  the  2D  polarizability  matrix
located  at  and ,  respectively.  This  equation  for
the retarded  is easily solved, in the form ,
by calling numerical packages such as LAPACK [126].

r t

r − r′

G

v(q) = 1/(ϵ0q
2)

qz

z

Before closing this long theory session, we also need to
transform  the  bare  Coulomb  Green’s  function  into
mixed representation. In real space  and time domain ,
it is given by Eq. (53). We note that the bare Coulomb
potential is a function of the difference  only. This
means in  the  representation,  it  is  a  diagonal  matrix.
Fourier  transforming  into  full  3D  space,  we  get

. A two-dimensional expression is obtained
if we perform an inverse Fourier transform for  back to
real space  using the Cauchy residue theorem,

vG⊥G′
⊥
(z, z′, q⊥) = δG⊥,G′

⊥

e−|q⊥+G⊥||z−z′|

2ϵ0|q⊥ +G⊥|
. (106)

q G⊥

Finally,  the Caroli  formula remains the same with sum
over  in  the  first  Brillouin  zone  and trace  over  as
matrix index.
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 7.3   Example calculation of multiple-layer
graphene

a = b = 2.46

3.40

z

c = 24.6 z

Using  the  first-principles  method introduced  above,  the
near-field heat flux between the monolayer graphene has
been  performed  in  Ref.  [78].  As  the  first-principles
method can be easily applied to different systems without
further  model  treatment  [127, 128],  we  present  here
calculations  of  the  heat  flux  between  two  parallel
graphene  sheets  with  finite  layers.  We  start  from  the
ground state calculations by using DFT as implemented
in  QUANTUM  ESPRESSO  [129, 130].  The  norm-
conserving  pseudopotential  generated  by  the  Martins-
Troullier method [131] with the Perdew–Burke–Ernzerhof
exchange-correlation  functional  [132]  in  the  generalized
gradient  approximation  has  been  adopted.  The  Kohn-
Sham wave functions are expanded using the plane-wave
basis set with a 60 Ry energy cut-off. The Fermi–Dirac
smearing with a 0.002 Ry smearing width is employed to
treat  the  partial  occupancies.  The  in-plane  lattice
constants are  Å and the inter-layer distance
for multiple-layer graphene is  Å. To avoid interactions
from  the  neighboring  lattice  in  the  direction,  a  large
lattice constant of  Å is set in the  direction of
the unit cell.

Π

90× 90× 1

q → 0

300× 300× 1

q = 10−5

η

0.05

The scalar photon self-energy  of each side is calculated
on top of the ground state band structure by using the
BerkeleyGW  package  [122, 123].  A 
Monkhorst–Pack  [133]  grid  is  used  to  sample  the  first
Brillouin  zone  for  the  nonlocal  polarizability,  while  the
long-wave ( ) polarizability is obtained from a much
finer  grid.  To  avoid  divergence  of  the
Coulomb potential, we use a small value of  a.u.
in  the  calculation  of  contributions  from  the  long-wave
polarizability.  The  energy  broadening  factor  is  set  to

 eV,  which  corresponds  to  an  electron  relaxation

10−14time  of  s  [108].  We  neglect  the  local  field  effects
that are important only for systems with inhomogeneous
geometry [134]. Then we solve the Dyson equation, Eq.
(105), and calculate the transmission coefficient from the
Caroli  formula.  Lastly,  we integrate  over  frequencies  to
get the heat flux.

Jbb = σ(T 4
0 − T 4

1 ) σ ≈ 5.67× 10−8

5× 104

p

1/d

In Fig.  9,  we  show  the  calculated  heat  flux  of  two
parallel  single  and  multiple-layer  graphene  sheets  as  a
function of gap sizes. The vertical coordinate is the ratio
of  the  calculated  near-field  heat  flux  to  the  black-body
radiative  heat  flux  given  by  the  Stefan–Boltzmann  law

,  with  W/(m2·K4).  As
shown, the near-field heat flux is remarkably larger than
that  of  the  black-body  radiation  for  all  three  systems.
For  monolayer  graphene,  a  converged  ratio  around

 is shown which agrees well with a previous report
that  used  a  tight-binding  method  to  calculate  the
density response function of graphene [77]. The saturation
of heat flux in the extreme near field originates from the
nonlocal effect of wave vectors, which is a typical behavior
of thermal radiation mediated by -polarized evanescent
waves  [135].  Without  spatial  dispersion,  the  heat  flux
calculated  from  a  local  response  function  shows  a 
dependence  at  short  separation,  which  agrees  with  the
previous  report  [136].  At  extreme  small  distances,  the
heat  flux  between  bilayer  graphene  approximately
doubles the value of the monolayer graphene. However,
heat flux between trilayer graphene sheets even becomes
slightly smaller  than that of  the bilayer graphene.  This
may  be  due  to  the  fact  that  we  treat  each  side  as
infinitely  thin  in  Eqs.  (105)  and  (106)  for  simplicity.
With further increases of the sample layers, this treatment
is  not good in the extreme near field as we assume the
gap size should be larger than the inter-layer distance.

q → 0

d > 100

1/d2

With  an  increase  of  the  gap  size,  the  heat  flux
decreases monotonically for all three systems. Neverthe-
less,  the  magnitude  of  the  heat  flux  is  smaller  for  the
multiple-layer graphene. We suspect that increasing the
layer number decreasing the energy transfer is due to a
screening between the layers. At the distance between 7
Å  to  3  nm,  the  influence  from  the  finite  layer  is  not
significant  and  all  three  systems  show  similar  results.
Due  to  the  exponential  factor  that  appears  in  the  2D
Coulomb  potential  in  Eq.  (106),  the  long-wave  ( )
contribution becomes dominant at large distances. When

nm, the heat fluxes for all three systems show an
asymptotic dependence of , which is consistent with
the  result  of  near-field  heat  flux  between  parallel  plate
capacitors [76].

 Part II
Vector photon and Coulomb gauge

So far in Part I, we have focused on the scalar potential

 

TL =

TR =

Fig. 9  Distance  dependence  of  the  near-field  heat  flux
ratio between two parallel single and multiple-layer graphene
sheets. The temperatures of two sides are fixed at  1000
K and  300 K.
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Π

A

and ignored the vector potential in the electrodynamics.
The  picture  of  the  Coulomb  interaction  is  a  valid
approximation  when  the  length  scale  is  shorter  than
some typical length scale of order micrometers or less at
room temperature,  but  is  certainly  not  correct  for  long
distances. We know that the electromagnetic waves can
propagate to infinity, but only from the transverse part
of  the  field.  Due  to  charge  neutrality,  the  Coulomb
interaction decays much faster with distance and cannot
have  any  effect  at  infinity.  In  this  part,  we  treat  the
energy transport taking into account the full electromag-
netic field contributions. We study the thermal radiation
from a cluster of objects modeled as a collection of tight-
binding electrons. This is more than just the ideal black-
body  radiation,  which  is  independent  of  the  details  of
the  materials.  Here  again,  we  characterize  the  systems
with  a  version  of ,  but  it  is  now  a  tensor  associated
with the vector field , or the current–current correlation
at the RPA level of approximation.

 8   General formulation with transverse
vector field

 8.1   Lagrangian and Hamiltonian, gauge
invariance

A

H

To add the contribution from the transverse vector field
,  we  start  from  the  Lagrangian  of  the  scalar  field

version,  Eq.  (39),  by  the  Peierls  substitution  [137, 138]
of the tight-binding Hamiltonian , and an extra transverse
field piece, obtaining

L =

∫
dV

ϵ0
2

(
− ϕ̇2

c̃2
+ (∇ϕ)2

)

+
1

2

∫
dV

[
ϵ0

(
∂A

∂t

)2

− 1

µ0
(∇×A)

2

]

+ iℏ c†
dc
dt

−
∑
j,l

c†jHjlcl exp
(
−i

e

ℏ

∫ j

l

A · dr
)

+ e
∑
j

c†jcjϕ(rj).

(107)

∇ ·A = 0

iq ·Aq = 0

A

c̃ → ∞

Here the second line is from the “kinetic” and “potential”
energy of the free transverse field. The word “transverse”
means  that  the  vector  field  satisfies .  The
meaning is clearer if this equation is Fourier transformed
into  the  wave-vector  space,  which  is ,  which
says  that  the  direction  of  is  perpendicular  to  the
direction  of  the  wavevector,  thus  transverse.  From  the
Lagrangian  above,  we  recover  the  Hamiltonian  as
(taking the limit of )

Ĥ =
ϵ0
2

∫
dV

[
−(∇ϕ)2 +

(
∂A

∂t

)2

+ c2 (∇×A)
2

]

+
∑
j,l

c†jHjlcl exp
(
−i

e

ℏ

∫ j

l

A·dr
)
−e
∑
j

c†jcjϕ(rj).

(108)

l j

Here  the  integral  on  the  exponential  is  a  line  integral
from site  to site  in a straight path. We check that the
Hamiltonian  is  gauge  invariant  in  the  sense,  that  if  we
make the replacement,

ϕ → ϕ+
∂χ

∂t
, (109)

A → A−∇χ, (110)

cj → cj exp
(
i
e

ℏ
χj

)
, (111)

χ

χj = χ(rj , t)

the result will remain the same independent of , where
 is an arbitrary smooth function of space and

time. In a sense, the requirement of the gauge invariance
uniquely  fixes  the  form  of  the  electron-photon  interac-
tion.  It  is  noted that the Peierls  substitution form of  a
tight-binding  model  has  a  fundamental  limitation  [139]
as it cannot describe transitions among electronic states
at the same location. We use it for its simplicity, and it
is a good starting point to describe metals.

 8.2   Quantization, current operator, and Green’s functions

ϕ

We now discuss the quantization of the electromagnetic
field.  Because  of  the  transverseness  of  the  vector  field,
we see that the scalar and vector fields are not coupled,
thus we can quantize  as in Part I. For the vector field,
from the Lagrangian, the conjugate momentum is

Π =
δL

δȦ
= ϵ0Ȧ. (112)

A

Ax Ay Az

However, due to the transverse nature of the field , the
three components, , ,  and  cannot be treated as
independent  quantities,  thus  we  cannot  postulate
commutation relation in the usual way. The true degrees
of freedom are demonstrated more clearly in the Fourier
space  after  the  transformation.  This  is  the  standard
approach  in  Coulomb  gauge  [2].  To  make  a  long  story
short, we just give the commutation relation as[

Aµ(r),Πν(r
′)
]
= iℏ δ⊥µν(r − r′), (113)

δwhere  the  right-hand  side  is  the  transverse -function
defined by an inverse Fourier transform

δ⊥µν(r) ≡
∫

d3k
(2π)3

(
δµν − kµkν

|k|2

)
eik·r. (114)

µ ν x y zHere ,  take  the  Cartesian  directions , ,  or ,  and
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δµν = 1 µ = ν

δ

1/r3

 if  and  0  otherwise,  which  is  the  usual
Kronecker delta. It is worth noting that the transverse -
function is nonlocal and decays in space as  at long
distance.

ϕ

cj , c
†
j

cj ϕ

A cj

H ϕ

ϕ c̃ → ∞
ρ = (−e)

∑
j c

†
jcjδ(r − rj)

A

Together with the earlier commutation relations for 
and ,  the  problem  is  completely  specified.  We  can
apply  the  Heisenberg  equations  of  motion  for ,  and

, obtaining a Schrödinger equation for  with a Peierls
substituted  and extra external potential due to , and
a Poisson equation for  (after  taking the limit )
with the usual charge density  as
the source. Finally, the equation for  is

1

c2
∂2A

∂t2
−∇2A = µ0 j⊥(r). (115)

Here the transverse current is

j⊥(r)=
1

iℏ

Π(r),
∑
j,l

c†jHjlcl exp
(
−i

e

ℏ

∫ j

l

A · dr
) .

(116)

These are consistent with Maxwell’s equations.

a a

δ

Due  to  the  presence  of  the  vector  potential  on  the
exponential, the commutator is hard to compute explic-
itly. But the integral is proportional to the lattice spacing
,  which is  small.  In the continuum limit,  we take  to

zero,  as  a  result,  we  need  to  keep  only  to  the  second
order  in  the  expansion.  The  third  and  higher  orders
vanish in the continuum limit. But again, the transverse
-function  causes  some  complication.  Formally,  we  can

write

j⊥(r) = P⊥j =

∫
dr′δ⊥(r − r′) · j(r′). (117)

δ⊥ 3× 3

j

A

Here  is the  tensor. There are two terms to the
current ,  a  paramagnetic  term  independent  of  the
vector potential, and a diamagnetic term proportional to

,  just  like  the  electron-photon  interaction  in  a  first
quantization formulation.  The explicit  form depends on
how one  approximates  the  line  integral.  Here  we adopt
the trapezoidal rule for the integral,∫ j

l

A · dr ≈ 1

2
(Aj +Al) ·

(
Rj −Rl

)
, (118)

Rl Rjwhere  and  are the respective locations of the two
sites.  The  field  is  evaluated  at  these  sites.  Using  this
approximation,  we  can  give  an  explicit  formula  for  the
paramagnetic term as

j(r) =
1

2

∑
j,l

Ijl
(
δ(r −Rj) + δ(r −Rl)

)
, (119)

Ijl =
(−e)

iℏ
c†jHjlcl

(
Rj −Rl

)
= (−e)V̂jl. (120)

l j

j l

Ijl
l j

(−e)

When  an  electron  hops  from  the  site  to ,  it  is  not
really  clear  where  the  current  is  located.  It  could  be
attributed to the middle of the sites, or one of the sites.
Here  we  take  an  average  of  current  being  associated
with  site  or .  The  local  total  current  obtained  by
volume  integrating  the  current  density  around  the  two
sites, , has a more useful interpretation; it is the velocity
of the electron when hopping from site  to , times the
charge of electron, .

By Taylor expanding the Peierls substituted Hamilto-
nian, and using the same trapezoidal approximation for
the line integral, we can write the interaction part of the
Hamiltonian as

Ĥint =
∑
jklµ

c†jM
lµ
jkckAlµ = −

∑
l

Il ·Al, (121)

M

M lµ
jk = (e/2)

(
δjl + δkl

)
V µ
jk µ

x y z

l

Ilµ = −c†M lµc c

c†

M lµ

j(r) = −δĤint/δA(r)

where  we  can  express  the  tensor  in  terms  of  the
velocity  matrix  as .  The index 
labels the Cartesian directions, , , or . We also introduce
the  volume  integrated  current  around  the  site ,  as
defined  by  the  above  equation,  which  we  can  write
compactly as ,  where  is a column vector
of  the  annihilation  operators,  is  a  row  vector  of
creation operators, and  is a Hermitian matrix in the
electron site space. The current associated with the site
is  useful  to  define  the  current–current  correlation  on  a
discrete  lattice.  Finally,  we  can  also  obtain  the  current
density,  Eq.  (119),  by  the  functional  derivative  of  the
interaction Hamiltonian with respect to the vector field
by .

Π

jA = −e2(n/m)A

n

m

HA2

int = 1
2

∑
l,l′,µ,ν,j,k c

†
jN

lµ,l′ν
jk ckAlµAl′ν

The diamagnetic term is usually not important as it is
higher order, also, it contributes only a purely real, diagonal

,  so  it  is  not  dissipative.  In  the  continuum  limit,  we
have a simple expression for the current ,
which is the London equation [140]. Here  is the electron
density  and  is  its  mass.  On  lattice,  if  we  use  the
trapezoidal approximation, we get a complicated form of
the type .

A Il

D Π

D Π

3× 3

Finally, based on the vector field  and the current 
we can define two similar contour ordered Green’s func-
tions, call  them  and  as they play very similar role
as in the scalar photon theory, except that  and  will
have  additional  directional  indices  as  tensors  or
dyadic.

Dµν(rτ ; r
′τ ′) =

1

iℏ
⟨
TτAµ(r, τ)Aν(r

′, τ ′)
⟩
, (122)

Πlµ,l′ν(τ ; τ
′) =

1

iℏ
⟨
TτIlµ(τ)Il′ν(τ

′)
⟩
ir. (123)

D r Π

Π

A2

Here  is defined in the full space of , while  is only
on the discrete sites. In computing  under the random
phase  approximation,  we  take  only  the  lowest  order  in
such an expansion, ignoring the  terms in the Hamil-
tonian. With the electron-photon interaction of the form
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−
∑

I ·A
D = d+ dΠD

,  we still  have the standard Dyson equation of
the  form, ,  except  that  the  sizes  of  the
matrices are 3 times larger.

 8.3   Free Green’s function

d A

ϕ v

We need to determine the free photon Green’s function
 associated  with  the  transverse  vector  field  (earlier

for the scalar field  it was called ). This can be done
with the standard procedure of quantization of the field.
We  can  express  the  vector  field  with  the  annihilation
and creation operator as [94, 141]

A(r) =
∑
qλ

√
ℏ

2ϵ0ωqV
eqλaqλeiq·r + h.c., (124)

ωq = c|q| eqλ

λ

q A

∇ ·A = 0 aqλ
q, λ

[aqλ, aq′λ′ ] = 0 [aqλ, a
†
q′λ′ ] = δqq′δλλ′

V

q

Π(r)

aqλ A(r)

A Π

Ĥγ =∑
qλ ℏωqλ(a

†
qλaqλ + 1/2)

where  is the free photon dispersion relation, 
are  the  two  mutually  perpendicular  unit  polarization
vectors indicated by the index , which are also orthogonal
to .  This  condition gives  a  transverse  field  for ,  i.e.,

.  is the associated annihilation operator for
the mode . These are the standard bosonic operators
satisfying , .  The  field
exists  in  a  finite  volume  with  periodic  boundary
conditions,  thus  the  wave  vectors  are  discrete.  This
equation together with a corresponding equation for the
conjugate field  is viewed as a variable transformation
between  and . This is the correct transformation
if the commutation relation between  and , Eq. (113),
is  fulfilled  and  the  Hamiltonian  is  diagonal, 

. Indeed, these claims can be veri-
fied.

aqλ(t) = aqλe−iωqt

For the free field, the time dependence for the annihi-
lation  operator  is  trivially .  Using  this
result,  plugging  into  the  definition  of  the  retarded
Green’s function, we obtain

drµν(r, t) =
1

ϵ0V

∑
q

(
δµν − qµqν

q2

)
eiq·rdq(t), (125)

dq(t) = −θ(t)
sin(ωqt)

ωq
e−ηt. (126)

q

q/q

eqλ

1/
[
(ω + iη)2 − ω2

q

]
q

q

The factor in the brackets takes care of the transverseness
of the Green’s function, which is the transverse projector
in  space. The transverse projector appears because two
of the polarization vectors and the unit vector  form
an orthonormal basis. We can use the completeness relation
to eliminate the reference to the polarization vectors, .
The second line defines the retarded Green’s function for
a single mode in time domain. In frequency domain, it is

.  If  we  take  the  volume to  infinity,  the
summation can be turned into an integral in . The final
expression  in  real  space  and  frequency  domain  can  be
obtained with the help of the residue theorem with the
contour  integral  [142]  on  the  complex  plane  of ,  given

as [143]

↔
dr (r, ω) =− 1

4πϵ0c2r

{
ei

ω
c r
(↔
U −R̂R̂

)
+

[
−eiωc r

iωc r
+

eiωc r − 1(
iωc r
)2 ](↔U −3R̂R̂

)}
. (127)

3× 3

r = |r|
R̂ = r/r

↔
U

Here, we express the  tensor in the Cartesian directions
in  the  dyadic  notation,  is  the  magnitude  of  the
vector, and  is a unit vector in the radial direc-
tion.  is the unit or identity matrix.

A

A = −
↔
dr ·j

δ

δ ω q

Another  equivalent  way  to  obtain  the  retarded  free
Green’s  function  is  from  the  equation  it  must  satisfy.
We observe that the transverse vector field  satisfies a
wave  equation  with  the  transverse  current  as  a  source,
Eq. (115). The Green’s function maps the current to the
vector  field, .  The  Green’s  function  satisfies
the  same  equation  as  the  vector  potential,  but  with  a
transverse  function as a source. When the wave equation
and  the  transverse  function  is  expressed  in  and 
space,  we have a simple  result  for  the Green’s  function
as

↔
dr(q, ω) =

↔
U−q̂q̂

ϵ0
[
(ω + iη)2 − c2q2

] , (128)

q̂ = q/|q|
r

where  is  a  unit  vector.  Fourier  integral  trans-
forming into real space , we obtain the explicit formula
of Eq. (127).

q⊥ z

qz

In computing transport quantities in a planar geome-
try,  such  as  between  graphene  sheets  or  surface  of  a
lattice,  we  need  the  free  Green’s  function  in  mixed
representation,  i.e.,  the  transverse  direction  is  in  wave
vector space, , but the transport direction, say , is in
real  space.  The  retarded  Green’s  function  in  the  mixed
representation can be obtained by inverse Fourier trans-
form  back to real space,

dr,µν(q⊥, ω, z, z
′)

=

∫ +∞

−∞

dqz
2π

(
δµν − qµqν

q2

)
eiqz(z−z′)

a2ϵ0

[
(ω + i0+)2 − c2q2⊥ − c2q2z

] , (129)

q2 = |q|2 = q2⊥ + q2z a2

q⊥

where . Here  is the area of a unit cell,
since we will consider a discrete set of . This integral
can be performed using the residue theorem. After some-
what lengthy and tedious calculation, we obtain [144]

dr,αβ = δαβ d− qαqβF, α, β = x, y, (130)

dr,αz = dr,zα = sgn(z − z′)qα(B −A)/C, (131)

dr,zz = q2⊥F. (132)

A =

eiq̃z|z−z′| B = e−q⊥|z−z′| d = A/(a2ϵ02ic2q̃z) F = (A/q̃z+

We  have  introduced  the  shorthand  notations 
, , , 
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iB/q⊥)/C C = a2ϵ02iω2 q̃z = ±
√
[(ω + i0+)/c]2 − q2⊥

Im q̃z > 0

iqxdr,xβ + iqydr,yβ + ∂
∂zd

r,zβ = 0 β = x, y, z

, ,  and ,
where  the  sign  is  chosen  such  that .  We  note
that the free Green’s function is transverse in the sense

 for .

