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In order to gain comprehensive knowledge of an arbitrary unknown quantum state, one feasible way is
to reconstruct it, which can be realized by finding a series of quantum operations that can refactor the
unitary evolution producing the unknown state. We design an adaptive framework that can reconstruct
unknown quantum states at high fidelities, which utilizes SWAP test, parameterized quantum circuits
(PQCs) and layerwise learning strategy. We conduct benchmarking on the framework using numerical
simulations and reproduce states of up to six qubits at more than 96% overlaps with original states
on average using PQCs trained by our framework, revealing its high applicability to quantum systems
of different scales theoretically. Moreover, we perform experiments on a five-qubit IBM Quantum
hardware to reconstruct random unknown single qubit states, illustrating the practical performance
of our framework. For a certain reconstructing fidelity, our method can effectively construct a PQC
of suitable length, avoiding barren plateaus of shadow circuits and overuse of quantum resources by
deep circuits, which is of much significance when the scale of the target state is large and there is no
a priori information on it. This advantage indicates that it can learn credible information of unknown
states with limited quantum resources, giving a boost to quantum algorithms based on parameterized
circuits on near-term quantum processors.
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1 Introduction

Quantum information provides many of the most cutting-
edge researches nowadays, including quantum simula-
tions [1–3], quantum computing [4–8], quantum cryptol-
ogy and quantum communication [9–18]. In the field of
quantum information, information is encoded into quan-
tum states. Many times we wish to obtain the full infor-
mation of the states, in situations such as quantum device
analysis [19], which promotes the emergence of technolo-
gies like quantum state tomography (QST). Although we
can determine the classical expression of unknown quan-
tum states through QST, how to reproduce the states and
how to design the corresponding quantum circuit are still
problems that need further discussion. Therefore, it is
valuable to find a quantum circuit that can directly re-
construct the unknown quantum states since finding the
unitary operations to prepare states can help us get rid of

∗ This article can also be found at http://journal.hep.com.
cn/fop/EN/10.1007/s11467-022-1157-2.

the disadvantages that quantum states have a limited life-
time and are difficult to store, allowing us to manipulate
them anytime and anywhere.

In 2018, an autonomous protocol based on quantum re-
inforcement learning (QRL) was put forward [20], which
assumes enough copies of the input state, and requires no
structural information of the inputs beforehand. The pro-
tocol introduces a quantum register to interact with the
environment — the unknown state ensemble, and takes
measurement on it, the result of which is used to adjust the
“agent” state. Once the algorithm converges, the “agent”
will have fidelities around 90% with respect to the input
unknown qubit state. On the other hand, parameterized
quantum circuits (PQCs) with certain objective functions
are believed to be good solutions to many quantum prob-
lems, from solving quantum algebraic systems [21–24] and
finding the ground state energy of a chemical system [25–
31] to performing image classification [32, 33] and fitting
unknown functions [34] in the noisy intermediate-scale
quantum (NISQ) era [35]. In the field of quantum ma-
chine learning, PQCs are known as a type of quantum
neural networks [36–39].
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In this paper, we present a framework that can recon-
struct unknown quantum states in an adaptive way. Dif-
ferent from the QRL method that keeps gate parameters
adopted in previous iterations unchanged, we make the
circuit parameterized, introduce classical gradient opti-
mizers into our protocol to boost the final fidelities, and
tune all parameters iteratively. We introduce the varia-
tional layerwise learning (LL) technique [33] as a strat-
egy to dynamically adjust the PQC structure, yielding a
circuit of suitable depth automatically and avoiding the
requirement of experienced pre-designs of parameterized
circuits in other ordinary non-adaptive algorithms, which
is especially significant when the system scale gets large.
This not-over-large depth of the obtained circuit can also
serve as an exact upper bound for the minimal depth of the
circuit that can reconstruct the input state at the required
fidelity with the same layered structure. We test the per-
formance of the framework for random states containing
up to six qubits numerically, which shows that our frame-
work can achieve the goal of quantum states reconstruc-
tion with more than 96% fidelities. We perform hardware
experiments on IBM Quantum processor to demonstrate
the practicality of our framework. Moreover, comparisons
with the QRL-based method and non-layerwise-learning
strategy are made.