 9   Poynting vector and energy transport

S = E ×B/µ0

At  a  place  in  vacuum  without  material  presence,  the
energy  can  be  transferred  through  the  electromagnetic
waves.  This  is  described  by  the  Poynting  vector,

,  in  electrodynamics.  The  meaning  of  the
Poynting vector is made clear through Poynting’s theorem
which reflects the energy conservation [145],

∂u

∂t
+∇ · S = −E · j, (133)

u = 1/2 (ϵ0E
2 +B2/µ0)

j

V

here  is  the  field  energy  density.
The  right-hand  side  is  the  Joule  heating  contribution
where  is  the electric current density. If  we consider a
volume  and integrate over the volume, using Gauss’s
theorem,  the  divergence  over  the  volume  becomes  a
surface integral, so

I =

∫
dΣ · S (134)

dΣis  the energy flux going out of  the volume where  is
the surface element with an outward norm.

D

E B

E = −∇ϕ− ∂A/∂t

E

S = S// + S⊥

S// = −∇ϕ×B/µ0 S⊥ = −∂A/∂t× (∇×A)/µ0

S//

B

S//

In order to use this classical expression for the energy
current,  we need to  consider  several  additional  features
in a quantum theory. We need to perform an ensemble
average  by  expressing  the  Poynting  vector  in  terms  of
the  Green’s  function .  We  need  to  worry  about  the
operator order as  and  in general are not commuting
quantities.  We  also  need  to  remove  the  zero-point
motion contribution to the Poynting vector, as intuitively
we do not expect that the zero-point motion of the elec-
tromagnetic  waves  transfers  energy  when  objects  are
stationary  (see,  however  Ref.  [42]).  Lastly,  we  need  to
worry about our choice of gauge. Since we have used the
Coulomb  gauge  here,  we  have ,  here
the  vector  field  is  transverse.  This  split  of  into  a
scalar  potential  term  and  a  transverse  vector  potential
term means  we  can  also  split  the  Poynting  vector  into
two  corresponding  terms, ,  where

 and .  The
longitudinal contribution  can be transformed back to
a  volume  integral  by  the  divergence  theorem  and  the
curl  of  is  then  related  to  the  electric  current.  In
steady  state,  the  average  of  a  time  derivative  is  zero.
Using  this  property  and  Maxwell’s  equations,  we  can
show that  outside matter is the same as the “Poynting
scalar” discussed  earlier,  plus  a  cross  correlation  term
between  the  longitudinal  and  transverse  fields,

−ϵ0ϕ∂2A/∂t2

S⊥

. In this section, we shall focus on the trans-
verse contribution .

AB A B

(AB +BA)/2

: (AB +BA) : /2

As for  the  remaining  issues,  in  general  for  a  product
 of  two  Hermitian  operators,  and ,  the  result  is

not Hermitian, and its expectation is not guaranteed to
be  real.  Thus,  we  will  replace  the  product  by  the
symmetrized version, . To remove the zero-
point motion contribution, we need to impose a normal
order [61, 141], so the final form is . We
elaborate  this  point  in  the  next  subsection  in  some
detail.

 9.1   Operator order

A

A(t)

t A(t) = eiĤt/ℏA e−iĤt/ℏ

Given  a  Schrödinger  picture  Hermitian  operator ,  the
Heisenberg operator  is assumed to be defined for all
,  by .  We  Fourier  decompose  the

operator as

A(t) = A+(t) +A−(t)

=

∫ +∞

0

dω
2π

Ã(ω)e−iωt +

∫ 0

−∞

dω
2π

Ã(ω)e−iωt.

(135)

A+(t) A(t)

A−(t) A(t)

A±(t)

 is the positive frequency part of  by integrating
over  the  positive  frequencies  in  the  Fourier  space,  and

 is  called  the  negative  frequency part  of .  The
positive part of the frequency is associated with annihilation
operators and negative one with creation operators [146].
The  normal  order  or  anti-normal  order  is  defined  in
terms  of .  The  fundamental  assumptions  for  the
operators are

A+(t)|0⟩ = 0, ⟨0|A−(t) = 0, (136)

|0⟩

A(t) A+(t) =
[
A−(t)

]†
where  is the vacuum state. What we have in mind is
the free photon field, but we assume it is generally valid.
Also, since  is Hermitian, .

A B

Consider  a  steady-state  Green’s  function  formed  by
two operators,  and , and defined as

D>
AB(t) =

1

iℏ
⟨A(t)B(0)⟩, B(0) = B. (137)

A(t)

D>
AB(t)

The  decomposition  of  the  positive  and  negative
frequency  parts  of  naturally  leads  to  positive  and
negative frequency parts of , thus we must have

1

iℏ
⟨A+(t)B⟩ =

∫ +∞

0

dω
2π

D̃>
AB(ω)e

−iωt, (138)

1

iℏ
⟨A−(t)B⟩ =

∫ 0

−∞

dω
2π

D̃>
AB(ω)e

−iωt. (139)

A+(t)

ω D> D<
AB(t) = ⟨BA(t)⟩/(iℏ)

That is, the positive frequency part  contributes to
positive  in  only.  Similarly, 
can  be  decomposed  analogously.  The  normal  order  is
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defined by

: A−B+ : = A−B+, (140)

: B+A− : = A−B+, (141)

: A+B+ : = A+B+, (142)

: A−B− : = A−B−, (143)

i.e.,  the  right-most  operator  should  be  the  annihilation
operator if it is not already so. The normal order has no
effect  if  it  is  already  normal  ordered.  We  assume  that
the normal order has no effect if both are +, or –. The
normal ordering is a linear operation. So we can express
the equal-time correlation as

⟨: AB :⟩ = ⟨[A+, B+]⟩+ ⟨A−B +BA+⟩, (144)

⟨: BA :⟩ = ⟨[B−, A−]⟩+ ⟨A−B +BA+⟩. (145)

Our  basic  assumption  is  that  the  positive  (negative)
frequency  part  contains  only  annihilation  (creation)
operators,  and  they  commute.  So  the  first  term is  zero
for  whatever  meaning  of  the  average.  As  a  result,  we
have, consisting with [147],

⟨: AB :⟩ = ⟨: BA :⟩ = ⟨A−B +BA+⟩

= Re iℏ
∫ ∞

0

dω
π

D̃<
AB(ω). (146)

t = 0

D̃>
AB(ω) =

D̃<
BA(−ω) A−B BA+

D<

N(ω)

D> N(ω) + 1

Here we use the Fourier decomposition at time  and
use  a  symmetry  of  the  Green’s  function, 

. We see that the two terms,  and , are
Hermitian  conjugate  of  each  other,  so  the  result  is
explicitly real. The last formula, Eq. (146), has the effect
of  removing  the  zero-point  motion  contribution  by
taking  integral  only  for  the  positive  frequencies  for  the
lesser  Green’s  function,  remembering  that  due  to  the
fluctuation-dissipation  theorem,  is  proportional  to
the  Bose  function  in  thermal  equilibrium  which
decays to 0 at high frequency exponentially. If this were

,  we  have ,  which  may  run  into  problem  of
divergence when integrated over the positive frequencies.
We note that a symmetrization of the operator product
is  not  necessary  as  the  normal  order  automatically
makes the result symmetric with respective to the product
order.

 9.2   Average transverse Poynting vector

With  the  preparation  in  the  above  subsection  of  a
formula  to  express  the  equal-time  correlation  of  a
normal ordered product as a positive frequency integral
of  the  lesser  Green’s  function  in  the  frequency  domain,
we  can  work  out  an  expression  of  the  average  of  the
Poynting vector,

⟨Si
⊥⟩ =

1

µ0
⟨: (E⊥ ×B)i :⟩

=
1

µ0
⟨
[
: (−Ȧ)× (∇×A) :

]
i
⟩

=− 1

µ0

∑
ijklm

ϵijkϵklm

[
∂

∂t

∂

∂x′
l

⟨:Aj(r, t)Am(r′, t′) :⟩
]

t′=t
r′=r

= Re
∑
ijklm

ϵijkϵklm

∫ ∞

0

dω
µ0π

ℏω
[
∂

∂x′
l

D<
mj(r

′, r, ω)

]
r′=r

.

(147)

i

A

r

ϵijk ϵxyz = 1

ϵijk = −ϵjik
AA

D<

r r′ t t′

r t

Am(r′, t′) A Aj(r, t) B

(+iω)
t D<

Here for the Poynting vector, we look for the -th Cartesian
component,  expressed  in  terms  of  the  transverse  vector
field . The average Poynting vector depends on explicitly
the  location  which  we  have  suppressed  in  notation.
Since  we  are  interested  in  steady-state  average,  the
Poynting  vector  does  not  depend  on  time.  The  vector
cross  products  are  written out  explicitly  with  the  Levi-
Civita symbol, ,  which is  and antisymmetric
for each permutation of any two indices, e.g., .
In  order  to  express  the  final  result  in  terms  of  an 
correlation,  i.e.,  the  photon  Green’s  function,  we
need to pull  the time and space derivatives outside the
average by changing the variable  to  and  to , and
changing them back to  and  after the derivatives are
performed. We use Eq. (146) in the last step, identifying

 as the operator  and  as . Notice that
time  derivative  in  time  domain  becomes  in  the
frequency domain as  is the second argument in .

n

k

To  compute  the  total  energy  current,  we  need  to
make  a  dot  product  with  the  surface  norm  and  to
integrate over the surface. We can simplify the formula
a  bit  by  summing  over  the  index  in  the  product  of
Levi–Civita symbols,∑

k

ϵijkϵklm = δilδjm − δimδjl. (148)

Using this identity, we can write the surface integral for
the energy transfer as

I=

∫
dΣ
∫ ∞

0

dω
µ0π

ℏωRe
[
(n·∇′)Tr(D<)−Tr(∇′n·D<)

]
.

(149)

∇′

D< ∇′n 3× 3

∂/∂x′
i nj

D< n

dΣ

Here  is the gradient operator acting on the first argument
of ,  the combination  is  a dyadic,  i.e.,  as a 
matrix with component  as a differential operator
acting on ,  is the unit norm of the surface element,

 is the magnitude of the surface element, the dot · is a
scalar product in the first term and matrix multiplication
in the second term. The trace is over the matrix indices.

 9.3   Radiation at far field

We  consider  a  cluster  of  some  materials  of  finite  sizes
and compute the radiation at far field. At sufficiently far
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S//

S⊥

eiωc R

R = |R|

∇′

iωc R̂ R̂ = R/R

R

R

dΣ = dΩR2

n R̂

distances from the matter, the longitudinal part from 
decays to zero and only the transverse field in  propagates
to  infinity.  So  for  the  energy  radiation  to  infinity,  we
only  need  to  compute  the  contribution  from  the  above
formula. In the far field, we have another simplification
which we can use, that is, the electromagnetic waves at
far  field  are  spherical  waves  of  the  form ,  where

 is  the  distance  to  the  coordinate  origin.  Since
the photon Green’s function satisfies the same equation
as the field, the Green’s function also takes this form. As
a result, the gradient operator  can be replaced by the
vector ,  here  is  the  unit  vector  from  the
origin to the observation point . We can choose a large
sphere  of  radius  to  perform the  surface  integral  as  a
solid angle integration, . Using this observation
and  replacing  the  general  surface  norm  by ,  we
obtain

I = Re
∫ ∞

0

dω
cµ0π

(iℏω2)

∫
dΩR2Tr

[
(
↔
U −R̂R̂)D<

]
.

(150)

↔
U P =

↔
U −R̂R̂

P 2 = P P

D<

Here  is the unit matrix,  is the transverse
projector,  having the property .  Two matrices 
and  are multiplied and then trace is taken.

D<

D< = DrΠ<Da Dr

Da = (Dr)† Π<

We  can  express  by  the  Keldysh  equation  as
,  where  is  the  retarded  Green’s  func-

tion, and  is the advanced version, and  is
the material property we call self-energy (with respect to
the  photons).  Here  the  three  matrices  are  multiplied,
which implies a sum over the sites as well as directions,
i.e.,

D<
ij(r, r

′, ω)=
∑
ll′αβ

Dr
iα(r, rl, ω)Π

<
lα,l′β(ω)D

a
βj(rl′ , r

′, ω).

(151)

Dr = dr + drΠrDr

ΠrDr ∼ (v/c)2

dr

r = R → ∞
R

rl
0

We  still  have  to  solve  the  Dyson  equation  for  the
retarded  Green’s  function, .  However,
for  the  far  field  problem,  the  corrections  to  the  free
Green’s  function  are  rather  small  since  is
of the order of the ratio of electron velocity to the speed
of light squared. As a result, it is sufficient and is a good
approximation  just  using  the  free  Green’s  function .
Also,  since ,  it  does  not  matter  where  the
atoms are  located with respect  to ,  so  we also  set  all
the positions  in the argument of the Green’s function
at the origin . We call this a monopole approximation.
Then our approximate Green’s function is

Dr(R, rl, ω) ≈ − 1

4πϵ0c2R
eiωc R(

↔
U −R̂R̂). (152)

P P 3 = P

Putting this result into Eq. (150), using the cyclic property
of trace, and the fact that  is a projector, , we
find

I = Re
∫ ∞

0

dω
iℏω2

16π3ϵ0c3

∫
dΩTr

[
(
↔
U −R̂R̂)Π<(ω)

]
.

(153)

Π<(ω) =
∑

l,l′ Π
<
ll′

R̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)
4π

Here  the  total  is  the  sum over  all  the
sites.  Since  the  only  angular  dependence  is  in

,  the  integration  over  the
solid  angle  divided  by  is  equivalent  to  an  average
over the projector. We can verify by a direct integration
that

R̂R̂ =
1

4π

∫
dΩ R̂R̂ =

1

3

↔
U . (154)

Using  this  simple  result,  we  obtain  the  final  expression
for energy radiation as [148]

I =

∫ ∞

0

dω
−ℏω2

6π2ϵ0c3
ImTr

(
Π<(ω)

)
. (155)

z(t) = a cos(ω0t) =
1
2a(e

−iω0t + e+iω0t) z a

ω0

v(t) = dz(t)/dt = 1
2 (−iω0a)(e−iω0t − e+iω0t)

J(t) = qv(t) q

Π

Π< Π>

Π Π

z Πzz

As a simple application of this formula, we reproduce
the  textbook  result  of  dipole  radiation.  Consider  a
charge  moving  according  to 

 in  direction.  is the amplitude of the
oscillation  with  frequency .  The  velocity  is

.  We  need  the
total  current  (current  density  integrated  over  the
volume), which is , here  is the charge of the
particle. The self-energy  is the current-current correla-
tion.  As  we  are  dealing  with  a  classical  charge,  and
athermal, we do not distinguish  with  and just call
it .  is  a  3  by  3  matrix,  but  since  the  particle  is
moving in  direction, we only have the  component
nonzero, which is, in real time,

Π(t, t′)zz =
q2

iℏ
⟨
v(t)v(t′)

⟩
. (156)

t− t′

t+ t′

t+ t′

We see if we plug in the formula for the velocity, we do
not have a time-translationally  invariant  result.  This  is
because we assume that the oscillator has no damping. If
we introduce a damping to the oscillator, then the 
dependence  remains  but  will  be  damped  out  at
long  time.  So  performing  the  average  has  the  effect  of
getting  rid  of  the  dependence.  Fourier  transform
the result into frequency domain, we find

Πzz(ω) =
2π(ω0p)

2

i4ℏ
[
δ(ω + ω0) + δ(ω − ω0)

]
, (157)

p = qa δ

±ω0

here  is  the  dipole  moment.  The  correlation  is 
peaked at .  Putting this  expression in the radiation
power formula, we find

I =
ω4
0p

2

12πϵ0c3
. (158)

This is the result in electrodynamics for dipole radiation
[68].
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 10   A two-dot model

The simple example given above does not involve thermal
equilibrium (or nonequilibrium). In this section, we give
a  different  example  where  the  material  system  is
modeled explicitly. Obviously, an isolated electric dipole
cannot oscillate forever. In order to have a steady state
established,  we  must  supply  continuously  energy.  This
energy  is  pumped  in  through  the  effect  of  the  baths.
Here we consider a two-dot model consisting of two electron
sites, see Fig. 10. An electron can hop from the left bath
into the left dot, and then it may hop again to the right
dot, and eventually hop to the right bath. This is a toy
model  for  electroluminescence  —  the  emission  of  light
due to electric current [149, 150]. The hopping between
the  dots  generates  electric  current,  which  couples  the
electron  with  photons  in  space,  generating  radiation.  A
special  situation  is  that  when  the  temperatures  and
chemical potentials of the two baths are equal, then it is
a thermal radiation problem. The role of the baths is to
supply and to dump the electrons,  and we assume that
they do not couple to the field.

The  double-dot  Hamiltonian  before  coupling  to  the
baths is given by

ĤC = −t(c†1c2 + c†2c1) = (c†1 c†2)HC

(
c1

c2

)
. (159)

c†1 c†2

E1 = 0 Ψ1 = |0⟩

E2 = −t Ψ2 = 1√
2

(
c†1 + c†2

)
|0⟩

E3 = +t

Ψ3 = 1√
2

(
c†1 − c†2

)
|0⟩ E4 = 0 Ψ4 = c†1c

†
2|0⟩

Here  creates an electron at site 1, and  at site 2. The
isolated  center  has  four  many-body eigenstates  with  no
particles,  energy ,  and the  vacuum state ,
one particle at the ground state of the one-particle state
with  energy  and   in  a
symmetric combination, and one particle at excited state
with  with  an  antisymmetric  combination,

,  and  finally,  and 
with  both  sites  occupied.  The  energy  levels  of  the
isolated center give us a clear picture of when light will
be emitted based on energy conservation. If an electron

flows from left to right without hopping between the one-
particle states, it cannot emit photon. The process that
emits  photon  is  the  one  that  an  electron  comes  at  the
excited  state  and  stays  there  for  sufficiently  long  time,
then  it  spontaneously  jumps  to  the  ground  state  and
loses energy to the space at infinity.

We can consider  the  two sites  as  part  of  a  1D chain
exposed to the coupling to photon field. In such a strong
system-bath  coupling  regime,  the  emission  turns  out
rather  weak  as  most  of  the  time,  the  electrons  simply
travel  through  the  wire  without  emission.  So  a  weak
coupling of the double-dot to the baths is preferred. We
use the simplest possible bath coupling as the wide-band
model,  where  the  coupling  is  constant  independent  of
the  energy.  With  the  effect  of  the  baths,  the  retarded
Green’s function of the electron is given by

(E −HC − Σr)Gr = I, (160)

Σr = Σr
L +Σr

Rwhere  is  the self-energy due to the baths.
In the wide-band approximation, we take

Σr
L =

(
−iη 0

0 0

)
, Σr

R =

(
0 0

0 −iη

)
, (161)

ΓL ≡ i(Σr
L − Σa

L) η = (ΓL)11/2 ΓR

E → E + iη

(E + iη −HC)
−1

such that the left dot (1) is coupled to the left bath, and
right dot (2) to the right bath. We note that the damping
parameter  is  related  to  the  usual  notation

 by , and similar for . With
this  treatment  of  the  baths,  it  is  completely  equivalent
to the usual replacement of  to the free electron
Green’s  function.  The  2  by  2  matrix  elements  for  the
Green’s  function  are  obtained  from  a  matrix  inverse

 as

Gr
11 = Gr

22 =
E + iη

(E + iη)2 − t2
, (162)

Gr
12 = Gr

21 =
−t

(E + iη)2 − t2
. (163)

Π<

Π<

M lµ

l

Having  obtained  the  retarded  Green’s  function  and
clarified  the  bath  self-energies,  our  next  step  is  to  use
them  to  obtain  the  photon  self-energy  as  it  enters
explicitly  for  the  radiation  power.  Initially,  the  self-
energy  as  defined  by  Eq.  (123)  is  location  dependent.
But  in  calculating  the  total  radiation,  a  long-wave
approximation was used as  the typical  thermal  or  even
optical  wave  lengths  are  much  larger  comparing  to  the
atomic distances. This leads to a total  which is only
directional  dependent  as  a  3  by  3  matrix.  While  the
local  current  is  expressed  by  the  coupling  matrix ,
summing over  gives the velocity matrix times the electron
charge, i.e.,

Iµ =
∑
l

Ilµ = (−e)c†V µc, µ = x, y, z. (164)

 

η

t

2t = ℏω

Fig. 10  (a) Two-dot model connected to the left and right
baths  with  strength  electron  hops  between two sites  with
hopping parameter . (b) Energy levels of the two-dot model
and relation to the bath distribution functions. When electron
jumps from the excited state to the ground state, it releases
energy .
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Π(τ, τ ′) ⟨Tτ c
†
1c2c

†
3c4⟩

D

δ

⟨Tτ c
†
1c

†
3⟩ ⟨Tτ c2c4⟩

c2c
†
3 c†1c4

Π

Under  the  random  phase  approximation  (RPA),  we
treat  the  electrons  as  free  electrons  not  coupled  to  the
field (but can be coupled to the baths through bath self-
energy).  Since  they  are  free  electrons,  we  can  apply
Wick’s theorem, taking care that the electron operators
are  anti-commuting  under  the  contour  order  sign.  A
general term in  takes the form . Equal-
time decomposition gives a constant in time due to time
translational  invariance.  This  constant  can be absorbed
into a redefinition of , thus it does not appear as a self-
energy  term.  Alternatively,  the  constant  results  in  a 
function in frequency domain which does not contribute
to  transport.  For  a  normal  metal,  the  particle  non-
conserving  terms,  or ,  is  zero.  This  left
with only one possible combination,  and . After
swapping into the correct order for the Green’s function,
which produces  a  minus  sign,  we find that  the  contour
ordered  can  be  expressed  in  terms  of  the  electron
Green’s function as

Πµν(τ, τ
′) = −iℏe2Tr

[
V µG(τ, τ ′)V νG(τ ′, τ)

]
. (165)

Gjk(τ, τ
′) =

⟨
Tτ cj(τ)c

†
k(τ

′)
⟩
/(iℏ)

Π<
µν(t) = −iℏe2Tr

[
V µG<(t)V νG>(−t)

]

ω

Here  the  trace  is  over  the  electron  site  space,  and  the
contour  ordered  electron  Green’s  function  is

.  The  lesser  component  is
then  given  by ,  here
time-translational invariance is assumed. Since the radi-
ation power formula requires the frequency domain one,
we Fourier transform into , obtaining

Π<
µν(ω)=−ie2

∫ +∞

−∞

dE
2π

Tr
[
V µG<(E)V νG>(E − ℏω)

]
.

(166)

Πr

·G< ·G> → ·Gr ·G< + ·G< ·Ga

The  retarded  component  can  be  computed  similarly
with the replacement .

HjkGiven  the  Hamiltonian  matrix  element  as ,  the
velocity matrix elements can be constructed from it as

V µ
jk =

1

iℏ
Hjk(R

µ
j −Rµ

k ). (167)

v = dr/dt = [r,H]/(iℏ)

a x

On  a  continuum,  the  velocity  is  the  rate  of  change  of
position, .  Taking  the  matrix
element  with  the  states  where  the  position  operator  is
diagonal,  we obtain the  above in  a  tight-binding repre-
sentation. For the two-dot model, the electron can move
only in one direction with a spacing , call it , then

V x =

(
0 −iatℏ
iatℏ 0

)
. (168)

Plugging this result into the general formula, Eq. (166),
we have

Π<
xx(ω) = ie2

(
at

ℏ

)2 ∫ +∞

−∞

dE
2π

[
G<

12(E)G>
12(E − ℏω)

+G<
21(E)G>

21(E − ℏω)−G<
11(E)G>

22(E − ℏω)

−G<
22(E)G>

11(E − ℏω)
]
.

(169)

η

±t

The integral  can be  performed approximately  if  we use
the fact that  is small. In this limit, the spectrum of the
system  is  two  sharp  peaks  at .  The  lesser  Green’s
function is obtained from the Keldysh equation by

G<(E) = Gr(E)

(
2ifLη 0

0 2ifRη

)
Ga(E). (170)

fL fR
G> f

f − 1

η → 0

E ω

Here  and  are the Fermi functions associated with
the left and right bath.  is obtained by replacing  by

. The calculation becomes somewhat tedious, but in
the  limit ,  it  simplifies  greatly.  Skipping  some
details,  the  final  result  for  power  after  integrating  over

 and  is

I =
1

3π

e2v20t2

ℏ2ϵ0c3
(fL + fR)(2− f ′

L − f ′
R), (171)

v0 = at/ℏ fL ≡ fL(t) = 1/(eβL(t−µL) + 1)

f ′
L ≡ fL(−t)

fR f ′
R

µL → +∞ µR → −∞
fL = f ′

L = 1 fR = f ′
R = 0

ℏω = 2t

p = ea/2

⟨Ψ+|(−e)x̂|Ψ−⟩

ℏω/τ 1/τ

here ,  is the electron
occupation  at  the  excited  state  from the  left  bath,  and

 is  the  electron  occupation  at  the  ground
state from the left bath.  and  are similarly defined.
At  high  bias  with  and ,  we  have

 and .  In  this  limit,  we  see  that
the  power  obtained  is  identical  to  the  dipole  oscillator
result  if  we  identify  the  frequency  by  and  a
dipole  moment  with .  This  value  of  dipole
moment  is  consistent  with  the  matrix  element

 between  the  excited  and  ground  state  of
the position operator. The radiation power at high bias
can also be written as  where  is the spontaneous
decay rate as in the Weisskopf–Wigner theory [151].

IL
IR

I∞ = −I ≤ 0

IL + IR + I∞ = 0

Gn = G+GΣnGn G

G<
n ≈ G< +GrΣ<

nG
a Tr(G>Σ< −G<Σ>) = 0

Σ>,<

At  the  beginning  of  this  section,  we  mentioned  that
the  energy  emitted  is  supplied  by  the  electron  baths.
This  point  can  be  made  quantitatively.  We  denote  the
energy out of the left bath as , and that of right bath
as . We can also think of the infinity as a bath, but it
only  absorbs  energy, .  Conservation  of
energy means . This conservation can be
checked explicitly.  We can calculate the energies of  the
left  and  right  baths  from  the  Meir–Wingreen  formula,
Eq. (23). Here we must consider the coupling of electrons
with the field, thus the electron Green’s function should
be the one with the nonlinear self-energy due to photons,
i.e. ,  where  is  the  free  electron  one.
The electron–photon couplings are weak, so we use again
the  lowest  order  expansion  approximation,  i.e.,

. We also note ,
where  is  the  sum  of  the  left  and  right  bath  self-
energy. We are not interested in the energies that come
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IL + IR
G<

Σ<
n

D<

out  of  the  left  bath  and  go  into  the  right  bath.  If  we
compute  the  total, ,  the  first  term from the  free
electron  vanishes,  and we shall  focus  on the  second
term only. The nonlinear self-energy  is similar to the
scalar  photon  theory  case  and  is  due  to  the  Fock
diagram. The Fock diagram needs  which is obtained
from  the  Keldysh  equation.  Omitting  some  calculation
details, the energy that is lost to space from left bath is

IL =
e2v20t

2

6πℏ2ϵ0c3
[
fL(2− f ′

L − f ′
R)

+ (1− f ′
L)(fL + fR)

]
. (172)

IR L ↔ R

I

 is obtained by swapping , and the sum is equal
to  obtained earlier.

 Part III
Full theory in temporal gauge

Π

E B

ϕ = 0

A

ϕ = 0

∇ ·E = ρ/ϵ0

In Part II, we discussed the electromagnetic interactions
with  electrons  in  the  transverse  gauge  by  the  vector
potential,  and  in  Part  I,  we  take  care  of  the  Coulomb
interaction with the scalar potential. In principle, taking
both together we have a full theory of the electrodynam-
ics.  The  transverse  gauge,  also  known  as  the  Coulomb
gauge,  is  a  standard  approach  in  condensed  matter
physics  for  ease  of  quantization.  However,  it  is  not  the
most  economical,  as  we  have  to  calculate  the  charge-
charge correlation, current-current correlation, or possibly
a cross correlation between charge and current as a 4 by
4 matrix for . Since charge and current are related by
the  continuity  equation,  these  correlation  functions  are
related.  In  the  standard  fluctuational  electrodynamics
(FE)  of  Polder  and  von  Hove  type  [6, 7],  it  is  usually
formulated by the  and  fields which are gauge inde-
pendent quantities. It is then possible to reformulate our
vector-field based theory in a different gauge, known as
the  gauge  or  temporal  gauge  [152, 153],  which  is
more  directly  related  to  the  gauge  independent  FE
theory. Since we have banished the scalar field, we only
need  to  consider  a  general  vector  field  without  the
transverse  requirement,  and  we  only  need  to  compute
the  current-current  correlation.  The  drawback  of  the

 gauge is that we need to impose additional condition
on the quantum states  so that Gauss’s  law 
is satisfied. This extra complication seems not to hinder
our formulation as we usually never consider the states
explicitly in an NEGF formulation.

 11   Hamiltonian, etc.

ϕ = 0

ϕ

In the  gauge, the Lagrangian is the same as in Eq.
(107), except that the scalar field  is set to 0, and the

A

ϕ = 0

transverse condition on  is not imposed. The Hamilto-
nian, by a similar step, is the same with , i.e.,

Ĥ =
ϵ0
2

∫
dV

[(
∂A

∂t

)2

+ c2 (∇×A)
2

]

+
∑
j,l

c†jHjlcl exp
(
−i

e

ℏ

∫ j

l

A · dr
)
. (173)

ϕ = 0

A → A−∇χ cj → exp(ieχj/ℏ)cj
χ

δ

Note that the Hamiltonian, Eq. (108), is gauge invariant.
Here  we  commit  a  gauge  choice  by  setting .  The
gauge is not completely fixed as we can still make trans-
formation ,  with  a  time-
independent . Since the vector field here is the full one,
the  canonical  commutation  relation  uses  the  normal
Dirac  function instead of the transverse delta function,[

Aµ(r),Πν(r
′)
]
= iℏ δµνδ(r − r′), (174)

Πν = ϵ0Ȧν = −ϵ0Eνwhere the conjugate momentum . The
Heisenberg equation of motion for the vector field is

v−1A = −ϵ0

[
∂2A

∂t2
+ c2∇× (∇×A)

]
= −j. (175)

v−1 3× 3

A

A = −vj

v

θ(t)
⟨
[Aµ(r, t), Aν(0, 0)]

⟩
/(iℏ)

A

A

Here we define  as the  matrix in the directional
index  and  as  a  differential  operator  defined  by  the
middle term acting on . It turns out that its inverse is
the  free  Green’s  function,  i.e., .  The  awkward
minus  sign  is  needed  so  that  is  consistent  with  the
NEGF definition of the retarded Green’s function by the
commutator, .  Formally,  the
current  density  on  the  right-hand  side  is  given  by  a
functional derivative with respect to  or a commutator
of the conjugate variable of  to the Peierls substitution
term,

j = − δ

δA

∑
jl

c†jHjlcl exp
(
− ie

ℏ

∫ j

l

A · dr
)

=
ϵ0
iℏ

Ȧ(r),
∑
jl

c†jHjlcl exp
(
− ie

ℏ

∫ j

l

A · dr
) .

(176)

ϕ = 0

[∇ ·E − ρ/ϵ0, Ĥ] = 0

Ψ

(∇ ·E − ρ/ϵ0)Ψ = 0

A

A

This  all  looks  easy  in  the  gauge.  However,  the
catch is that Gauss’s law is missing from the Lagrangian,
so we have to impose it as an extra condition. The question
is when and where. It can be shown that Gauss’s law, if
it  is  satisfied at  one particular  time,  is  also  satisfied at
all  times,  i.e., .  This  means  that  we
can impose the requirement as an initial  condition, i.e.,
initial  states.  The  physical  states  must  be  selected
such that  [154]. Alternatively, we can
impose  the  condition  on  the  operator .  The  problem
with  is  that  the  Fock  state  space  created  by  it  is
larger than physically allowed. In the following, in deter-
mining  the  free  Green’s  function  below,  we  will  apply
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AGauss’s law when solving for .

 11.1   Free field Green’s function

v−1A = −j

∇× (∇×A) = ∇(∇ ·A)−∇2A

∇ ·E = ρ/ϵ0 E = −∂A/∂t

∂ρ/∂t+∇ · j = 0

A

∂/∂t → −iω ∇ → iq

The  solution  to  the  Green’s  function  in  the  absence  of
matter depends on the choice of boundary conditions. In
full space, the easiest way to obtain the retarded Green’s
function in the temporal  gauge is  to solve the equation
of  motion, ,  in  Fourier  space.  To incorporate
Gauss’s  law,  we  note .
Using , ,  together  with  charge
conservation, , in frequency domain, the
divergence of  can be expressed as proportional to the
divergence  of  the  current.  We  move  this  term  to  the
right-hand side, thus it becomes a source term of a wave
equation.  We  obtain  the  frequency  and  wave-vector
space equation with the replacement , ,
as

A(ω, q) = −
↔
U −qq/(ω/c)2

ϵ0(ω2 − c2q2)
· j(ω, q). (177)

j

(ω, q)

ω → ω + iη
η

The  coefficient  in  front  of  is  the  Green’s  function  in
 space. This is nearly the same as Eq. (128) for the

transverse  gauge  except  that  the  numerator  is  not  a
projector.  To  be  qualified  as  retarded,  we  also  need  a
displacement  for  the  frequency, ,  with  an
infinitesimal  positive .  The  Green’s  function  in  real
space is obtained by inverse Fourier transform, as [143,
155]

vr(r, ω) =− eiωc r

4πϵ0c2r

{(↔
U −R̂R̂

)
+

[
− 1

iωc r
+

1(
iωc r
)2 ](↔U −3R̂R̂

)}
. (178)

↔
U R̂ = r/r

1/r3 vr

vr = −µ0

↔
G

z

Here  is  the  identity  dyadic,  is  the  radial
direction  unit  vector.  This  is  almost  the  same  as  Eq.
(127) for the Coulomb gauge, except that they differ at
the  last  term at .  Our  notation  is  related to  the
usual dyadic Green’s function by . The mixed
representation  is  useful  for  planar  geometry,  for  which
we Fourier transform the variable in  direction back to
real space, with the result

vr(ω, q⊥, z, z
′) =

eiqz|z−z′|

2iqzϵ0c2a2

×


1− q2x

(ω/c)2 − qxqy
(ω/c)2 −s qxqz

(ω/c)2

− qyqx
(ω/c)2 1− q2y

(ω/c)2 −s
qyqz

(ω/c)2

−s qzqx
(ω/c)2 −s

qzqy
(ω/c)2 1− q2z

(ω/c)2

 . (179)

s (z − z′) qz =
√
(ω/c)2 − q2⊥

ω/c > q⊥ qz =

i
√
q2⊥ − (ω/c)2 ω/c < q⊥

Here  is  the  sign  of ,  and  for
the  propagating  mode  when  and 

 for  the  evanescent  mode  when ,

q⊥ = |q⊥| q⊥ = (qx, qy)

a

. We assume  takes a discrete set of
values in the first Brillouin zone of a square lattice with
lattice constant .

 12   A unified theory for energy, momentum
and angular momentum transfer

 12.1   Conservations of energy, momentum, and angular
momentum

∂u/∂t+∇ · S = −E · j

S

S = uc

c

cp = ϵ

u/c

S/c2 S/c2 = ϵ0E ×B

The  three  conservation  laws,  energy,  momentum,  and
angular  momentum,  are  due  to  the  symmetries  of  time
translation,  space  displacement  and  rotation.  We  have
already  discussed  the  equation  describing  the  energy
conservation  through  the  Poynting  theorem,  namely,

.  We  now  consider  the  other  two,
momentum and  angular  momentum conservations.  The
momentum  conservation  is  related  to  the  momentum
density of the field. The Poynting vector  is the energy
flux, i.e., the energy current per unit cross-section area.
So,  the  magnitude  of  the  Poynting  vector  is 
where  is  the  speed  of  light,  since  photons  move  with
the  speed  of  light.  The  relation  between  energy  of  a
photon and momentum is  since photon is a massless
relativistic  particle.  This  means  that  the  momentum
density  is  given  by ,  or  in  terms  of  the  Poynting
vector,  is ,  or  in  vector  form, .  We
compute  the  rate  of  change  of  the  momentum density.
With the help of Maxwell’s equations, we find [68]

− 1

c2
∂S
∂t +∇·

↔
T = ρE + j ×B, (180)

↔
T= ϵ0EE + 1

µ0
BB − u

↔
U

f

l = r × S/c2 = ϵ0r × (E ×B)

l

here  is  Maxwell’s  stress  tensor,
and  the  right-hand  side  is  the  Lorentz  force  applied  to
object  per  unit  volume, .  The  conservation  equation
associated  with  the  angular  momentum  is  similarly
obtained  by  noting  that  is
the angular momentum density. Taking again the rate of
change of  and using Maxwell's equations, we have [143,
156]

−∂l

∂t
−∇ · (

↔
T ×r) = r × f , (181)

f = ρE + j ×B

r×
↔
T

∇·
r × (∇·

↔
T ) = −∇ · (

↔
T ×r)

↔
T

r

(
↔
T ×r)ij =

∑
kl Tikxlϵklj

(∇·
↔
T )i =

∑
j ∂/∂xjTji

↔
T ×r

−Σ · (
↔
T ×r) = (r×

↔
T ) ·Σ

where .  We  can  obtain  the  angular
momentum  conservation  equation  (181)  from  the
momentum conservation, Eq. (180), by multiplying it by

, and using the fact that  is symmetric. As a result,
we  can  “pull” the  divergence  operator  out,  i.e.,

.  Note  that  when  a  tensor  is
cross-multiplied  by ,  the  result  is  still  a  tensor,  with
component .  When  a  tensor  is
dotted  with  another  vector,  the  result  is  a  vector,  e.g.,

.  For nonsymmetric tensor, such as
,  dot  from  the  left  is  different  from  dot  from  the

right. We have a symmetry .

FRONTIERS OF PHYSICS REVIEW ARTICLE

43602-32   Jian-Sheng Wang, et al., Front. Phys. 18(4), 43602 (2023)

 



S
↔
T

−
↔
T ×r

⟨∂a/∂t⟩ = ∂⟨a⟩/∂t = 0

From the conservation equations, we have the physical
interpretation  that  the  Poynting  vector  gives  the
energy flux, and the Maxwell stress tensor  integrated
over an enclosing surface with outward norm is the force
applied  to  the  body,  and  the  torque  applied  to
the body. Since we are mainly interested in steady-state
average, the average of a rate of change of a finite quantity
is  zero.  Since  averaging  and  taking  partial  derivative
commute, we find . Using this result,
together  with  the  conservation  equations,  we  can
compute the energy, momentum, and angular momentum
transfer in two ways — by integrating over the surface
enclosing  some  body  or  by  a  volume  integral  of  the
expressions on the right-hand side of the equations.

1
2 ⟨(AB +BA)⟩

DK = D> +D<

α

These  classical  expressions  are  changed  to  quantum
operators in a quantum theory, with symmetrized product
if  necessary,  and  also  earlier  in  part  II  we  argue  for  a
normal  order  in  order  to  remove  the  zero-point  motion
contribution.  However,  here  we  have  a  second  thought
for the normal ordering. The reason is that it is precisely
the  zero-point  motion  that  gives  rise  to  the  Casimir
force.  If  we continue using normal order,  we would not
be  able  to  predict  a  Casimir  force.  In  fact,  we  need  to
use  a  symmetric  order, .  This  means  that
the  Green’s  function  will  be  the  Keldysh  one  of

 that  enters  the  expressions  for  physical
observables of the transport quantities. In order to show
that  this  is  not ad  hoc and  arbitrary,  we  will  say  that
the symmetric order is fundamental, and show explicitly,
for energy transport and also for non-confined geometries
such  as  radiation  to  infinity,  the  zero-point  motion
contribution cancels by itself. This will be demonstrated
in  Section  13.1.  With  these  considerations,  the  power
emitted, the force applied, and torque applied to a body
 enclosed with a surface are

Iα =

∮
Σ

S · dΣ =

∫
V

(−E · j)dV, (182)

Fα =

∮
Σ

↔
T · dΣ =

∫
V

f dV, (183)

Nα =

∮
Σ

r×
↔
T · dΣ =

∫
V

r × f dV. (184)

V

Σ

Here  is  the  volume  enclosed  by  a  simply  connected
surface . We have used Gauss’s theorem to change the
divergence over the volume into a surface integral  with
outward norm.

 12.2   Expressing transport quantities by Green’s functions

D

D A

We  comment  on  the  surface  integral  expressions  first.
We  have  already  given  a  general  expression  for  heat
transfer in terms of the Green’s function  by Eq. (149),
except  that  now  is  defined  by  the  full  without

D<

DK/2 = (D< +D>)/2

R

imposing  the  transverse  requirement.  Also,  since  we
have  decided  to  use  the  symmetric  operator  order, 
there  should  be  replaced  by  the  Keldysh  version

. The rest remain. For the force and
torque with Maxwell’s stress tensor, we can write down
similar expressions, but it is messy and not particularly
illuminating.  However,  the  expressions  simplify  if  we
take the long distance far field limit by integrating over
a  sphere  of  radius .  Instead  of  trying  to  derive  these
formulas  explicitly  here,  we  will  give  the  results  as  a
special case of the more general Meir–Wingreen formula,
after we have elaborated on the concept of bath at infin-
ity.

ρ j

f = ρE + j ×B = −ρ ∂A/∂t+ j × (∇×A)

⟨∂(ρA)/∂t⟩ = ⟨(∂ρ/∂t)A⟩+ ⟨ρ∂A/∂t⟩ = 0

∂ρ/∂t =

−∇ · j

For  the  volume  integrals,  we  remove  the  explicit
charge  dependence  in  favor  of  the  current .  Due  to
charge  conservation,  we  can  compute  the  charge  from
the  current.  The  Lorentz  force  per  unit  volume  is

. In steady state,
. We can move the

time derivative from the vector potential to charge with
a  minus  sign.  Using  the  continuity  equation, 

, we can write the force as (valid after taking aver-
age)

f = −(∇ · j)A+ j × (∇×A)

= −
∑
µ

∂µ(jµA) +
∑
ν

jν∇Aν . (185)

µ ν x

y z

Here we have used the triple cross-product formula and
combined the charge term with one of the cross-product
terms. The index  or  takes the Cartesian directions, ,
,  or .  Note  that  the  first  term  is  a  divergence.  If  we

integrate  over  a  volume  large  enough  to  enclose  the
object where at the surface there is no current, then the
first  term  is  zero.  We  can  then  use  for  the  total  force
calculation inside the integral as

f =
∑
ν

jν∇Aν . (186)

r × f

µ

r

However, the first term in Eq. (185) is no longer a divergence
in the torque calculation in . By an integration by
parts in the space index ,  we can move the derivative
to . The same argument that at the surface there is no
electric  current  can  be  used  to  eliminate  the  surface
contribution.  This  gives  the  integrand  for  the  total
torque as

r × f = j ×A+
∑
ν
jν(r ×∇)Aν . (187)

Here the first term is interpreted to be the spin part of
the contribution to angular momentum transfer, as it is
independent  of  a  choice  of  the  coordinate  origin,  while
the second term is interpreted as due to orbital angular
momentum [157].

j A

Now we  have  transformed  each  of  the  integrands  for
the  three  transport  quantities  in  terms  of  the  current
density  and vector potential .  The rest  of  the steps
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can  be  dealt  with  in  a  unified  way.  First,  we  define  a
new Green’s function as an intermediate quality by

Fµν(rτ ; r
′τ ′) =

1

iℏ
⟨
TτAµ(r, τ)jν(r

′, τ ′)
⟩
. (188)

Using this Green’s function, which reflects the interaction
between the field and matter, we can write

Iα = Re
∫ ∞

0

dω
2π

ℏω Tr
[
FK(ω)

]
, (189)

Fα = Re
∫ ∞

0

dω
2π

iℏTr
[
∇rF

K(ω)
]
, (190)

Nα = Re
∫ ∞

0

dω
2π

Tr
[
iℏ r ×∇rF

K(ω)− SFK(ω)
]
.

(191)

1
2 ⟨AB +BA⟩ = Re

∫∞
0

iℏDK
AB(ω) dω/(2π)

iℏDK
AB(t) = ⟨A(t)B +BA(t)⟩

−∞ +∞
DK

AB(ω)

FK

r ν

Tr[· · · ] =
∫
Vα

dV
∑

ν · · ·
α

∇r FK = FK(r, r′, ω)

A

ℏω
A

L̂ = r ×
(ℏ

i ∇r

)
Sµ
νγ = (−iℏ)ϵµνγ

FK

Note that with the symmetric order of any two Hermitian
operators, we have  ,
as  the  correlation  defined  in  time  domain  by

 is  real.  As  a  result,  in
frequency domain the real part is symmetric, and imaginary
part  antisymmetric.  By  integrating  from  to 
only the real part of  survives. We have used the
symmetry  to  write  the  integrals  with  the  positive
frequency only. In the above expressions, we should view
the Keldysh component  as a matrix indexed by both
position  as  well  as  direction .  The  trace  is  in  the
combined  space,  i.e., .  The  volume
integral covers the object  only. The gradient operator

 acts on the first argument of  which
is  associated  with  the  argument  of  the  vector  field .
The factor in the energy current, , is due to the time
derivative with respect to , Fourier transformed to the
frequency  domain.  The  first  term of  the  torque  expres-
sion, , is the single particle orbital angular
momentum  operator  in  the  position  space,  while

 is  the  spin  operator  in  the  Cartesian
direction acting on .

F

D Π

We need to connect our  back to our earlier Green’s
function of the field  and the materials properties . In
fact, such a relation does exist, it is

F = −DΠα. (192)

−FK = DrΠK
α +DKΠa

α

This  equation  should  be  best  viewed  as  defined  on  the
Keldysh contour, and is a convolution in space as well as
Keldysh  contour.  In  the  next  subsection,  we  will  prove
this  result  and  point  out  an  additivity  assumption
needed  for  its  validity.  Here,  if  this  expression  is
assumed,  then  the  Keldysh  component  is  obtained  by
the Langreth rule, .  With this, we
obtain  the  Meir–Wingreen  formulas  for  the  transport
quantities as [158]

Iα =

∫ ∞

0

dω
2π

(−ℏω)ReTr
(
DrΠK

α +DKΠa
α

)
, (193)

Fα =

∫ ∞

0

dω
2π

ReTr
[
p̂
(
DrΠK

α +DKΠa
α

)]
, (194)

Nα =

∫ ∞

0

dω
2π

ReTr
[
Ĵ
(
DrΠK

α +DKΠa
α

)]
. (195)

p̂ = ℏ
i ∇

Ĵ = r × p̂+ S

Here  is  the  momentum  operator,  and
 is the total angular momentum operator.

 12.3   Properties of the Meir–Wingreen formulas

N

α = 1 N

(N + 1)

In this subsection, we investigate some of the properties
implied  by  the  Meir–Wingreen  formulas  for  energy,
momentum, and angular  momentum transfers.  We first
discuss the conservation laws. We assume  well-separated
objects  with ,  2, ···,  localized  in  a  bounded
region, see Fig. 11. In order to account for the loss of the
transported  quantities  to  infinity,  it  is  necessary  to
introduce  one  more  object  as  the  “object” at
infinity.  The  conservations  of  the  physical  observables
are then

N+1∑
α=1

Iα = 0,
N+1∑
α=1

Fα = 0,
N+1∑
α=1

Nα = 0. (196)

α

These equations are obviously true, as the volume integrals
can  also  be  obtained  by  surface  integrals  enclosing  the
objects. Each surface separating the objects is used twice
with opposite sense of the “outward” norm. Since the 

 
N

∞
R n

Fig. 11    objects  of  arbitrary  shapes,  each  experiencing
energy  radiation,  force  and  torque  exerted  to.  There  is  one
more special  object  called  which is  the space outside  the
sphere of radius . The norm vector  is a unit vector pointing
outwards from the enclosing surface.
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Πα

Π =
∑N+1

α Πα

dependence  is  only  through  the  self-energy ,  it  is
necessary to introduce also a self-energy for the infinity.
With the total self-energy , the conservations
are satisfied for the three quantities if

DrΠK +DKΠa = DrΠK(I +DaΠa) = 0. (197)

DK = DrΠKDa DrΠK

I +DaΠa = 0

Here  to  get  the  second  expression  we  have  used  the
Keldysh equation . Since the factor 
cannot be zero in general, we require that .
This is indeed valid if we recall the Dyson equation is

Dr = vr + vr
N∑
α

Πr
αD

r, (198)

(vr)−1Dr = I +
∑N

α Πr
αD

rwhich  we  can  also  write  as .  If
we identify the self-energy at infinity (or of the environ-
ment) as the differential operator [52],

Πr
∞ = −(vr)−1, (199)

−Πr
∞Dr

I +ΠrDr = 0 Πr N + 1

Πr
N+1 ≡ Πr

∞

R → ∞

and  move  the  term  to  the  right  side,  we  find
.  Here  is  a  sum from object  1  to 

with . Taking the Hermitian conjugate of this
equation,  we  obtain  the  needed  identity.  We  note  that
in the Dyson equation, the object at infinity is  only an
absorbing  boundary  condition  as  quantities  transported
to  infinity  cannot  come  back.  The  self-energies  in  the
Dyson equation on the right-hand side in Eq. (198) does
not  include  an  “object” at  infinity  if  the  equation  is
solved in an unbounded domain. It is useful to think of
each of the objects, including the object at infinity as a
bath,  supplying  energy,  momentum,  and  angular
momentum  for  the  photon  fields.  This  derivation
presents  to  us  an  explicit  expression  for  the  bath  at
infinity as a differential  operator.  In a later section, we
give an algebraic expression defined on the surface of a
sphere of radius .

−(vr)−1

D = v + vΠD

We  can  give  an  alternative  argument  for  the  self-
energy of the environment (bath at infinity) as .
We  recall  that  the  contour  ordered  Green’s  function

 implies a pair of equations in real time, one
of  them  is  the  Dyson  equation,  Eq.  (198),  the  other  is
the Keldysh equation for which we can write in alternative
forms,

DK = DrΠK
objD

a + (I +DrΠr
obj)v

K(I +Πa
objD

a)

= DrΠK
objD

a +Dr(vr)−1vK(va)−1Da

= Dr
{
ΠK

obj + (2N∞ + 1)
[
(−vr)−1 + (va)−1

]}
Da.

(200)

Πobj =
∑N

α=1 Πα

vK

Here  we  define  the  self-energy  of  the  objects  to  be
, excluding the bath at infinity. The first

line above is a general form of the Keldysh equation [63]
without  evoking  a  special  property  of .  For  isolated
systems, the second term on the right is zero because in
this case, an isolated system is nondissipative, satisfying

v−1vK = 0 v−1

Πobj = 0

DK = vK

T∞

vK = (2N∞ + 1)(vr − va)

(−vr)−1

 where  is  interpreted  as  the  differential
operator. We can use the Dyson equation to obtain the
second line. It is clear if the objects are absent, ,
we  get ,  which  is  the  Green’s  function  for  the
free field.  Assuming the free  field in the absence of  the
objects is thermal, i.e., satisfying the fluctuation-dissipa-
tion  theorem  at  temperature ,  that  is,

,  we  obtain  the  last  line,  from
which  we  see  that  serves  as  the  retarded  self-
energy for the environment.

Dr −Da = D> −D< DK = D> +D<

Π Iα =

−
∫∞
0

dω
2πℏωTr

(
D>Π<

α −D<Π>
α

)
D

Πα

The  Meir–Wingreen  formulas  are  the  most  general
ones where each of the objects could be in some arbitrary
nonequilibrium state. For the energy formula, we have a
more symmetric form by adding the Hermitian conjugate
inside  the  trace  and  divided  by  2,  and  then  using  the
general  relations, , ,
and  similarly  for  the  self-energies ,  as 

. This is the same as for the
scalar photon version, Eq. (35), except that here  and

 are tensors with directional indices.
The  next  consequence  of  the  Meir–Wingreen  formula

we  discuss  is  a  derivation  of  the  Landauer–Bütticker
formula for the energy transport when local equilibrium
is valid. By local equilibrium we mean that each object
has  a  version  of  the  fluctuation-dissipation  theorem for
the self-energies,

ΠK
α = (2Nα + 1)(Πr

α −Πa
α), α = 1, 2, · · · , N,N + 1.

(201)

Nα = 1/(eβαℏω − 1) α

Tα = 1/(kBβα)

ΠK
α

DK = Dr
(∑N+1

α ΠK
α

)
Da

Γα = i(Πr
α −Πa

α)

DrΠK
α +DKΠa

α

(DK)† = −DK

i(Dr −Da) = Dr(
∑N+1

β Γβ)D
a

Here  is the Bose function for object 
at  a  local  temperature  of .  Using  this
expression  for  and  the  Keldysh  equation

, we can completely eliminate the
Keldysh  components  in  favor  of  the  retarded  Green’s
functions  and  self-energies.  Introducing 
as  the  spectrum  of  the  bath,  adding  the  Hermitian
conjugate  of  and  divided  by  2  to  take
care of the real part, using the symmetry 
and similarly for the self-energies, and finally the identity

 [see  Eq.  (28)],  we  obtain,
after some straightforward algebra,

Iα =

∫ ∞

0

dω
2π

ℏω
N+1∑
β=1

(Nα −Nβ)Tr
(
DrΓβD

aΓα

)
.

(202)

Dr
µν(r, r

′, ω)

2Nα + 1 = coth(βαℏω/2) 1

We remind the reader that here the trace means integrating
over the volume and summing over the Cartesian direc-
tions, and the Green’s functions have the arguments and
indices,  e.g., .  We  note  originally  the  Bose
function  enters  as  where  the  is
the  contribution  from  zero-point  motion.  However,  in
the  final  formula,  the  Bose  function  enters  only  as  a
difference,  the  1s  have  been  canceled  out.  Thus,  for
energy  transport,  with  local  thermal  equilibrium,  the
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p̂

Ĵ

Ô D
Πα

Nα −Nβ

zero-point motion never contributes to energy transport.
The  same  cannot  be  said  about  force  and  angular
momentum or  if  the system is  not  in  local  equilibrium.
Due to the presence of the extra differential  operator 
or , a similar derivation fails to go through, thus there
is  no  equivalent  Landauer  formula  for  the  force  and
angular momentum unless the operator  in front of 
commutes with . If  there were such a formula in the
sense  that  it  has  a  factor ,  we  would  not  have
Casimir forces.

Tβα = Tr
(
DrΓβD

aΓα

)

ΠT
α = Πα Tβα = Tαβ

Iα α

∑
β Tβα =

∑
β Tαβ ∑

α Iα = 0

The Caroli-like expressions for the transmission coeffi-
cients  have  been  derived  for  energy  transfer  between
objects modelled as dipoles [54, 159], and also for fluctu-
ational-surface-current  formulation  in  Ref.  [56].  If  we
define  the  multiple-bath  transmission  coefficients  as

, in general it is not symmetric with
respect  to  a  swap  of  the  two  baths  unless  there  are  in
total  only  two  baths.  For  systems  that  are  reciprocal,
i.e., ,  we  can  show  that  we  do  have .
Unsymmetric  transmission  implies  an  energy  current
known as super-current between objects even at thermal
equilibrium [160], but the total  out of object  is still
zero.  Symmetric  or  not,  there  is  a  sum  rule  [57, 161],

,  which  is  just  a  consequence  of  the
total current conservation, .

 12.4   Prove F = –DΠα

In  proving  the  Meir–Wingreen  formulas,  we  have  used
this relation, which means, in full form in space, contour
time, and direction,

Fµν(rτ ; r
′τ ′)

= −
∫

d3r′′
∫

dτ ′′
∑
λ

Dµλ(rτ ; r
′′τ ′′)Πα,λν(r

′′τ ′′; r′τ ′),

(203)

α F

α

j = −ΠαA

j

A

Πα

3× 3

j(2) =

−
∫
d(3)Πα(2, 3)A(3)

which is a matrix multiplication in the direction indices,
and  convolution  in  space  and  contour  time.  Note  that
here the self-energy in continuum form is for the object
 so  that  function  is  associated  with  a  particular

object,  which  we  have  suppressed  the  subscript  for
notational  simplicity.  We can  argue  about  this  relation
not so rigorously with linear response. Within the lowest
order of random phase approximation, the electrons and
photons  are  not  coupled  directly  so  we  can  take  the
averages in each space separately. Focusing on the electrons
first, then the response of the electrons due to the internal
vector  field  is  the  current ,  here  we  have  not
yet evaluated the average on the photon space, so  and

 are  still  quantum  operators.  Again,  this  equation
means convolution in contour time and space, and  is
a  tensor  in  directional  index  space.  Let  us  be
slightly  more  precise  by  writing 

,  here  we  use  the  abbreviation

(n) ≡ (rn, τn, µn)
∫
d(3) ·

j(2)

F (1, 2) = ⟨TτA(1)j(2)⟩/(iℏ) = −
∫
d(3)

⟨
TτA(1)·

Πα(2, 3)A(3)
⟩
/(iℏ) Πα

D F (1, 2) = −
∫
d(3)D(1, 3)Πα(2, 3)

Πα(2, 3) = Πα(3, 2) F = −DΠα

,  and  means  integrations  over
space,  contour  time,  and  summing  over  the  directions.
Since we still  treat  as a quantum operator,  we can
put the linear response into the definition of the Green’s
function 

. We can pull  out from the average
as it is just a number, so we have, using the definition of

, .  As  the  (bosonic)
contour  ordered  function  is  symmetric  with  respect  to
the  permutation  of  their  arguments  by  definition,

, we obtain .

F

j =
∑

α jα

F = −DΠ

D = v + vΠD = v +DΠv

v−1 Dv−1 = I +DΠ

τ ′

F

A j

v−1A = −j v−1 =

−ϵ0(∂
2/∂τ2 + c2∇×∇×) A

t

τ v−1 D

A D

Av−1 −j −F

v−1

D

Tτ D(τ, τ ′)=θ(τ, τ ′)⟨A(τ)A(τ ′)⟩/(iℏ) + θ(τ ′, τ)⟨A(τ ′)A(τ)⟩/
(iℏ)

∇

Tτ ∂/∂τ ′ D

− 1
iℏδ(τ, τ

′)·⟨
[A(τ), A(τ ′)]

⟩
∂θ(τ, τ ′)/∂τ ′ = −δ(τ, τ ′) ∂θ(τ ′, τ)/∂τ ′ = δ(τ, τ ′)

∂2/∂τ ′2 v−1

δ(τ, τ ′)
⟨
[Ȧ, A]

⟩
I

−F = DΠ

But there is a more rigorous proof of this relation. It
is convenient to start with the total , that is, the sum
of  the  contributions  of  all  the  objects  (not  counting
infinity as one) generated by the total current, .
As  a  consequence  of  the  Dyson  equation,  we  can  show
that  is  an  exact  result.  To  demonstrate  this,
we note that the contour ordered Dyson equation can be
written  alternatively  as .  Multi-
plying  from the right,  we find .  Here
the  contour  time  differentiation  is  with  respect  to  the
second argument . We can compute the left-hand side
explicitly  and  connect  to .  We  first  note  that  the
vector field  and the total current  are related at the
Heisenberg  operator  level  as  with 

 acting  on .  Here  we  have
generalized the real time  to the Keldysh contour time
. Acting  on  from right is the same as acting on

the  second  in .  Without  the  contour  ordering,  we
can  immediately  replace  by ,  which  gives .
Note  that  is  symmetric  in  space  indices  so  acting
from right is the same as acting from left.  The contour
order operator introduces extra terms. We can express 
in terms of the step functions without the contour operator

 as 
,  here  we  have  suppressed  the  space  and  direction

arguments  since  they  are  irrelevant  for  the  reasoning.
The  space  differentiation  operation  by  does  not
contribute  extra  terms  as  it  straightly  goes  inside  the
contour order . Taking the first derivative  to 
leads  to  an  extra  term  of  the  form 

.  The  delta  function  appears  because
,  and .  The

commutator  is  now at  equal  time because  of  the  delta-
function  factor,  and thus  is  zero.  If  we  continue  to  the
second derivative  that appears in , we find by
similar steps a new term . Using the canonical
commutation  relation,  Eq.  (174),  we  find  that  this  is
precisely  the  identity  in  space,  contour  time,  and
directional index. Thus, we have .

Fα = −DΠα α F

Π

This is not yet the equation we are supposed to prove,
which is  for object . In order for  to have
additivity over each object, we require that  is additive,
i.e.,
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Π =
N∑
α

Πα. (204)

Π

Π α

Πα

Πα α

Π

O(e6)

e

e4 χ e6

Π

Π

χ

This  additivity  can  be  made  true  by  selecting  those
Feynman diagrams of  with the right-most vertex asso-
ciated with the second argument of  with object  for

,  while  the  first  argument  has  no  restriction.  The
additivity helps us to separate the contributions for the
transported quantities unambiguously from each object.
If  we  insist  that  means  strictly  from object ,  then
additivity is certainly true at the RPA level of approxi-
mation, but it fails at higher order of approximation for

.  A  good  example  is  the  diagram  shown  in Fig.  12,
known  as  the  Aslamazov–Larkin  diagram  [162].  The
additivity of the self-energy breaks down at , where
 is the magnitude of electron charge. We note that the

additivity is false at the  order for , while is at  for
. This is the main reason that we prefer to work with

the irreducible diagrams from , instead of working with
the current-current correlation .

 13   Baths at infinity

|r| > R R

R

Since the electromagnetic field can propagate to infinity,
any  collection  of  finite  objects  will  have  some  energy
transmitted  to  infinity.  In  order  to  account  for  the
conservation  laws,  we  must  also  count  the  “object” at
infinity. An exception is the Polder and von Hove geometry
of two materials with a gap; here in this problem, there
is  no  need to  consider  the  “infinity” and the  space  are
all  occupied  by  the  objects.  We  can  treat  the  empty
space for  outside a big sphere of radius  as the
infinity. It has the property that any energy, or momen-
tum, or angular momentum sent to infinity is absorbed,
and never reflected back. Mathematically, when we solve
the retarded Dyson equation, we can treat the surface of
the sphere at  as an absorbing boundary condition. Or
if the problem is solved in the full  space including that

R → ∞
outside the sphere, we must seek for a decaying solution
that goes to zero at .

Π

T∞

Πr
∞ = −v−1

|r| = R

Ω

Any object in our formalism is represented by the self-
energy ,  including  the  object  at  infinity.  Usually,  we
set the temperature at infinity to zero, but we can also
ascribe a temperature at infinity. In this case, the finite
objects are enclosed in a black-body cavity at temperature

 from  the  environment.  The  self-energy  of  the  envi-
ronment  can  be  expressed  as  a  differential  operator
defined  in  the  whole  space,  Eq.  (199), .  The
question  is,  does  it  have  an  imaginary  part?  Since  an
infinite  domain  must  be  dissipative,  it  does.  The  effect
of  this  differential  operator  is  realized  if  it  acts  on  the
actual solution of the problem. Very often it is transformed
so that it does not appear explicitly in the end. This is
conceptually simple, but computationally not very useful.
A more useful point of view is to think of the bath (the
object)  at  infinity  as  defined  precisely  at  the  sphere

.  In this way, the degrees of freedom of the bath
are solely specified by the solid angle .

Here  in  this  section,  we  derive  an  expression  for  the
bath at infinity defined on the sphere locally as [95, 158]

Πr
∞ = −iϵ0cω

(↔
U −R̂R̂

)
, (205)

R

ω → ω + iη
η |r| > R

ϵ ≈ 1 + 2iη/ω
2ηϵ0

Dr ∼ ei(ω+iη)|r|/c

r v−1Dr ≈ −2iηϵ0ωDr

v−1Dr = I +ΠrDr

−v−1

and  discuss  its  consequence.  To  obtain  this  result,  we
consider  a  dust  model  [64]  of  the  bath  at  infinity,  by
saying that the space outside  is dissipative. The dissi-
pation  is  obtained  phenomenologically  by  setting

 in the free Green’s function, with some small
positive . This is equivalent to give the space  as
a  dielectric  medium  with  a  local  dielectric  function

, or a constant, infinitesimally small conduc-
tivity . The free Green’s function is a good approxi-
mation if one of the space coordinate approaches infinity,
even  if  there  is  matter  present  at  a  finite  region.  We
assume  the  asymptotic  form  of  spherical  wave  solution

. The effect of the dusts is to introduce a
damping over the purely oscillatory solution. To leading
order in large , we have . Comparing
with  the  Dyson  equation, ,  we  can
identify  the  prefactor  as  the  dust  self-energy  in  a  local
form. Note that the retarded and advanced self-energies
or Green’s functions are related by Hermitian conjugate.
In  the  dust  picture  for  the  bath  at  infinity,  since  the
dissipative bath has been modeled explicitly, we can put
all the objects, including the dusts, in a large finite box
as  an overall  isolated  system.  In  this  case  will  no
longer have an imaginary part and is not interpreted as
the self-energy of the bath anymore. Thus, the meaning
of  the  differential  operator  depends  on  the  boundary
conditions choosing.

Tr
[
Ô(DrΠK

∞ +DKΠa
∞)
]

Ô

Dr DK

The  bath  self-energy  appears  in  the  Meir-Wingreen
formula as  where  is an operator
acting on the first argument of  and . If we ascribe
a temperature to the bath at infinity, the Keldysh bath
self-energy  is  related  to  the  retarded/advanced  version

 

Π

v

α β

v

Fig. 12  One of  the higher  order  contributions to the self-
energy  in a diagrammatic expansion known as Aslamazov-
Larkin  diagram.  It  consists  of  6  electron  Green’s  functions
(solid line with arrow) and 2 bare interactions  (dotted line).
The  electron  line  of  a  closed  loop  must  belong  to  the  same
object,  say,  and  for  the two loops,  respectively.  Due to
the existence of  the  lines which introduce mutual  interac-
tion,  it  is  impossible  to  write  the  self-energy  as  a  sum over
each object individually.
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ΠK
∞ =

(2N∞ + 1)(Πr
∞ −Πa

∞)

Πr
∞

−v−1

∫∞
R

drr2 · · ·
DrDa ∼ e−2η|r|/c

c/(2η)

η → 0+

η

R

by  the  fluctuation-dissipation  theorem, 
.  The  trace  here  will  be  interpreted

in two ways. Originally, the trace is supposed to be the
volume  integral  over  all  space  with  the  differential
operator . Now we have an explicit formula for the
self-energy  over  the  volume  outside  the  sphere  due  to
the  dusts.  The  field  intensity  decay  produces  a  finite
volume integral. Due to the spherical symmetry, we can
work  in  polar  coordinates.  The  integration  over  the
volume  is  a  solid  angle  integral  and  radial .
The  exponential  decay  in  intensity, ,
gives us a length  to multiply the volume expression
of the self-energy. In the limit , we obtain a finite
answer  for  the  solid  angle  expression  independent  of ,
which can be interpreted as a new self-energy defined on
the sphere of radius  as given by Eq. (205). The extra
transverse projector which has angular dependence takes
care  that  electrodynamic  field  in  the  far  field  is  trans-
verse.

 13.1   No zero-point motion contribution at infinity?

DK → 2D< ΠK
∞ → 2Π<

∞

2Nα + 1

In  this  subsection,  we  give  an  argument  based  on  the
Meir–Wingreen  formula  that  there  is  no  zero-point
motion contribution to transport at infinity. If this were
not  true,  we  might  run  into  problem  of  a  divergent
contribution  to  energy  transport,  for  example.  This  is
equivalent  to  say,  that  we  can  replace  the  Keldysh
Green’s functions and self-energies by the lesser compo-
nents,  and  in the Meir–Wingreen
formulas, Eqs. (193) to (195), when applied to the quantities
transmitted to infinity. In order to show that this is true,
we need an assumption that each object has local thermal
equilibrium  (perhaps  this  assumption  can  be  relaxed).
Applying  the  fluctuation-dissipation  theorem,  then  the
terms  in  the  Keldysh  Green’s  functions  or  self-
energies can be split as twice the lesser components plus
extra terms. We need to check that the extra terms are
zero,

ReTr
[
Ô
(
Dr(Πr

∞ −Πa
∞) +Dr(Πr −Πa)DaΠa

∞
)]

=0?

(206)

Πr = (Πa)†

Dr −Da = Dr(Πr −Πa)Da

Tr
[
Ô(DrΠr

∞ −DaΠa
∞)
]

Ô = −ℏω

I∞
Ô = −ℏω p̂ Ĵ

Ô Dr Πr
∞ = (−v)−1

r µ

Ô Ô Πr
∞

[Ô,Πr
∞] = 0

Here  without  a  subscript  is  the  total  self-
energy (including the bath at infinity). Using the identity

, the expression can be simplified
as  to  check  if  the  real  part  of  is
zero.  For  the  case  of ,  the  trace  is  imaginary
since  the  two  terms  are  related  by  complex  conjugate.
But  the  power  must  be  real,  so  the  result  must  be
zero. For the general situations when , , or ,
we  note  that  the  three  factors , ,  and 
are operators in the space  and direction . The operator

 is  Hermitian.  Importantly,  commutes  with ,
;  this  is  a  consequence  of  time  translation,

Πr
∞

space displacement, and rotation symmetries of the free
field,  which  we  can  check  explicitly  using  the  operator
representation of . Using these properties of the oper-
ators  and  the  cyclic  permutation  property  of  trace,  we
find  again  that  the  two  terms  are  related  by  complex
conjugate  and  the  expression  (206)  has  no  real  part.
With  these  arguments,  we  can  compute  the  physical
observables at infinity as

I∞(Ô) = Re
∫ ∞

0

dω
π

Tr
[
Ô(DrΠ<

∞ +D<Πa
∞)
]
. (207)

Ô = −ℏω p̂ Ĵ

I∞ = I∞(−ℏω)
−I∞ F∞

N∞

Π<
∞ = 0

D<Πa
∞

Here , ,  and  for  energy,  momentum,  and
angular  momentum  transfer,  respectively.  Due  to  our
sign convention,  is the energy out of infin-
ity,  i.e.,  is  the  energy  absorbed  at  infinity,  is
the  force  applied  to  infinity  (momentum transferred  to
infinity), and similarly  is the torque applied to infin-
ity.  If  the  temperature  at  infinity  is  set  to  0, ,
only the second  term contributes. We obtain for
the energy transferred to infinity per second (power) by
the objects from a finite region as,

I∞ =

∫ ∞

0

dω
π

ReTr
[
(−ℏω)Dr

N∑
α=1

Π<
αD

aΠa
∞

]
. (208)

R → ∞
Tr[· · · ] =

∫
dΩR2

∑
µ · · ·

(−ℏω)

We  have  already  derived  the  same  formula  using  the
Poynting vector expectation value and normal order on
a  sphere  of  radius ,  see  Eq.  (150).  Here

,  i.e.,  integrating  over  the  surface
of the sphere and summing over the direction index. We
obtain  the  formulas  for  force  and  torque  similarly,  just
by  replacing  the  operator  by  the  momentum  or
angular  momentum  operator,  which  can  be  shown  to
agree  with  a  direct  calculation  using  Maxwell’s  stress
tensor on the surface of a large sphere.

 14   A consistency check with Krüger et al.
theory

χ

Π χ

Π

χ

v

χ = Π+ΠvΠ+ · · · = Π+ vΠχ

Π

χ

Πr −Πa = 2i ImΠr

In  the  literature,  the  susceptibility  is  used  as  a
primary material property instead of the self-energy (or
polarizability) . Here  is the charge-charge correlation
for  the  scalar  field  theory,  and  is  the  current-current
correlation  for  the  full  theory.  The  self-energy  is
obtained  from  by  keeping  only  the  irreducible
diagrams with respect to the interaction  in a diagram-
matic  expansion.  The  two  are  related  by

. This gives rise to alternative
expressions  for  the  same  physical  quantities.  For  the
scalar  field  result  of  the  Landauer  formula,  Eq.  (10),  if
we assume that the system is reciprocal [48], i.e., both 
and  are  symmetric,  we  can  transform  the  Caroli
formula into a form given by Yu et al. [73]. The reciprocity
allows  us  to  use  needed  in  the  trans-
formation [70]. Note that the assumed reciprocal relation,
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Π = ΠT,  does  not  hold  when  the  electrons  are  in  a
magnetic field.

ΠT = Π

Π

χ

Π = ΠT

Similarly,  in  pioneering  works,  Krüger et  al. [10, 18,
52]  give a series of  formulas for various cases of  energy
transfer and (Casimir) forces for arbitrary objects. Again,
if  we  assume  reciprocity,  the  Meir–Wingreen  formulas
can also  be transformed into the Krüger et  al. form. It
seems the assumed reciprocity, ,  is important for
this equivalence to hold. The symmetry of  implies the
symmetry of  as the free Green’s function is symmetric.
For the case of current–current correlation, the transpose
here is in the combined space of coordinate and directional
index, i.e.,  means

Πµν(r, r
′, ω) = Πνµ(r

′, r, ω). (209)

Π

Πr = −ϵ0ω
2(ϵ− 1)

ϵT = ϵ

Since the retarded  is related to the dielectric function
by , in a local theory, reciprocity means

 as a 3 by 3 matrix, which is the original meaning
of “reciprocity” used by Lorentz [163].

T

Tr
(
D<Πa

∞
)

D = v + vχv

r

D

D< = DrΠ<Da = ND(Π−Π†)D†

N T

Π χ

χ = Π+ΠvΠ+ · · ·

As an illustration, let us consider a simple case of one
object  at  a  temperature  emitting  energy  to  infinity
which is at zero temperature. Our result is given by Eq.
(208). To transform into Krüger et al. form of Eq. (37),
the key term in our formula is . The trace here
is interpreted as a volume integral over the whole space
and  sum  over  the  directional  index.  The  retarded
Green’s  function  is ,  here  all  of  them  are
retarded  version.  We  omitted  the  superscript  for
simplicity. The lesser component of  can be expressed
in terms of the retarded Green’s function by the Keldysh
equation .  We  have  used
the fluctuation-dissipation theorem for the object, where

 is the Bose function at temperature ; bath at infinity
is at zero temperature. We now need a relation between
the  imaginary  part  of  and  the  imaginary  part  of .
Using the relation , we can check that

(1 + χv)(Π−Π†)(1 + v†χ†) = χ− χ† + χ(v† − v)χ†.

(210)

D<Πa
∞ = Nv(1 + χv)·

(Π−Π†)(1 + v†χ†)v†(−v−1)† = −Nv
(
(χ− χ†) + χ(v† − v)χ†)

Πa
∞ = (−v−1)† v†

D†

χ− χ† = 2i Imχ

v

With  this  identity,  we  have 
.

We have used the representation for the bath at infinity
by  which gets canceled by a factor  from
the  term on the  right  side  of  the  Keldysh equation.
Finally,  putting the integral  over frequency back,  using
the reciprocity so that , and similarly for
, we get

−I∞ =

∫ ∞

0

dω
π

2ℏωN ImTr
[
vImχ− vχ(Im v)χ∗

]
.

(211)

χ = −T/µ0 T

v = −µ0G0

This is Eq. (37) in Krüger et al. if we note a slight notational
change, ,  where  is  the  scattering  operator,
and  the free Green’s function, with the product

vχ = G0T µ0 remaining  the  same.  Here  is  the  vacuum
permeability.

Dr

Πr

Dr
12 χ1 χ2

v12

Im v = 0

To  show  the  equivalence  of  the  Landauer/Caroli
formula with Krüger et al. formulation with heat transfer
or force between two objects, 1 and 2, we need to solve
the Dyson equation in  a  block matrix  form as  we need
only  part  of  the  matrix  elements  of  connecting  the
two objects,  as  is  block diagonal.  By doing this,  we
can  express  in  terms  of  and  of  individual
objects  together  with  the  free  field  connecting  the
two objects. Similar steps show indeed they are equiva-
lent, e.g., Eq. (57) in Ref. [52] and also is equivalent to
Yu et al. form when . A recent result for torque
by  Strekha et  al. [164]  is  believed  to  agree  with  our
formula also.

 15   Breaking reciprocity by current drive –
far field results

In  this  last  section,  we  apply  the  above  developed
general  theory  for  the  transport  of  energy,  momentum,
and  angular  momentum  due  to  a  driven  current  in  a
nanoscale piece of metal or semiconductor, more specifi-
cally, a segment of nanoribbon of graphene as an exam-
ple, see Fig. 13. The driven current is realized by applying
a  bias  voltage  to  the  two  leads  connecting  the  piece,
typical of mesoscopic ballistic transport setup.

D v

D = v + vΠv + · · · v

(1 + vχ) = ϵ−1 D = ϵ−1v

In  applying  the  radiation-to-infinity  formulas,  Eq.
(208),  for  practical  calculations,  we  need  to  make  two
more approximations.  First,  we replace the full  Green’s
function, , by the free field one, . This means that we
ignore  the  multiple  reflections  inside  matter,  and  take
only  the  first  term  in  the  Dyson  expansion,

. The correction to  is a kind of screening
effect given by a factor , so that .
For  the  far  field,  the  longitudinal  component  (corre-

 

l

Fig. 13  Illustration  of  bias-induced  emissions  of  energy,
momentum,  and  angular  momentum  from  the  conducting
channel  of  a  two-terminal  transport  device  of  a  graphene
strip. The length of the central channel is . The semi-infinite
left  and  right  leads  are  extensions  of  the  pristine  graphene
strip.
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ϕ

Π =

−ω2ϵ0a
3(ϵ− 1)

a ϵ

v ∼ 1/(4πϵ0c
2R) R ∼ a

vΠ ≈ vχ ∼ (ωa/c)2

ωa

at/ℏ t

Πv ∼ 10−4 ℏω
kBT

D ≈ v

D ≈ v

D = v + vΠD

sponding  to  the  scalar  field  in  a  transverse  gauge)
decays to zero quickly, thus does not contribute to far-
field  radiation.  The  screening  effect  for  the  transverse
components is  much smaller.  We can make an order of
magnitude  estimate  of  the  omitted  terms  based  on  a
dimensional  analysis.  The  self-energy  is 

 on  a  lattice  in  a  discrete  representation,
where  is  lattice  constant  and  is  a  dimensionless
dielectric  function.  The  free  Green’s  function  is

; we take the distance . Multiplying
the  two,  we  find ,  which  is  a  ratio  of
two velocities. If we take the velocity  to be the electron
speed  where  is a hopping parameter of order eV,
we  find .  If  we  take  to  be  the  thermal
energy  of  order ,  the  result  is  even  smaller.  Using
the  approximation  works  for  small  molecules  or
graphene sheet where most of the atoms are exposed to
space, the emission and then re-absorption are negligible.
But inside the bulk of a material, even though the omitted
single  scattering  term  is  small,  the  cumulative  effect  is
large,  so  is  not  a  good  approximation.  In  such  a
case, we need to solve the Dyson equation 
by some means.

R → ∞

The second approximation is to use multipole expansion
for  the  Green’s  function.  Since  the  object  is  finite,  and
the  observation  is  at ,  multipole  expansion  is  a
good approximation when the wavelength of the field is
much larger than the relevant size of the object. Multipole
expansion  simply  means  we  Taylor  expand  the  second
argument in

Dµν(R, r)=Dµν(R,0)+r ·
(
∇r′Dµν(R, r′)

)∣∣∣
r′=0

+· · · .

(212)

ω

D v

|R− r|
v(R, r) = v(R)− r · ∇Rv(R) + · · ·

r

We have omitted the frequency  argument for simplic-
ity. After replacing  by , the function is translationally
invariant,  which  depends  only  on  the  difference .
So, we can also write as  .
It  is  sufficient  to  keep  to  linear  order  in  for  our
purpose.

DrΠ<Da

(
↔
U −3R̂R̂)

1/R

1/R

1/R2 Dr Da

R2dΩ
R → ∞

∇Rv i(ωR̂/c)v

r

R̂

rrΠ<

We  now  discuss  the  evaluation  of  the  Keldysh  term
 at far field and the solid angle integration. For

the energy, force, and the spin part of the torque contri-
bution,  the  second  term in Eq.  (178)  can be
omitted  as  it  decays  to  zero  faster  than .  Only  the
first  transverse  term  contributes  to  the  far  field.
The  factor  from  the  product  of  and  is
canceled by the surface area element , picking up a
finite  result  in  the  limit .  In  this  limit,  we  can
replace  the  gradient  operation  by .  We
have  already  given  the  monopole  term  after  the  solid
angle integration by Eq. (155). The linear terms in  do
not  contribute  to  the  total  energy  radiation,  because  it
contains  an  odd  number  of .  The  next  non-vanishing
terms appear in quadruple form, . We can also give

r · R̂ω/c

(aω/c)2

ω/c ∼ 1/λ

(a/λ)2

an  order  of  magnitude  estimate  of  the  extra  correction
terms. Since each time we take a gradient, we obtain a
dimensionless  factor .  So,  the  correction  terms
are smaller by a factor  than the monopole term.
Here  we  agree  that  the  typical  distance  is  the  lattice
constant. This is at a similar order of magnitude as due
to  the  screening  corrections.  Since  is  the
inverse  wavelength,  the  higher  order  terms  are  smaller
by a factor .

R̂

R̂

For the force, if we keep only the monopole term, the
result is zero as it contains an average of an odd number
of  the  unit  vectors .  In  this  case,  the  dipole  term  is
essential  in  order  to  have a nonzero value.  We need to
compute the average of four ’s for the solid angle inte-
gration. We can check explicitly

R̂αR̂βR̂γR̂µ =
1

15

(
δαβδγµ + δαγδβµ + δαµδβγ

)
.

(213)

1
4π

∫
dΩ · · ·

R̂αR̂β = 1
3δαβ

Here  the  overline  means  average  over  the  solid  angles,
.  The  Greek  subscripts  indicate  the  Cartesian

components  of  the  unit  vectors.  We  also  recall
. After some algebra, the force is [158]

Fµ
∞ =

∫ ∞

0

dω
ℏω3

60π2ϵ0c5

∑
α,l,l′

[
4Π<

lα,l′α(r
l
µ − rl

′

µ )

− (rlα − rl
′

α)Π
<
lα,l′µ −Π<

lµ,l′α(r
l
α − rl

′

α)

]
.

(214)

Πlµ,l′ν l

l′

rl − rl
′

(Π<)T = Π<

For the monopole expressions, like the total energy emis-
sion, we only need the sum total of  over the sites 
and .  For  the  force,  it  is  the  first  moment  respect  to
the  distance  that  is  needed.  For  systems  with
reciprocity, , this expression is zero. Thus, we
need to break reciprocity in order to have a nonvanishing
force.

r × p̂ R

r 1/R2

1/R3 ∇RDrDa

For  the  orbital  angular  momentum  contribution  to
the torque, since  term is proportional to  at large
,  the  leading  term in  the  product  of  the  Green’s

functions is canceled to zero. We need to work harder to
pick up the  terms from .  In this  case,  we
need to keep track of the next order term in the gradient
operation.  It  turns  out  that  the  contribution  from  the
spin  part  is  equal  to  the  contribution  from  the  orbital
angular  momentum  part  (different  from  the  conclusion
in [165]), given a total that is in agreement with a direct
calculation with Maxwell’s stress tensor result [148],

Nµ
∞ =

∫ ∞

0

dω
ℏω

6π2ϵ0c3

∑
αβ

ϵµαβΠ
<
βα. (215)

ϵµαβ Π<
αβ

(l, l′)

Here  is the anti-symmetric Levi–Civita symbol, 
without the site indices  means the sum total. Since
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(Π<)† = −Π<, there is no need to take the real part; the
expression is real.

 15.1   Graphene strip calculation

fL(R) = 1/exp
[
(E − µL(R))/

(
kBTL(R)

)
+ 1
]

µL(R)

TL(R)

We consider the radiation of energy, as well as force and
torque experienced by a finite piece of a zigzag graphene
nano  ribbon,  as  shown  in Fig.  13.  The  nonequilibrium
state is modeled in the usual way of mesoscopic transport
by  connecting  the  piece  with  baths  from  the  left  and
right.  The two leads  are  in  their  respective  equilibrium
states, where the electrons follow the Fermi distribution

.  Here,  and
 are chemical potential and temperature of the left

a = 1.4

t = 2.7

l = 5
√
3 a W = 9

TL = TR = 300

(right) lead, respectively. The C–C bond length is 
Å. In the numerical  calculation,  we choose the hopping
parameter  eV,  the  length  of  the  central  channel

,  and with  (number of zigzag lines).  We
set the temperatures of the two leads to be equal, with

 K.

µL = ±µR

µL = ±µR x

y z

x

W = 9

W = 8

We  show  in Fig.  14 the  results  of  the  force,  power,
and  torque  as  a  function  of  the  chemical  potentials  of
the two leads. Both the power and torque are symmetric
with respect to , while the force is antisymmetric
with . Figure 14(a) only shows the  component
of the force, as the  component is very small, and the 
component  is  zero  due  to  symmetry.  The  force  on  the
strip due to the light emission is a nonequilibrium effect
induced  by  the  driving  current  in  the  direction,  the
direction of electron transport. The torque perpendicular
to  the  surface  in Fig.  14(c)  is  due  to  the  asymmetric
structure  in  the  central  channel  with  width  of ,
while  we  have  checked  that  the  driving  current  cannot
induce  nonzero  torque  for  mirror  symmetric  strip  when
the  width  is  even,  for  example, .  As  we  can  see
from  the  figures  that  the  force  and  torque  are  rather
small even with large drive. It is a challenge to find realistic
systems  that  give  signals  that  experimentalist  can
detect.

Radiation  of  angular  momentum  from  a  benzene
molecule driven out of equilibrium by two leads unsym-
metrically attached to the molecule is presented in Ref.
[148],  while  the  emission  of  angular  momentum from a
two-dimensional  Haldane  model  is  calculated  in  Ref.
[166]. In Ref. [158], the emissions of energy, momentum,
and  angular  momentum  from  a  semi-infinite  graphene
edge  are  calculated  using  the  above  formalism,  taking
into account translational invariance in the driven direction
by going into wave-vector space.  We note here,  for  the
angular momentum it is truly an edge effect as the total
is  not  proportional  to  the  area  but  only  length  of  the
graphene. Also, it is truly a nonequilibrium effect, as in
thermal  equilibrium,  both  the  momentum  and  angular
momentum  emissions  (or  the  negative  of  force  and
torque applied to graphene) are zero. The nonequilibrium
electron  states  are  set  up  in  a  cheaper  way  by  setting
the  Fermi  functions  based  on  the  sign  of  the  group
velocity due to the left and right baths far away, which
is valid in the ballistic  regime. Such problem is beyond
the ability of the usual fluctuational electrodynamics.

Π<

η → 0+

We setup a periodic boundary condition in the electron
transport  direction  (open  boundary  condition  in  the
width direction) [158]. With periodic boundary condition,
the  self-energy  can  be  calculated  in  an  eigenmode
representation of  the electrons.  In the limit ,  the
lesser Green’s function can be represented in the eigenmode
as

G<(E) = 2πi
∑
n

fn|n⟩⟨n| δ(E − En), (216)

 
x

z

µL/t µR/t

Fig. 14  Results of (a) force component in the  direction,
(b) power, and (c) torque component in the  direction as a
function of the chemical potentials  and  for the two-
terminal graphene strip system.
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H|n⟩ = En|n⟩
fn n

En G> fn
fn − 1 Π<(ω)

where  solves  the  single  electron eigenvalue
problem,  and  is  the  Fermi  function  in  state  with
energy .  is  obtained  by  a  replacement  of  to

.  Then  can  be  computed  according  to  Eq.
(166).  This  gives  a  more  efficient  method  as  the  self-
energy  is  a  sum  of  delta  functions,  from  which,  the
frequency  integration  can  be  performed  analytically.  In
such  a  setup,  the  different  baths  are  given  implicitly
based  on  the  sign  of  the  group  velocity  of  electrons  to
the Fermi distribution.

The power emitted in this mode-space approximation
is a Fermi-golden rule result [167],

−I∞ =
4α

3ℏc2
∑

µ,n,n′

(En − En′)2θ(En − En′)

×
∣∣∣⟨n|V µ|n′⟩

∣∣∣2fn(1− fn′), (217)

α ≈ 1/137 θ

V µ µ

where  is  the  fine-structure  constant,  is  the
step function,  and  is  the velocity matrix in  direc-
tion.  We  observe  energy  emission  when  an  electron
jumps from an occupied state to an empty state. Similar
formulas are obtained for the torque and force with the
help of the velocity matrices [158].

 16   Conclusion

p

In  this  review,  we  presented  the  NEGF  formalism  for
photon transport in the framework of Coulomb interactions
among electrons in the non-retardation limit, as well as
scalar  and  transverse  vector  potential  formulations.  In
the near field, Coulomb interaction is the most important
contribution,  equivalent  to  keeping  only  polarization
(TM  mode)  in  a  parallel  plate  geometry.  For  far-field
radiation,  we  must  also  compute  the  vector  potential
contribution due to a finite speed of light, since only this
term  contributes  to  thermal  radiation  at  infinity.  To
keep  track  of  both  the  scalar  and  vector  potentials  in
transverse  gauge  is  a  bit  clumsy,  thus,  we  also  offer
another  choice  of  gauge  which  is  the  more  economical
temporal  gauge.  Not  only  the  transmission  of  energy,
but also of momentum and angular momentum, can be
computed in a unified fashion with a Meir–Wingreen-like
formula.

The solution to electrodynamics is formulated to solve
the retarded Dyson equation; this is completely equivalent
to  solving  the  Lippmann–Schwinger  equation in  a  scat-
tering approach. The distribution or correlation function
of  the  field  is  given  by  the  Keldysh  equation.  This  is
equivalent to applying the fluctuation–dissipation theorem
in  fluctuational  electrodynamics  (FE).  In  FE,  it  is
applied in the last step, but here we in some sense incor-
porate it upfront. The NEGF approach offers the option
of not applying the local thermal equilibrium used in FE,
thus  opening  the  door  for  more  general  settings  of
nonequilibrium  steady  states.  We  have  given  several

examples of  this  sort.  The steady states are established
through  the  applications  of  multiple  electron  baths  at
different temperatures or chemical potentials.

The Meir–Wingreen formula, or if local equilibrium is
used  for  energy,  the  Landauer  formula  with  the  Caroli
form for the transmission, is simple. But the complexity
hides  in  the  solution  to  the  Dyson  equation.  In  the
Krüger et al. approach, one focuses on a single object at
a time, and then combine the results to get the full solu-
tion,  incorporating  multiple  reflections.  This  gives
computational  efficiency,  but  with  a  more  involved
formula  for  the  transport  quantity.  Another  advantage
of treating each object separately as a scattering problem
is that one can handle moving objects, by Lorentz boost.
It is not clear how such problems can be handled in the
NEGF  framework.  An  individual  treatment  of  each
object  by  computing  its  scattering  operator  will  fail  to
work if the property of one object is strongly influenced
by nearby objects due to extreme proximity.

Π

Π

Our point of view here is to couple the calculation of
the materials properties with the electrodynamic calcula-
tion closely so that the materials properties are calculated
ab  initio through  the  random  phase  approximation
(RPA) for the electrons. One can also use the machinery
of  many-body  physics  to  go  beyond  RPA,  such  as  the
self-consistent GW calculation or the contribution to the
self-energy  from  the  Aslamazov–Larkin  diagram.
Nonlinear effects in the field can be handled by including
high  order  diagrams.  These  mutual  correlations,  not  in
the  standard  FE,  may  be  important  at  extreme  near
field.  Unlike  the  frequency-dependent  local  dielectric
function,  the  photon  self-energy  is  nonlocal  to  start
with, which is a better physical quantity when the structure
is  described  atomistically.  In  the  examples  shown,  we
only considered electrons as our materials, but phononic
contributions can be, in principle, incorporated. In fact,
there is a formula for the longitudinal inverse dielectric
function due to phonons in a crystal given in Ref. [168]
as

ϵ−1(q, ω) =
1

ϵ∞

+
e2

Ωϵ0ϵ∞

∑
n,κ,κ′

ZκZκ′
√
MκMκ′

q̂ · eκ(qn) q̂ · e∗κ′(qn)

(ω + iη)2 − ω2
n(q)

,

(218)

ϵ∞
Zκ κ

Ω eκ(qn)

q

n ωn(q)

ϵ−1 = 1 + vχ

where  is  the  high-frequency  dielectric  constant  from
electrons,  is the Born effective charge for the ion  in
a  unit  cell,  is  unit  cell  volume,  is  the  phonon
polarization vector of  wavevector  and phonon branch
, and  is the phonon dispersion relation (note the

relation ).  But the real  challenge is  to treat
electrons, phonons, photons, and their mutual interactions
together consistently.

 Acknowledgements  We  thank  Gaomin  Tang,  Jingtao  Lü,  and

FRONTIERS OF PHYSICS REVIEW ARTICLE

43602-42   Jian-Sheng Wang, et al., Front. Phys. 18(4), 43602 (2023)

 



Mauro Antezza for collaborations. J.-S. W. thanks Mehran Kardar for
hosting  a  visit  at  MIT.  He  also  thanks  Shanhui  Fan,  Philippe  Ben
Abdallah,  Matthias  Krüger,  and  Zhuomin  Zhang  for  discussion.  This
work  is  supported  by  NSFC  under  grant  No.  12204346,  MOE tier  2
grant R-144-000-411-112, and MOE Academic Research Tier 1 Fund A-
8000990-00-00.  Parts  of  the  manuscript  were  written  while  visiting
Kavli Institute for Theoretical Physics, University of California Santa
Barbara, supported in part by the National Science Foundation under
Grant No. NSF PHY-1748958.

References 

 C.  Tannoudji,  J.  Dupont-Roc,  and  G.  Grynberg,
Photons and Atoms: Introduction to Quantum Electro-
dynamics, Wiley, 1989

1.

 J.  Bloch,  A. Cavalleri,  V. Galitski,  M. Hafezi,  and A.
Rubio, Strongly  correlated  electron–photon  systems,
Nature 606(7912), 41 (2022)

2.

 M. Planck, The Theory of Heat Radiation, 2nd Ed., P.
Blakiston’s Son & Co., Philadelphia, 1914

3.

 C.  M.  Hargreaves, Anomalous  radiative  transfer
between closely-spaced bodies, Phys. Lett. A 30(9), 491
(1969)

4.

 G. A. Domoto, R. F. Boehm, and C. L. Tien, Experimental
investigation  of  radiative  transfer  between  metallic
surfaces  at  cryogenic  temperatures, J.  Heat  Transfer
92(3), 412 (1970)

5.

 D. Polder and M. van Hove, Theory of radiative heat
transfer  between  closely  spaced  bodies, Phys.  Rev.  B
4(10), 3303 (1971)

6.

 S.  M.  Rytov,  Theory  of  Electric  Fluctuations  and
Thermal  Radiation,  Air  Force  Cambridge  Research
Center, Bedford, MA, 1953

7.

 S.  M.  Rytov,  Y.  A.  Kravtsov,  and  V.  I.  Tatarskii,
Principles  of  Statistical  Radiophysics  3,  Springer,
Berlin, 1989

8.

 H.  B.  Callen  and  T.  A.  Welton, Irreversibility  and
generalized noise, Phys. Rev. 83(1), 34 (1951)

9.

 M. Krüger,  T.  Emig,  and  M.  Kardar, Nonequilibrium
Electromagnetic Fluctuations: Heat transfer and inter-
actions, Phys. Rev. Lett. 106(21), 210404 (2011)

10.

 C. R. Otey, L. Zhu, S. Sandhu, and S. Fan, Fluctuational
electrodynamics calculations of near-field heat transfer
in  non-planar  geometries:  A brief  overview, J.  Quant.
Spectrosc. Radiat. Transf. 132, 3 (2014)

11.

 G.  Tang,  L.  Zhang,  Y.  Zhang,  J.  Chen,  and  C.  T.
Chan, Near-field energy transfer between graphene and
magneto–optic media, Phys. Rev. Lett. 127(24), 247401
(2021)

12.

 K.  Joulain,  J.  P.  Mulet,  F.  Marquier,  R.  Carminati,
and J. J.  Greffet, Surface electromagnetic waves ther-
mally excited: Radiative heat transfer, coherence prop-
erties  and  Casimir  forces  revisited  in  the  near  field,
Surf. Sci. Rep. 57(3–4), 59 (2005)

13.

 S.  Basu,  Z.  M. Zhang,  and C. J.  Fu, Review of  near-
field  thermal  radiation  and  its  application  to  energy
conversion, Int. J. Energy Res. 33(13), 1203 (2009)

14.

 B. Song, A. Fiorino, E. Meyhofer, and P. Reddy, Near-
field  radiative  thermal  transport:  From  theory  to

15.

experiment, AIP Adv. 5(5), 053503 (2015)
 A. I. Volokitin and B. N. J. Persson, Near-field radiative
heat transfer and noncontact friction, Rev. Mod. Phys.
79(4), 1291 (2007)

16.

 S.  A.  Biehs,  R.  Messina,  P.  S.  Venkataram,  A.  W.
Rodriguez,  J.  C.  Cuevas,  and P.  Ben-Abdallah, Near-
field radiative heat transfer in many-body systems, Rev.
Mod. Phys. 93(2), 025009 (2021)

17.

 G.  Bimonte,  T.  Emig,  M.  Kardar,  and  M.  Krüger,
Nonequilibrium fluctuational quantum electrodynamics:
Heat  radiation,  heat  transfer,  and  force, Annu.  Rev.
Condens. Matter Phys. 8(1), 119 (2017)

18.

 C. Henkel, Nanoscale thermal transfer – An invitation
to  fluctuation  electrodynamics, Zeitschrift  für  Natur-
forshchung A 72(2), 99 (2017)

19.

 M. Pascale, M. Giteau, and G. T. Papadakis, Perspective
on near-field radiative heat transfer, arXiv: 2210.00929
(2022)

20.

 A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D.
Reddig, and M. Holthaus, Near-field heat transfer in a
scanning thermal microscope, Phys. Rev. Lett. 95(22),
224301 (2005)

21.

 S.  Shen,  A.  Narayanaswamy,  and  G.  Chen, Surface
phonon  polaritons  mediated  energy  transfer  between
nanoscale gaps, Nano Lett. 9(8), 2909 (2009)

22.

 R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R.
Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and
B.  F.  Whiting, Near-field  radiative  heat  transfer
between macroscopic planar surfaces, Phys. Rev. Lett.
107(1), 014301 (2011)

23.

 K. Kim, B. Song, V. Fernández-Hurtado, W. Lee,  W.
Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid,
F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P.
Reddy, Radiative  heat  transfer  in  the  extreme  near
field, Nature 528(7582), 387 (2015)

24.

 L. Cui, W. Jeong, V. Fernández-Hurtado, J. Feist, F. J.
García-Vidal,  J.  C.  Cuevas,  E.  Meyhofer,  and  P.
Reddy, Study  of  radiative  heat  transfer  in  Ångström-
and nanometre-sized gaps, Nat.  Commun. 8(1),  14479
(2017)

25.

 K.  Kloppstech,  N.  Könne,  S.  A.  Biehs,  A.  W.
Rodriguez,  L.  Worbes,  D.  Hellmann,  and  A.  Kittel,
Giant  heat  transfer  in  the  crossover  regime  between
conduction  and  radiation, Nat.  Commun. 8(1),  14475
(2017)

26.

 T.  Tokunaga,  A.  Jarzembski,  T.  Shiga,  K.  Park,  and
M.  Francoeur, Extreme  near-field  heat  transfer
between  gold  surfaces, Phys.  Rev.  B 104(12),  125404
(2021)

27.

 V. Fernández-Hurtado, A. I. Fernández-Domínguez, J.
Feist,  F.  J.  García-Vidal,  and  J.  C.  Cuevas, Super-
Planckian  far-field  radiative  heat  transfer, Phys.  Rev.
B 97(4), 045408 (2018)

28.

 J.  C.  Cuevas, Thermal  radiation  from  subwavelength
objects  and  the  violation  of  Planck’s  law, Nat.
Commun. 10(1), 3342 (2019)

29.

 D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing,
P. McArdle, M. Qazilbash, P. Reddy, and E. Meyhofer,
Hundred-fold  enhancement  in  far-field  radiative  heat
transfer  over  the  blackbody  limit, Nature 561(7722),
216 (2018)

30.

REVIEW ARTICLE FRONTIERS OF PHYSICS

Jian-Sheng Wang, et al., Front. Phys. 18(4), 43602 (2023)   43602-43

 

https://doi.org/10.1038/s41586-022-04726-w
https://doi.org/10.1038/s41586-022-04726-w
https://doi.org/10.1038/s41586-022-04726-w
https://doi.org/10.1038/s41586-022-04726-w
https://doi.org/10.1016/0375-9601(69)90264-3
https://doi.org/10.1016/0375-9601(69)90264-3
https://doi.org/10.1016/0375-9601(69)90264-3
https://doi.org/10.1016/0375-9601(69)90264-3
https://doi.org/10.1016/0375-9601(69)90264-3
https://doi.org/10.1115/1.3449677
https://doi.org/10.1115/1.3449677
https://doi.org/10.1115/1.3449677
https://doi.org/10.1115/1.3449677
https://doi.org/10.1115/1.3449677
https://doi.org/10.1103/PhysRevB.4.3303
https://doi.org/10.1103/PhysRevB.4.3303
https://doi.org/10.1103/PhysRevB.4.3303
https://doi.org/10.1103/PhysRevB.4.3303
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRevLett.106.210404
https://doi.org/10.1103/PhysRevLett.106.210404
https://doi.org/10.1103/PhysRevLett.106.210404
https://doi.org/10.1103/PhysRevLett.106.210404
https://doi.org/10.1103/PhysRevLett.106.210404
https://doi.org/10.1103/PhysRevLett.106.210404
https://doi.org/10.1016/j.jqsrt.2013.04.017
https://doi.org/10.1016/j.jqsrt.2013.04.017
https://doi.org/10.1016/j.jqsrt.2013.04.017
https://doi.org/10.1016/j.jqsrt.2013.04.017
https://doi.org/10.1016/j.jqsrt.2013.04.017
https://doi.org/10.1103/PhysRevLett.127.247401
https://doi.org/10.1103/PhysRevLett.127.247401
https://doi.org/10.1103/PhysRevLett.127.247401
https://doi.org/10.1103/PhysRevLett.127.247401
https://doi.org/10.1103/PhysRevLett.127.247401
https://doi.org/10.1103/PhysRevLett.127.247401
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1002/er.1607
https://doi.org/10.1002/er.1607
https://doi.org/10.1002/er.1607
https://doi.org/10.1002/er.1607
https://doi.org/10.1002/er.1607
https://doi.org/10.1063/1.4919048
https://doi.org/10.1063/1.4919048
https://doi.org/10.1063/1.4919048
https://doi.org/10.1063/1.4919048
https://doi.org/10.1063/1.4919048
https://doi.org/10.1103/RevModPhys.79.1291
https://doi.org/10.1103/RevModPhys.79.1291
https://doi.org/10.1103/RevModPhys.79.1291
https://doi.org/10.1103/RevModPhys.79.1291
https://doi.org/10.1103/RevModPhys.93.025009
https://doi.org/10.1103/RevModPhys.93.025009
https://doi.org/10.1103/RevModPhys.93.025009
https://doi.org/10.1103/RevModPhys.93.025009
https://doi.org/10.1146/annurev-conmatphys-031016-025203
https://doi.org/10.1146/annurev-conmatphys-031016-025203
https://doi.org/10.1146/annurev-conmatphys-031016-025203
https://doi.org/10.1146/annurev-conmatphys-031016-025203
https://doi.org/10.1515/zna-2016-0372
https://doi.org/10.1515/zna-2016-0372
https://doi.org/10.1515/zna-2016-0372
https://doi.org/10.1515/zna-2016-0372
https://doi.org/10.1515/zna-2016-0372
https://doi.org/10.1103/PhysRevLett.95.224301
https://doi.org/10.1103/PhysRevLett.95.224301
https://doi.org/10.1103/PhysRevLett.95.224301
https://doi.org/10.1103/PhysRevLett.95.224301
https://doi.org/10.1103/PhysRevLett.95.224301
https://doi.org/10.1021/nl901208v
https://doi.org/10.1021/nl901208v
https://doi.org/10.1021/nl901208v
https://doi.org/10.1021/nl901208v
https://doi.org/10.1021/nl901208v
https://doi.org/10.1103/PhysRevLett.107.014301
https://doi.org/10.1103/PhysRevLett.107.014301
https://doi.org/10.1103/PhysRevLett.107.014301
https://doi.org/10.1103/PhysRevLett.107.014301
https://doi.org/10.1038/nature16070
https://doi.org/10.1038/nature16070
https://doi.org/10.1038/nature16070
https://doi.org/10.1038/nature16070
https://doi.org/10.1038/ncomms14479
https://doi.org/10.1038/ncomms14479
https://doi.org/10.1038/ncomms14479
https://doi.org/10.1038/ncomms14479
https://doi.org/10.1038/ncomms14479
https://doi.org/10.1038/ncomms14475
https://doi.org/10.1038/ncomms14475
https://doi.org/10.1038/ncomms14475
https://doi.org/10.1038/ncomms14475
https://doi.org/10.1038/ncomms14475
https://doi.org/10.1103/PhysRevB.104.125404
https://doi.org/10.1103/PhysRevB.104.125404
https://doi.org/10.1103/PhysRevB.104.125404
https://doi.org/10.1103/PhysRevB.104.125404
https://doi.org/10.1103/PhysRevB.104.125404
https://doi.org/10.1103/PhysRevB.97.045408
https://doi.org/10.1103/PhysRevB.97.045408
https://doi.org/10.1103/PhysRevB.97.045408
https://doi.org/10.1103/PhysRevB.97.045408
https://doi.org/10.1038/s41467-019-11287-6
https://doi.org/10.1038/s41467-019-11287-6
https://doi.org/10.1038/s41467-019-11287-6
https://doi.org/10.1038/s41467-019-11287-6
https://doi.org/10.1038/s41467-019-11287-6
https://doi.org/10.1038/s41586-018-0480-9
https://doi.org/10.1038/s41586-018-0480-9
https://doi.org/10.1038/s41586-018-0480-9
https://doi.org/10.1038/s41586-018-0480-9
https://doi.org/10.1038/s41586-018-0480-9


 H.  B.  G.  Casimir,  On  the  attraction  between  two
perfectly conducting plates, Proc. K. Ned. Akad. Wet.
51, 793 (1948)

31.

 E.  M.  Lifshitz,  The  theory  of  molecular  attractive
forces between solids, Sov. Phys. JETP 2, 73 (1956)

32.

 P. H. G. M. van Blokland, and J. T. G. Overbeek, van
der  Waals  forces  between  objects  covered  with  a
chromium layer, J. Chem. Soc. Faraday Trans. I 74(0),
2637 (1978)

33.

 S.  K. Lamoreaux, Demonstration of  the Casimir  force
in  the  0.6  to  6  μm  range, Phys.  Rev.  Lett. 78(1),  5
(1997)

34.

 U.  Mohideen,  and  A.  Roy, Precision  measurement  of
the Casimir force from 0.1 to 0.9 μm, Phys. Rev. Lett.
81(21), 4549 (1998)

35.

 J.  M.  Obrecht,  R.  J.  Wild,  M.  Antezza,  L.  P.
Pitaevskii, S. Stringari, and E. A. Cornell, Measurement
of  the  temperature  dependence  of  the  Casimir–Polder
force, Phys. Rev. Lett. 98(6), 063201 (2007)

36.

 G.  L.  Klimchitskaya,  U.  Mohideen,  and  V.  M.
Mostepanenko, The Casimir force between real materi-
als:  Experiment  and  theory, Rev.  Mod.  Phys. 81(4),
1827 (2009)

37.

 J.  L.  Garrett,  D.  A.  T.  Somers,  and  J.  N.  Munday,
Measurement of the Casimir force between two spheres,
Phys. Rev. Lett. 120(4), 040401 (2018)

38.

 A. Stange, D. K. Campbell, and D. J. Bishop, Science
and  technology  of  the  Casimir  effect, Phys.  Today
74(1), 42 (2021)

39.

 C.  M.  Wilson,  G.  Johansson,  A.  Pourkabirian,  M.
Simoen,  J.  R.  Johansson,  T.  Duty,  F.  Nori,  and  P.
Delsing, Observation  of  the  dynamical  Casimir  effect
in  a  superconducting  circuit, Nature 479(7373),  376
(2011)

40.

 S. Vezzoli, A. Mussot, N. Westerberg, A. Kudlinski, H.
Dinparasti  Saleh,  A.  Prain,  F.  Biancalana,  E.  Lantz,
and  D.  Faccio, Optical  analogue  of  the  dynamical
Casimir  effect  in  a  dispersion-oscillating  fibre,
Commun. Phys. 2(1), 84 (2019)

41.

 K. Y. Fong, H. K. Li, R. Zhao, S. Yang, Y. Wang, and
X.  Zhang, Phonon  heat  transfer  across  a  vacuum
through  quantum  fluctuations, Nature 576(7786),  243
(2019)

42.

 M. F. Maghrebi, A. V. Gorshkov, and J. D. Sau, Fluc-
tuation-induced  torque  on  a  topological  insulator  out
of thermal equilibrium, Phys. Rev. Lett. 123(5), 055901
(2019)

43.

 M. Katoh,  M.  Fujimoto,  H.  Kawaguchi,  K.  Tsuchiya,
K.  Ohmi,  T.  Kaneyasu,  Y.  Taira,  M.  Hosaka,  A.
Mochihashi, and Y. Takashima, Angular momentum of
twisted  radiation  from  an  electron  in  spiral  motion,
Phys. Rev. Lett. 118(9), 094801 (2017)

44.

 X. Gao, C. Khandekar,  Z.  Jacob, and T. Li, Thermal
equilibrium  spin  torque:  Near-field  radiative  angular
momentum  transfer  in  magneto–optical  media, Phys.
Rev. B 103(12), 125424 (2021)

45.

 M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, Orbital
angular  momentum  generation  and  detection  by
geometric-phase based metasurfaces, Appl. Sci. (Basel)
8(3), 362 (2018)

46.

 E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B.47.

Piccirillo,  E.  Karimi,  and  E.  Santamato, Quantum
information  transfer  from  spin  to  orbital  angular
momentum of photons, Phys. Rev. Lett. 103(1), 013601
(2009)
 V. S. Asadchy, M. S. Mirmoosa, A. Dìaz-Rubio, S. Fan,
and  S.  A.  Tretyakov, Tutorial  on  electromagnetic
nonreciprocity  and  its  origins, Proc.  IEEE 108(10),
1684 (2020)

48.

 C.  Khandekar,  S.  Buddhiraju,  P.  R.  Wilkinson,  J.  K.
Gimzewski,  A.  W.  Rodriguez,  C.  Chase,  and  S.  Fan,
Nonequilibrium  lateral  force  and  torque  by  thermally
excited  nonreciprocal  surface  electromagnetic  waves,
Phys. Rev. B 104(24), 245433 (2021)

49.

 R. Messina and M. Antezza, Casimir–Lifshitz force out
of thermal equilibrium and heat transfer between arbi-
trary bodies, Europhys. Lett. 95(6), 61002 (2011)

50.

 R.  Messina  and  M.  Antezza, Scattering-matrix
approach  to  Casimir–Lifshitz  force  and  heat  transfer
out  of  thermal  equilibrium  between  arbitrary  bodies,
Phys. Rev. A 84(4), 042102 (2011)

51.

 M.  Krüger,  G.  Bimonte,  T.  Emig,  and  M.  Kardar,
Trace formulas for nonequilibrium Casimir interactions,
heat radiation, and heat transfer for arbitrary objects,
Phys. Rev. B 86(11), 115423 (2012)

52.

 B. A. Lippmann and J. Schwinger, Variational principles
for scattering processes I, Phys. Rev. 79(3), 469 (1950)

53.

 P. Ben-Abdallah,  S.  A.  Biehs,  and K.  Joulain, Many-
body  radiative  heat  transfer  theory, Phys.  Rev.  Lett.
107(11), 114301 (2011)

54.

 A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D.
Joannopoulos,  M.  Soljačić,  and  S.  G.  Johnson,
Frequency-selective  near-field  radiative  heat  transfer
between  photonic  crystal  slabs:  A  computational
approach for arbitrary geometries and materials, Phys.
Rev. Lett. 107(11), 114302 (2011)

55.

 A. W. Rodriguez,  M. T. H. Reid,  and S.  G. Johnson,
Fluctuating-surface-current  formulation  of  radiative
heat transfer for arbitrary geometries, Phys. Rev. B 86,
220302(R) (2012)

56.

 S. Datta, Electronic Transport in Mesoscopic Systems,
Cambridge Univ. Press, 1995

57.

 M.  D.  Ventra,  Electrical  Transport  in  Nanoscale
Systems, Cambridge Univ. Press, 2008

58.

 J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal
transport in nanostructures, Eur. Phys. J. B 62(4), 381
(2008)

59.

 Z. Z. Yu, G. H. Xiong, and L. F. Zhang, A brief review
of  thermal  transport  in  mesoscopic  systems  from
nonequilibrium Green’s function approach, Front. Phys.
16(4), 43201 (2021)

60.

 M.  Janowicz,  D.  Reddig,  and  M.  Holthaus, Quantum
approach  to  electromagnetic  energy  transfer  between
two  dielectric  bodies, Phys.  Rev.  A 68(4),  043823
(2003)

61.

 U.  Aeberhard, Theory  and  simulation  of  quantum
photovoltaic  devices  based  on  the  non-equilibrium
Green’s function formalism, J. Comput. Electron. 10(4),
394 (2011)

62.

 H. Haug and A. P. Jauho, Quantum Kinetics in Transport
and  Optics  of  Semiconductors,  2nd  Ed.,  Springer-
Verlag, 2008

63.

FRONTIERS OF PHYSICS REVIEW ARTICLE

43602-44   Jian-Sheng Wang, et al., Front. Phys. 18(4), 43602 (2023)

 

https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.81.4549
https://doi.org/10.1103/PhysRevLett.81.4549
https://doi.org/10.1103/PhysRevLett.81.4549
https://doi.org/10.1103/PhysRevLett.81.4549
https://doi.org/10.1103/PhysRevLett.81.4549
https://doi.org/10.1103/PhysRevLett.81.4549
https://doi.org/10.1103/PhysRevLett.98.063201
https://doi.org/10.1103/PhysRevLett.98.063201
https://doi.org/10.1103/PhysRevLett.98.063201
https://doi.org/10.1103/PhysRevLett.98.063201
https://doi.org/10.1103/PhysRevLett.98.063201
https://doi.org/10.1103/PhysRevLett.98.063201
https://doi.org/10.1103/RevModPhys.81.1827
https://doi.org/10.1103/RevModPhys.81.1827
https://doi.org/10.1103/RevModPhys.81.1827
https://doi.org/10.1103/RevModPhys.81.1827
https://doi.org/10.1103/RevModPhys.81.1827
https://doi.org/10.1103/RevModPhys.81.1827
https://doi.org/10.1103/PhysRevLett.120.040401
https://doi.org/10.1103/PhysRevLett.120.040401
https://doi.org/10.1103/PhysRevLett.120.040401
https://doi.org/10.1063/PT.3.4656
https://doi.org/10.1063/PT.3.4656
https://doi.org/10.1063/PT.3.4656
https://doi.org/10.1063/PT.3.4656
https://doi.org/10.1038/nature10561
https://doi.org/10.1038/nature10561
https://doi.org/10.1038/nature10561
https://doi.org/10.1038/nature10561
https://doi.org/10.1038/nature10561
https://doi.org/10.1038/s42005-019-0183-z
https://doi.org/10.1038/s42005-019-0183-z
https://doi.org/10.1038/s42005-019-0183-z
https://doi.org/10.1038/s42005-019-0183-z
https://doi.org/10.1038/s41586-019-1800-4
https://doi.org/10.1038/s41586-019-1800-4
https://doi.org/10.1038/s41586-019-1800-4
https://doi.org/10.1038/s41586-019-1800-4
https://doi.org/10.1038/s41586-019-1800-4
https://doi.org/10.1103/PhysRevLett.123.055901
https://doi.org/10.1103/PhysRevLett.123.055901
https://doi.org/10.1103/PhysRevLett.123.055901
https://doi.org/10.1103/PhysRevLett.123.055901
https://doi.org/10.1103/PhysRevLett.123.055901
https://doi.org/10.1103/PhysRevLett.123.055901
https://doi.org/10.1103/PhysRevLett.118.094801
https://doi.org/10.1103/PhysRevLett.118.094801
https://doi.org/10.1103/PhysRevLett.118.094801
https://doi.org/10.1103/PhysRevLett.118.094801
https://doi.org/10.1103/PhysRevB.103.125424
https://doi.org/10.1103/PhysRevB.103.125424
https://doi.org/10.1103/PhysRevB.103.125424
https://doi.org/10.1103/PhysRevB.103.125424
https://doi.org/10.1103/PhysRevB.103.125424
https://doi.org/10.1103/PhysRevB.103.125424
https://doi.org/10.3390/app8030362
https://doi.org/10.3390/app8030362
https://doi.org/10.3390/app8030362
https://doi.org/10.3390/app8030362
https://doi.org/10.3390/app8030362
https://doi.org/10.1103/PhysRevLett.103.013601
https://doi.org/10.1103/PhysRevLett.103.013601
https://doi.org/10.1103/PhysRevLett.103.013601
https://doi.org/10.1103/PhysRevLett.103.013601
https://doi.org/10.1103/PhysRevLett.103.013601
https://doi.org/10.1103/PhysRevLett.103.013601
https://doi.org/10.1109/JPROC.2020.3012381
https://doi.org/10.1109/JPROC.2020.3012381
https://doi.org/10.1109/JPROC.2020.3012381
https://doi.org/10.1109/JPROC.2020.3012381
https://doi.org/10.1109/JPROC.2020.3012381
https://doi.org/10.1103/PhysRevB.104.245433
https://doi.org/10.1103/PhysRevB.104.245433
https://doi.org/10.1103/PhysRevB.104.245433
https://doi.org/10.1103/PhysRevB.104.245433
https://doi.org/10.1209/0295-5075/95/61002
https://doi.org/10.1209/0295-5075/95/61002
https://doi.org/10.1209/0295-5075/95/61002
https://doi.org/10.1209/0295-5075/95/61002
https://doi.org/10.1209/0295-5075/95/61002
https://doi.org/10.1209/0295-5075/95/61002
https://doi.org/10.1209/0295-5075/95/61002
https://doi.org/10.1103/PhysRevA.84.042102
https://doi.org/10.1103/PhysRevA.84.042102
https://doi.org/10.1103/PhysRevA.84.042102
https://doi.org/10.1103/PhysRevA.84.042102
https://doi.org/10.1103/PhysRevA.84.042102
https://doi.org/10.1103/PhysRevA.84.042102
https://doi.org/10.1103/PhysRevB.86.115423
https://doi.org/10.1103/PhysRevB.86.115423
https://doi.org/10.1103/PhysRevB.86.115423
https://doi.org/10.1103/PhysRevB.86.115423
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/PhysRevLett.107.114301
https://doi.org/10.1103/PhysRevLett.107.114301
https://doi.org/10.1103/PhysRevLett.107.114301
https://doi.org/10.1103/PhysRevLett.107.114301
https://doi.org/10.1103/PhysRevLett.107.114302
https://doi.org/10.1103/PhysRevLett.107.114302
https://doi.org/10.1103/PhysRevLett.107.114302
https://doi.org/10.1103/PhysRevLett.107.114302
https://doi.org/10.1103/PhysRevLett.107.114302
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1103/PhysRevA.68.043823
https://doi.org/10.1103/PhysRevA.68.043823
https://doi.org/10.1103/PhysRevA.68.043823
https://doi.org/10.1103/PhysRevA.68.043823
https://doi.org/10.1103/PhysRevA.68.043823
https://doi.org/10.1103/PhysRevA.68.043823
https://doi.org/10.1007/s10825-011-0375-6
https://doi.org/10.1007/s10825-011-0375-6
https://doi.org/10.1007/s10825-011-0375-6
https://doi.org/10.1007/s10825-011-0375-6
https://doi.org/10.1007/s10825-011-0375-6
https://doi.org/10.1007/s10825-011-0375-6
https://doi.org/10.1007/s10825-011-0375-6


 W.  Eckhardt, Macroscopic  theory  of  electromagnetic
fluctuations  and  stationary  radiative  heat  transfer,
Phys. Rev. A 29(4), 1991 (1984)

64.

 L.  V.  Keldysh,  Diagram technique  for  nonequilibrium
processes, Sov. Phys. JETP 20, 1018 (1965)

65.

 J.  S.  Wang,  B.  K.  Agarwalla,  H.  Li,  and J.  Thingna,
Nonequilibrium Green’s  function  method for  quantum
thermal transport, Front. Phys. 9(6), 673 (2014)

66.

 G. D. Mahan, Tunneling of heat between metals, Phys.
Rev. B 95(11), 115427 (2017)

67.

 J.  D.  Jackson,  Classical  Electrodynamics,  3rd  Ed.,
John Wiley & Sons, 1999

68.

 I.  Smolić  and  B.  Klajn, Capacitance  matrix  revisited,
Prog. Electromagn. Res. B Pier B 92, 1 (2021)

69.

 J. S. Wang, Z. Q. Zhang, and J. T. Lü, Coulomb-force-
mediated  heat  transfer  in  the  near  field:  Geometric
effect, Phys. Rev. E 98(1), 012118 (2018)

70.

 R.  Kubo,  M.  Toda,  and  N.  Hashitsume,  Statistical
Physics  II  —  Nonequilibrium  Statistical  Mechanics,
2nd Ed., Springer, 1991

71.

 G. F. Giuliani and G. Vignale, Quantum Theory of the
Electron Liquid, Cambridge Univ. Press, 2005

72.

 R.  Yu,  A.  Manjavacas,  and  F.  J.  García  de  Abajo,
Ultrafast  radiative  heat  transfer, Nat.  Commun. 8(1),
2 (2017)

73.

 R. Landauer, Spatial Variation of Currents and Fields
Due  to  Localized  Scatterers  in  Metallic  Conduction,
IBM J. Res. Develop. 1(3), 223 (1957)

74.

 C.  Caroli,  R.  Combescot,  P.  Nozieres,  and  D.  Saint-
James, Direct  calculation  of  the  tunneling  current, J.
Phys. C 4(8), 916 (1971)

75.

 J.  S.  Wang  and  J.  Peng, Capacitor  physics  in  ultra-
near-field  heat  transfer, Europhys.  Lett. 118(2),  24001
(2017)

76.

 J. H. Jiang and J. S. Wang, Caroli formalism in near-
field  heat  transfer  between  parallel  graphene  sheets,
Phys. Rev. B 96(15), 155437 (2017)

77.

 T.  Zhu  and  J.  S.  Wang, Generalized  first-principles
method  to  study  near-field  heat  transfer  mediated  by
Coulomb  interaction, Phys.  Rev.  B 104(12),  L121409
(2021)

78.

 Y. Meir and N. S. Wingreen, Landauer formula for the
current  through  an  interacting  electron  region, Phys.
Rev. Lett. 68(16), 2512 (1992)

79.

 A.  P.  Jauho,  N.  S.  Wingreen,  and  Y.  Meir, Time-
dependent  transport  in  interacting and noninteracting
resonant-tunneling  systems, Phys.  Rev.  B 50(8),  5528
(1994)

80.

 G.  Stefanucci  and  R.  van  Leeuwen,  Nonequilibrium
Many-Body  Theory  of  Quantum  Systems,  Cambridge
Univ. Press, 2013

81.

 D.  C.  Langreth,  in:  Linear  and  Nonlinear  Electron
Transport in Solids, NATO Advanced Study Institute
Series, Vol. 17, edited by J. T. Devreese and V. E. van
Doren, Springer, Boston, MA, 1976, p. 3

82.

 J. T. Lü and J. S. Wang, Coupled electron and phonon
transport  in  one-dimensional  atomic  junctions, Phys.
Rev. B 76(16), 165418 (2007)

83.

 D. Bohm and D. Pines, A collective description of electron
interactions (III): Coulomb interactions in a degenerate
electron gas, Phys. Rev. 92(3), 609 (1953)

84.

 M.  Paulsson,  T.  Frederiksen,  and  M.  Brandbyge,
Modeling  inelastic  phonon  scattering  in  atomic-  and
molecular-wire  junctions, Phys.  Rev.  B 72,  201101(R)
(2005)

85.

 L. K. Dash, H. Ness, and R. W. Godby, Nonequilibrium
electronic structure of interacting single-molecule nano-
junctions:  Vertex  corrections  and  polarization  effects
for  the  electron–vibron  coupling, J.  Chem.  Phys.
132(10), 104113 (2010)

86.

 A. L.  Fetter  and J.  D.  Walecka,  Quantum Theory  of
Many-Particle Systems, McGraw-Hill, 1971

87.

 G.  W.  Ford,  M.  Kac,  and  P.  Mazur, Statistical
mechanics of assemblies of coupled oscillators, J. Math.
Phys. 6(4), 504 (1965)

88.

 J. Peng and J. S. Wang, Current-induced heat transfer
in double-layer graphene, arXiv: 1805.09493 (2019)

89.

 Z. Q. Zhang, J. T. Lü, and J. S. Wang, Energy transfer
between  two  vacuum-gapped  metal  plates:  Coulomb
fluctuations  and  electron  tunneling, Phys.  Rev.  B
97(19), 195450 (2018)

90.

 M. Büttiker, Symmetry of electrical conduction, IBM J.
Res. Develop. 32(3), 317 (1988)

91.

 L. Hedin, New method for calculating the one-particle
Green’s  function  with  application  to  the  electron-gas
problem, Phys. Rev. 139(3A), A796 (1965)

92.

 R. M. Martin, L. Reining, and D. M. Ceperley, Interacting
Electrons, Cambridge Univ. Press, 2016

93.

 G. D. Mahan, Many-Particle Physics, 3rd Ed., Kluwer
Academic, 2000

94.

 J.  Peng,  H.  H.  Yap,  G.  Zhang,  and  J.  S.  Wang,  A
scalar photon theory for near-field radiative heat trans-
fer, arXiv: 1703.07113 (2017)

95.

 S. Weinberg, The Quantum Theory of Fields, Volume
1: Foundations, Cambridge Univ. Press, 2005

96.

 R.  J.  Glauber,  Amplifiers, Attenuators,  and
Schrödinger’s  Cat, Ann. N. Y. Acad. Sci. 480(1),  336
(1986)

97.

 R.  A.  Jishi,  Feynman  Diagram  Techniques  in
Condensed  Matter  Physics,  Cambridge  Univ.  Press,
2013

98.

 J. Rammer, Quantum Field Theory of Non-equilibrium
States, Cambridge Univ. Press, 2007

99.

 H.  Bruus  and  K.  Flensberg,  Many-Body  Quantum
Theory in Condensed Matter Physics: An Introduction,
Oxford Univ. Press, 2004

100.

 S.  Datta, Nanoscale  device  modeling:  The  Green’s
function method, Superlattices Microstruct. 28(4),  253
(2000)

101.

 L.  P.  Kadanoff  and  G.  Baym,  Quantum  Statistical
Mechanics, W. A. Benjamin, Inc, 1962

102.

 J. M. Ziman, Electrons and Phonons, Clarendon Press,
Oxford, 1960

103.

 B. van Duppen, A. Tomadin, A. N. Grigorenko, and M.
Polini, Current-induced  birefringent  absorption  and
non-reciprocal  plasmons  in  grapheme, 2D  Mater. 3,
015011 (2016)

104.

 D.  Svintsov  and  V.  Ryzhii, Comment  on  “Negative
Landau damping in bilayer graphene”, Phys. Rev. Lett.
123(21), 219401 (2019)

105.

 T.  A.  Morgado  and  M.  G.  Silveirinha, Negative
Landau damping in bilayer graphene, Phys. Rev. Lett.

106.

REVIEW ARTICLE FRONTIERS OF PHYSICS

Jian-Sheng Wang, et al., Front. Phys. 18(4), 43602 (2023)   43602-45

 

https://doi.org/10.1103/PhysRevA.29.1991
https://doi.org/10.1103/PhysRevA.29.1991
https://doi.org/10.1103/PhysRevA.29.1991
https://doi.org/10.1103/PhysRevA.29.1991
https://doi.org/10.1007/s11467-013-0340-x
https://doi.org/10.1007/s11467-013-0340-x
https://doi.org/10.1007/s11467-013-0340-x
https://doi.org/10.1007/s11467-013-0340-x
https://doi.org/10.1007/s11467-013-0340-x
https://doi.org/10.1103/PhysRevB.95.115427
https://doi.org/10.1103/PhysRevB.95.115427
https://doi.org/10.1103/PhysRevB.95.115427
https://doi.org/10.2528/PIERB21011501
https://doi.org/10.2528/PIERB21011501
https://doi.org/10.2528/PIERB21011501
https://doi.org/10.1103/PhysRevE.98.012118
https://doi.org/10.1103/PhysRevE.98.012118
https://doi.org/10.1103/PhysRevE.98.012118
https://doi.org/10.1103/PhysRevE.98.012118
https://doi.org/10.1103/PhysRevE.98.012118
https://doi.org/10.1038/s41467-016-0013-x
https://doi.org/10.1038/s41467-016-0013-x
https://doi.org/10.1038/s41467-016-0013-x
https://doi.org/10.1038/s41467-016-0013-x
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1209/0295-5075/118/24001
https://doi.org/10.1209/0295-5075/118/24001
https://doi.org/10.1209/0295-5075/118/24001
https://doi.org/10.1209/0295-5075/118/24001
https://doi.org/10.1209/0295-5075/118/24001
https://doi.org/10.1103/PhysRevB.96.155437
https://doi.org/10.1103/PhysRevB.96.155437
https://doi.org/10.1103/PhysRevB.96.155437
https://doi.org/10.1103/PhysRevB.96.155437
https://doi.org/10.1103/PhysRevB.104.L121409
https://doi.org/10.1103/PhysRevB.104.L121409
https://doi.org/10.1103/PhysRevB.104.L121409
https://doi.org/10.1103/PhysRevB.104.L121409
https://doi.org/10.1103/PhysRevB.104.L121409
https://doi.org/10.1103/PhysRevB.104.L121409
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevB.50.5528
https://doi.org/10.1103/PhysRevB.50.5528
https://doi.org/10.1103/PhysRevB.50.5528
https://doi.org/10.1103/PhysRevB.50.5528
https://doi.org/10.1103/PhysRevB.50.5528
https://doi.org/10.1103/PhysRevB.50.5528
https://doi.org/10.1103/PhysRevB.76.165418
https://doi.org/10.1103/PhysRevB.76.165418
https://doi.org/10.1103/PhysRevB.76.165418
https://doi.org/10.1103/PhysRevB.76.165418
https://doi.org/10.1063/1.3339390
https://doi.org/10.1063/1.3339390
https://doi.org/10.1063/1.3339390
https://doi.org/10.1063/1.3339390
https://doi.org/10.1063/1.3339390
https://doi.org/10.1063/1.3339390
https://doi.org/10.1063/1.3339390
https://doi.org/10.1063/1.3339390
https://doi.org/10.1063/1.1704304
https://doi.org/10.1063/1.1704304
https://doi.org/10.1063/1.1704304
https://doi.org/10.1063/1.1704304
https://doi.org/10.1103/PhysRevB.97.195450
https://doi.org/10.1103/PhysRevB.97.195450
https://doi.org/10.1103/PhysRevB.97.195450
https://doi.org/10.1103/PhysRevB.97.195450
https://doi.org/10.1103/PhysRevB.97.195450
https://doi.org/10.1147/rd.323.0317
https://doi.org/10.1147/rd.323.0317
https://doi.org/10.1147/rd.323.0317
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1111/j.1749-6632.1986.tb12437.x
https://doi.org/10.1111/j.1749-6632.1986.tb12437.x
https://doi.org/10.1111/j.1749-6632.1986.tb12437.x
https://doi.org/10.1111/j.1749-6632.1986.tb12437.x
https://doi.org/10.1111/j.1749-6632.1986.tb12437.x
https://doi.org/10.1111/j.1749-6632.1986.tb12437.x
https://doi.org/10.1006/spmi.2000.0920
https://doi.org/10.1006/spmi.2000.0920
https://doi.org/10.1006/spmi.2000.0920
https://doi.org/10.1006/spmi.2000.0920
https://doi.org/10.1006/spmi.2000.0920
https://doi.org/10.1006/spmi.2000.0920
https://doi.org/10.1088/2053-1583/3/1/015011
https://doi.org/10.1088/2053-1583/3/1/015011
https://doi.org/10.1088/2053-1583/3/1/015011
https://doi.org/10.1088/2053-1583/3/1/015011
https://doi.org/10.1088/2053-1583/3/1/015011
https://doi.org/10.1103/PhysRevLett.123.219401
https://doi.org/10.1103/PhysRevLett.123.219401
https://doi.org/10.1103/PhysRevLett.123.219401
https://doi.org/10.1103/PhysRevLett.123.219401
https://doi.org/10.1103/PhysRevLett.123.219401
https://doi.org/10.1103/PhysRevLett.119.133901
https://doi.org/10.1103/PhysRevLett.119.133901
https://doi.org/10.1103/PhysRevLett.119.133901


119(13), 133901 (2017)
 B. Shapiro, Fluctuation-induced forces in the presence
of  mobile  carrier  drift, Phys.  Rev.  B 96(7),  075407
(2017)

107.

 O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H.
Buljan,  and  M.  Soljačić, Near-field  thermal  radiation
transfer controlled by plasmons in graphene, Phys. Rev.
B 85(15), 155422 (2012)

108.

 J.  B.  Pendry, Radiative  exchange  of  heat  between
nanostructures, J.  Phys.:  Condens.  Matter 11(35),
6621 (1999)

109.

 F. Herz, C. Kathmann, and S. A. Biehs, General trace
formula  for  heat  flux  fluctuations, Europhys.  Lett.
130(4), 44003 (2020)

110.

 J.  L.  Wise,  N.  Roubinowitz,  W.  Belzig,  and  D.  M.
Basko, Signature  of  resonant  modes  in  radiative  heat
current noise spectrum, Phys. Rev. B 106(16),  165407
(2022)

111.

 J.  S.  Wang,  B.  K.  Agarwalla,  and  H.  Li, Transient
behavior of full counting statistics in thermal transport,
Phys. Rev. B 84(15), 153412 (2011)

112.

 G.  Tang  and  J.  S.  Wang, Heat  transfer  statistics  in
extreme-near-field  radiation, Phys.  Rev.  B 98(12),
125401 (2018)

113.

 M.  Campisi,  P.  Hänggi,  and  P.  Talkner, Colloquium:
Quantum fluctuation relations: Foundations and appli-
cations, Rev. Mod. Phys. 83(3), 771 (2011)

114.

 B. K. Agarwalla, B. Li, and J. S. Wang, Full-counting
statistics  of  heat  transport  in  harmonic  junctions:
Transient,  steady  states,  and  fluctuation  theorems,
Phys. Rev. E 85(5), 051142 (2012)

115.

 L. S. Levitov and G. B. Lesovik, Charge distribution in
quantum shot noise, JETP Lett. 58(3), 230 (1993)

116.

 G. Tang, H. H. Yap, J. Ren, and J. S. Wang, Anomalous
near-field heat transfer in carbon-based nanostructures
with  edge  states, Phys.  Rev.  Appl. 11(3),  031004
(2019)

117.

 R.  G.  Parr  and  W.  Yang,  Density-Functional  Theory
of Atoms and Molecules, Oxford Univ. Press, 1989

118.

 N. W. Ashcroft and N. D. Mermin, Solid State Physics,
Saunders College Publishing, 1976

119.

 S. L. Adler, Quantum theory of the dielectric constant
in real solids, Phys. Rev. 126(2), 413 (1962)

120.

 N.  Wiser, Dielectric  constant  with  local  field  effects
included, Phys. Rev. 129(1), 62 (1963)

121.

 M. S. Hybertsen and S. G. Louie, Electron correlation
in  semiconductors  and  insulators:  Band  gaps  and
quasiparticle energies, Phys. Rev. B 34(8), 5390 (1986)

122.

 J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M.
L. Cohen, and S. G. Louie, BerkeleyGW: A massively
parallel  computer  package  for  the  calculation  of  the
quasiparticle  and  optical  properties  of  materials  and
nanostructures, Comput. Phys. Commun. 183(6), 1269
(2012)

123.

 F.  Xuan,  Y.  Chen,  and  S.  Y.  Quek, Quasiparticle
levels  at  large  interface  systems  from  many-body
perturbation theory: The XAF-GW method, J. Chem.
Theory Comput. 15(6), 3824 (2019)

124.

 F. A. Rasmussen, First Principles Calculations of Elec-
tronic  Excitations  in  2D  Materials,  Ph.  D.  thesis,
Technical University of Denmark, 2016

125.

 E.  Anderson,  Z.  Bai,  C.  Bischof,  S.  Blackford,  J.
Demmel,  J.  Dongarra,  J.  Du Croz,  A.  Greenbaum,  S.
Hammarling,  A.  McKenney,  and  D.  Sorensen,
LAPACK Users’ Guide, 3rd Ed., Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1999

126.

 T. Zhu,  Z.  Q. Zhang,  Z.  Gao,  and J.  S.  Wang, First-
principles  method  to  study  near-field  radiative  heat
transfer, Phys. Rev. Appl. 14(2), 024080 (2020)

127.

 T. Zhu, M. Antezza, and J. S. Wang, Dynamical polar-
izability of graphene with spatial dispersion, Phys. Rev.
B 103(12), 125421 (2021)

128.

 P.  Giannozzi,  S.  Baroni,  N.  Bonini,  M.  Calandra,  R.
Car,  et  al., Quantum  ESPRESSO:  A  modular  and
open-source  software  project  for  quantum  simulations
of materials, J. Phys.: Condens. Matter 21(39), 395502
(2009)

129.

 P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.
B. Nardelli,  et al., Advanced capabilities for materials
modelling  with  Quantum  ESPRESSO, J.  Phys.:
Condens. Matter 29(46), 465901 (2017)

130.

 N. Troullier and J. L. Martins, Efficient pseudopotentials
for  plane-wave  calculations, Phys.  Rev.  B 43(3),  1993
(1991)

131.

 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized
gradient approximation made simple, Phys. Rev. Lett.
77(18), 3865 (1996)

132.

 H.  J.  Monkhorst  and  J.  D.  Pack, Special  points  for
Brillouin-zone integrations, Phys. Rev. B 13(12),  5188
(1976)

133.

 T. Zhu, P. E. Trevisanutto, T. C. Asmara, L. Xu, Y.
P. Feng, and A. Rusydi, Generation of multiple plasmons
in  strontium  niobates  mediated  by  local  field  effects,
Phys. Rev. B 98(23), 235115 (2018)

134.

 P. O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J. J.
Greffet, Effects of spatial dispersion in near-field radiative
heat  transfer  between  two  parallel  metallic  surfaces,
Phys. Rev. B 77(3), 035431 (2008)

135.

 P. Rodriguez-López,  W.-K. Tse,  and D. A. R. Dalvit,
Radiative heat transfer in 2D dirac materials, J. Phys. :
Condens. Matter 27, 214019 (2015)

136.

 R.  Peierls, Zur  Theorie  des  Diamagnetismus  von
Leitungselektronen, Eur.  Phys.  J.  A 80(11–12),  763
(1933)

137.

 M.  Graf  and  P.  Vogl, Electromagnetic  fields  and
dielectric  response  in  empirical  tight-binding  theory,
Phys. Rev. B 51(8), 4940 (1995)

138.

 J.  Li,  D.  Golez,  G.  Mazza,  A.  J.  Millis,  A.  Georges,
and  M.  Eckstein, Electromagnetic  coupling  in  tight-
binding models for strongly correlated light and matter,
Phys. Rev. B 101(20), 205140 (2020)

139.

 P.  G.  de  Gennes,  Superconductivity  of  Metals  and
Alloys, CRC Press, 1999

140.

 R.  Loudon,  The  Quantum  Theory  of  Light,  3rd  Ed.,
Oxford Univ. Press, 2000

141.

 G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical
Methods for Physicists, 7th Ed., Academic Press, 2013

142.

 O.  Keller,  Quantum  Theory  of  Near-Field  Electrody-
namics, Springer, Berlin, 2011

143.

 J. S. Wang and J. Peng, A microscopic theory for ultra-
near-field radiation, arXiv: 1607.02840 (2016)

144.

 D.  J.  Griffiths,  Introduction  to  Electrodynamics,  4th145.

FRONTIERS OF PHYSICS REVIEW ARTICLE

43602-46   Jian-Sheng Wang, et al., Front. Phys. 18(4), 43602 (2023)

 

https://doi.org/10.1103/PhysRevLett.119.133901
https://doi.org/10.1103/PhysRevB.96.075407
https://doi.org/10.1103/PhysRevB.96.075407
https://doi.org/10.1103/PhysRevB.96.075407
https://doi.org/10.1103/PhysRevB.96.075407
https://doi.org/10.1103/PhysRevB.96.075407
https://doi.org/10.1103/PhysRevB.85.155422
https://doi.org/10.1103/PhysRevB.85.155422
https://doi.org/10.1103/PhysRevB.85.155422
https://doi.org/10.1103/PhysRevB.85.155422
https://doi.org/10.1088/0953-8984/11/35/301
https://doi.org/10.1088/0953-8984/11/35/301
https://doi.org/10.1088/0953-8984/11/35/301
https://doi.org/10.1088/0953-8984/11/35/301
https://doi.org/10.1088/0953-8984/11/35/301
https://doi.org/10.1209/0295-5075/130/44003
https://doi.org/10.1209/0295-5075/130/44003
https://doi.org/10.1209/0295-5075/130/44003
https://doi.org/10.1209/0295-5075/130/44003
https://doi.org/10.1103/PhysRevB.106.165407
https://doi.org/10.1103/PhysRevB.106.165407
https://doi.org/10.1103/PhysRevB.106.165407
https://doi.org/10.1103/PhysRevB.106.165407
https://doi.org/10.1103/PhysRevB.106.165407
https://doi.org/10.1103/PhysRevB.84.153412
https://doi.org/10.1103/PhysRevB.84.153412
https://doi.org/10.1103/PhysRevB.84.153412
https://doi.org/10.1103/PhysRevB.84.153412
https://doi.org/10.1103/PhysRevB.98.125401
https://doi.org/10.1103/PhysRevB.98.125401
https://doi.org/10.1103/PhysRevB.98.125401
https://doi.org/10.1103/PhysRevB.98.125401
https://doi.org/10.1103/PhysRevB.98.125401
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/PhysRevE.85.051142
https://doi.org/10.1103/PhysRevE.85.051142
https://doi.org/10.1103/PhysRevE.85.051142
https://doi.org/10.1103/PhysRevE.85.051142
https://doi.org/10.1103/PhysRevE.85.051142
https://doi.org/10.1103/PhysRevApplied.11.031004
https://doi.org/10.1103/PhysRevApplied.11.031004
https://doi.org/10.1103/PhysRevApplied.11.031004
https://doi.org/10.1103/PhysRevApplied.11.031004
https://doi.org/10.1103/PhysRevApplied.11.031004
https://doi.org/10.1103/PhysRevApplied.11.031004
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1021/acs.jctc.9b00229
https://doi.org/10.1021/acs.jctc.9b00229
https://doi.org/10.1021/acs.jctc.9b00229
https://doi.org/10.1021/acs.jctc.9b00229
https://doi.org/10.1021/acs.jctc.9b00229
https://doi.org/10.1103/PhysRevApplied.14.024080
https://doi.org/10.1103/PhysRevApplied.14.024080
https://doi.org/10.1103/PhysRevApplied.14.024080
https://doi.org/10.1103/PhysRevApplied.14.024080
https://doi.org/10.1103/PhysRevApplied.14.024080
https://doi.org/10.1103/PhysRevB.103.125421
https://doi.org/10.1103/PhysRevB.103.125421
https://doi.org/10.1103/PhysRevB.103.125421
https://doi.org/10.1103/PhysRevB.103.125421
https://doi.org/10.1103/PhysRevB.103.125421
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.98.235115
https://doi.org/10.1103/PhysRevB.98.235115
https://doi.org/10.1103/PhysRevB.98.235115
https://doi.org/10.1103/PhysRevB.98.235115
https://doi.org/10.1103/PhysRevB.77.035431
https://doi.org/10.1103/PhysRevB.77.035431
https://doi.org/10.1103/PhysRevB.77.035431
https://doi.org/10.1103/PhysRevB.77.035431
https://doi.org/10.1088/0953-8984/27/21/214019
https://doi.org/10.1088/0953-8984/27/21/214019
https://doi.org/10.1088/0953-8984/27/21/214019
https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/BF01342591
https://doi.org/10.1103/PhysRevB.51.4940
https://doi.org/10.1103/PhysRevB.51.4940
https://doi.org/10.1103/PhysRevB.51.4940
https://doi.org/10.1103/PhysRevB.51.4940
https://doi.org/10.1103/PhysRevB.101.205140
https://doi.org/10.1103/PhysRevB.101.205140
https://doi.org/10.1103/PhysRevB.101.205140
https://doi.org/10.1103/PhysRevB.101.205140


Ed., Cambridge Univ. Press, 2017
 N. N. Bogoliubov and D. V. Shirkov, Quantum Fields,
Addison-Wesley, 1982

146.

 G. S. Agarwal, Quantum electrodynamics in the presence
of  dielectrics  and  conductors.  I.  Electromagnetic-field
response functions and black-body fluctuations in finite
geometries, Phys. Rev. A Gen. Phys. 11(1), 230 (1975)

147.

 Z.-Q.  Zhang,  J.-T.  Lü,  and  J.-S.  Wang,  Angular
momentum  radiation  from  current-carrying  molecular
junctions, Phys. Rev. B 101, 161406(R) (2020)

148.

 K. Kuhnke, C. Große, P. Merino, and K. Kern, Atomic-
scale  imaging  and  spectroscopy  of  electroluminescence
at  molecular  interfaces, Chem.  Rev. 117(7),  5174
(2017)

149.

 Z. Q. Zhang and J. S. Wang, Electroluminescence and
thermal  radiation  from  metallic  armchair  carbon
nanotubes  with  defects, Phys.  Rev.  B 104(8),  085422
(2021)

150.

 V.  Weisskopf  and  E.  Wigner, Berechnung  der
natürlichen  Linienbreite  auf  Grund  der  Diracschen
Lichttheorie, Eur. Phys. J. A 63(1–2), 54 (1930)

151.

 W. Heisenberg, and W. Pauli, Zur Quantentheorie der
Wellenfelder II, Eur. Phys. J. A 59(3–4), 168 (1930)

152.

 M. Creutz, Quantum electrodynamics in the temporal
gauge, Ann. Phys. 117(2), 471 (1979)

153.

 E.  Fradkin,  Quantum  Field  Theory:  An  Integrated
Approach, Princeton Univ. Press, 2021

154.

 L.  Novotny  and  B.  Hecht,  Principles  of  Nano-Optics,
2nd Ed., Cambridge Univ. Press, 2012

155.

 S. M. Barnett, Optical angular-momentum flux, J. Opt.
B 4(2), S7 (2002)

156.

 S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson,
M. J. Padgett, F. C. Speirits, and A. M. Yao, On the
natures of the spin and orbital parts of optical angular
momentum, J. Opt. 18(6), 064004 (2016)

157.

 Y.  M.  Zhang,  T.  Zhu,  Z.  Q.  Zhang,  and J.  S.  Wang,
Microscopic theory of photon-induced energy, momen-

158.

tum, and angular momentum transport in the nonequi-
librium regime, Phys. Rev. B 105(20), 205421 (2022)
 R. M. Abraham Ekeroth, A. García-Martín, and J. C.
Cuevas, Thermal discrete dipole approximation for the
description  of  thermal  emission  and  radiative  heat
transfer  of  magneto-optical  systems, Phys.  Rev.  B
95(23), 235428 (2017)

159.

 L.  Zhu  and  S.  Fan, Persistent  directional  current  at
equilibrium in nonreciprocal many-body near field elec-
tromagnetic  heat  transfer, Phys.  Rev.  Lett. 117(13),
134303 (2016)

160.

 I. Latella and P. Ben-Abdallah, Giant thermal magne-
toresistance  in  plasmonic  structures, Phys.  Rev.  Lett.
118(17), 173902 (2017)

161.

 L. G. Aslamazov and A. I. Larkin, Effect of fluctuations
on the properties of a superconductor above the critical
temperature, Sov. Phys. Solid State. 10, 875 (1968)

162.

 H.  A.  Lorentz,  Het  theorema  van  Poynting  over  de
energie in het electromagnetisch veld en een paar alge-
meene  stellingen  over  de  voortplanting  van  het  licht,
Verslagen der Afdeeling Natuurkunde van de Koninklijke
Akademie van Wetenschappen 4, 176 (1895)

163.

 B.  Strekha,  S.  Molesky,  P.  Chao,  M.  Krüger,  and  A.
W. Rodriguez, Trace expressions and associated limits
for  nonequilibrium  Casimir  torque, Phys.  Rev.  A
106(4), 042222 (2022)

164.

 R.  Khrapko, Unknown  spin  radiation, J.  Phys.  Conf.
Ser. 1172(1), 012055 (2019)

165.

 Y. M. Zhang and J. S. Wang, Far-field heat and angular
momentum radiation  of  the  Haldane  model, J.  Phys.:
Condens. Matter 33(5), 055301 (2021)

166.

 O.  V.  Kibis,  M.  R.  da  Costa,  and  M.  E.  Portnoi,
Generation  of  terahertz  radiation  by  hot  electrons  in
carbon nanotubes, Nano Lett. 7(11), 3414 (2007)

167.

 O.  V.  Dolgov  and  E.  G.  Maksimov, The  dielectric
function  of  crystalline  systems, Modern  Problems  in
Condensed Matter Sciences 24, 221 (1989)

168.

REVIEW ARTICLE FRONTIERS OF PHYSICS

Jian-Sheng Wang, et al., Front. Phys. 18(4), 43602 (2023)   43602-47

 

https://doi.org/10.1103/PhysRevA.11.230
https://doi.org/10.1103/PhysRevA.11.230
https://doi.org/10.1103/PhysRevA.11.230
https://doi.org/10.1103/PhysRevA.11.230
https://doi.org/10.1103/PhysRevA.11.230
https://doi.org/10.1103/PhysRevA.11.230
https://doi.org/10.1021/acs.chemrev.6b00645
https://doi.org/10.1021/acs.chemrev.6b00645
https://doi.org/10.1021/acs.chemrev.6b00645
https://doi.org/10.1021/acs.chemrev.6b00645
https://doi.org/10.1021/acs.chemrev.6b00645
https://doi.org/10.1021/acs.chemrev.6b00645
https://doi.org/10.1103/PhysRevB.104.085422
https://doi.org/10.1103/PhysRevB.104.085422
https://doi.org/10.1103/PhysRevB.104.085422
https://doi.org/10.1103/PhysRevB.104.085422
https://doi.org/10.1103/PhysRevB.104.085422
https://doi.org/10.1103/PhysRevB.104.085422
https://doi.org/10.1007/BF01336768
https://doi.org/10.1007/BF01336768
https://doi.org/10.1007/BF01336768
https://doi.org/10.1007/BF01336768
https://doi.org/10.1007/BF01336768
https://doi.org/10.1007/BF01336768
https://doi.org/10.1007/BF01341423
https://doi.org/10.1007/BF01341423
https://doi.org/10.1007/BF01341423
https://doi.org/10.1007/BF01341423
https://doi.org/10.1007/BF01341423
https://doi.org/10.1016/0003-4916(79)90365-8
https://doi.org/10.1016/0003-4916(79)90365-8
https://doi.org/10.1016/0003-4916(79)90365-8
https://doi.org/10.1016/0003-4916(79)90365-8
https://doi.org/10.1088/1464-4266/4/2/361
https://doi.org/10.1088/1464-4266/4/2/361
https://doi.org/10.1088/1464-4266/4/2/361
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1103/PhysRevB.105.205421
https://doi.org/10.1103/PhysRevB.105.205421
https://doi.org/10.1103/PhysRevB.105.205421
https://doi.org/10.1103/PhysRevB.105.205421
https://doi.org/10.1103/PhysRevB.105.205421
https://doi.org/10.1103/PhysRevB.105.205421
https://doi.org/10.1103/PhysRevB.105.205421
https://doi.org/10.1103/PhysRevB.95.235428
https://doi.org/10.1103/PhysRevB.95.235428
https://doi.org/10.1103/PhysRevB.95.235428
https://doi.org/10.1103/PhysRevB.95.235428
https://doi.org/10.1103/PhysRevB.95.235428
https://doi.org/10.1103/PhysRevLett.117.134303
https://doi.org/10.1103/PhysRevLett.117.134303
https://doi.org/10.1103/PhysRevLett.117.134303
https://doi.org/10.1103/PhysRevLett.117.134303
https://doi.org/10.1103/PhysRevLett.117.134303
https://doi.org/10.1103/PhysRevLett.117.134303
https://doi.org/10.1103/PhysRevLett.117.134303
https://doi.org/10.1103/PhysRevLett.118.173902
https://doi.org/10.1103/PhysRevLett.118.173902
https://doi.org/10.1103/PhysRevLett.118.173902
https://doi.org/10.1103/PhysRevLett.118.173902
https://doi.org/10.1103/PhysRevLett.118.173902
https://doi.org/10.1142/9789814317344_0004
https://doi.org/10.1142/9789814317344_0004
https://doi.org/10.1142/9789814317344_0004
https://doi.org/10.1142/9789814317344_0004
https://doi.org/10.1142/9789814317344_0004
https://doi.org/10.1103/PhysRevA.106.042222
https://doi.org/10.1103/PhysRevA.106.042222
https://doi.org/10.1103/PhysRevA.106.042222
https://doi.org/10.1103/PhysRevA.106.042222
https://doi.org/10.1088/1742-6596/1172/1/012055
https://doi.org/10.1088/1742-6596/1172/1/012055
https://doi.org/10.1088/1742-6596/1172/1/012055
https://doi.org/10.1088/1361-648X/abbe7c
https://doi.org/10.1088/1361-648X/abbe7c
https://doi.org/10.1088/1361-648X/abbe7c
https://doi.org/10.1088/1361-648X/abbe7c
https://doi.org/10.1021/nl0718418
https://doi.org/10.1021/nl0718418
https://doi.org/10.1021/nl0718418
https://doi.org/10.1021/nl0718418
https://doi.org/10.1016/B978-0-444-87366-8.50010-2
https://doi.org/10.1016/B978-0-444-87366-8.50010-2
https://doi.org/10.1016/B978-0-444-87366-8.50010-2
https://doi.org/10.1016/B978-0-444-87366-8.50010-2

	1 Introduction
	Part I Scalar photons
	2 Heat transfer from capacitor physics
	3 Coulomb interaction model
	4 Scalar field model
	4.1 “Poynting scalar”
	4.2 A parallel plate capacitor as two quantum dots, scalar field
	4.3 Quantum dot model of Π

	5 Heat transport without local equilibrium by current drive
	6 Full counting statistics for energy transfer
	7 Density functional theory calculation based on Coulomb interaction
	7.1 Adler&#8722;Wiser formula
	7.2 Solving the Dyson equation
	7.3 Example calculation of multiple-layer graphene

	Part II Vector photon and Coulomb gauge
	8 General formulation with transverse vector field
	8.1 Lagrangian and Hamiltonian, gauge invariance
	8.2 Quantization, current operator, and Green’s functions
	8.3 Free Green’s function

	9 Poynting vector and energy transport
	9.1 Operator order
	9.2 Average transverse Poynting vector
	9.3 Radiation at far field

	10 A two-dot model
	Part III Full theory in temporal gauge
	11 Hamiltonian, etc.
	11.1 Free field Green’s function

	12 A unified theory for energy, momentum and angular momentum transfer
	12.1 Conservations of energy, momentum, and angular momentum
	12.2 Expressing transport quantities by Green’s functions
	12.3 Properties of the Meir&#8722;Wingreen formulas
	12.4 Prove F = −DΠα

	13 Baths at infinity
	13.1 No zero-point motion contribution at infinity?

	14 A consistency check with Krüger et al. theory
	15 Breaking reciprocity by current drive – far field results
	15.1 Graphene strip calculation

	16 Conclusion
	Acknowledgements
	References