2 Method

We assume that we have enough copies of the unknown
state as in [20]. The schematic of the optimization process
of this algorithm is shown in Fig. 1. For an unknown
state |ψunkn⟩ that contains nq qubits, another nq work
qubits are required for state reconstructing, which will be
manipulated by the PQC U(θ). The PQC is composed of
several “blocks”, the i-th block of which takes the form of

U (i) =W

nq∏
j=1

Rj(θ
(i)
j,1, θ

(i)
j,2, θ

(i)
j,3), (1)

Fig. 1 Optimization process of our algorithm. Uunkn is the
oracle operator that can produce the unknown state |ψunkn⟩
from |0⟩, the all-zero state. U(θ) is our parameterized quantum
circuit, whose structure and parameter values will be changed
during the training process.

as shown in Fig. 2. Here Rj(·, ·, ·) is the general single-
qubit rotation on the j-th qubit (X, Y , Z are the Pauli
operators):

Rj(θ1, θ2, θ3) = Rz(θ3)Ry(θ2)Rz(θ1) (2)

= e−iZθ3/2e−iY θ2/2e−iZθ1/2, (3)

while W is the connection operator between qubits. In the
diagram of Fig. 2, W is a series of two-qubit interactions
having all-to-all connectivity, and it can be customized for
different quantum systems.

Similar to classical machine learning algorithms, a hy-
brid classical-quantum algorithm requires a proper loss
function to train parameters. Here we take the overlap
(i.e., fidelity) between work state and unknown state as
the loss function:

L(θ) =
∣∣∣| ⟨ψ(θ)|ψunkn⟩ | − 1

∣∣∣2. (4)

In order to evaluate its value from experimental results,
we employ SWAP-Test to obtain the overlaps. Details
of SWAP-Test are provided in Appendix A, and from
Eq. (A8) we can derive that

L(θ) =
∣∣∣√⟨Z⟩a − 1

∣∣∣2. (5)

Therefore, by introducing an auxiliary qubit and measur-
ing its expectation value of Pauli Z operator, we can ac-
quire the loss value experimentally. It is worth noticing
that, ⟨Z⟩ must be non-negative analytically, but if we per-
form our algorithm on a real-world quantum machine, a
classical sampling simulator where we can only have fre-
quencies of samples rather than exact probabilities, or a
classical numerical simulator with limited precision, the
approximated value of ⟨Z⟩ may be negative when the ex-
act value of ⟨Z⟩ is near-zero. Therefore, enough number of

Fig. 2 The i-th block of the PQC U(θ), which is composed
of general rotations on each qubit followed by a connection
operator W . In this diagram, W is a series of two-qubit inter-
actions having all-to-all connectivity, and it can be customized
for different quantum systems.
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repetitions of sampling must be taken, and those negative
⟨Z⟩ values close to zero should be clipped to zeros.

In the framework of Fig. 1, we choose layerwise learning
strategy to adjust our PQC. In classical machine learning,
layerwise learning strategy is proven to have comparable
performance as complete depth learning (CDL) that trains
all parameters in the whole network simultaneously. Sko-
lik et al. introduced layerwise learning method into PQC-
based quantum machine learning tasks [33]. They showed
that when noiseless and analytic simulation is considered,
LL and CDL display similar performance. But LL strat-
egy works better on average when it comes to a real-world
quantum device where noise is not negligible and measure-
ments must be taken in order to evaluate the loss function
and the gradients.

Another essential reason to use LL strategy is that it
can gradually lengthen our PQC util convergence, which
is adaptive as we wish. Compared with CDL strategy
that requires us to determine the complete structure of
PQC before running algorithms, LL strategy starts from
a shallow PQC and can dynamically extend it on-demand,
balancing the fidelity of our algorithm and quantum re-
sources consumed by our PQC.

In general, our method adjusts not only the parame-
ter values but also the structure of PQC by progressively
increasing the number of blocks of the PQC and divid-
ing all parameters into several groups which are trained
iteratively. Before running our algorithm, several hyper-
parameters must be designated, whose meanings are listed
in Table 1. As LL strategy in [33], our algorithm consists
of two phases, which are detailed in Algorithm 1. For the
clarity of presentation, we call lines 5 ∼ 10 and line 18 a
training step in phase Ⅰ and phase Ⅱ respectively.

In classical QST, O(2nq ) elements of the state density
matrix need to be stored so that the state can be com-
pletely represented. Meanwhile, since these elements must
be obtained via measurements individually, the execution
time of classical QST also scales exponentially with the
system size. In contrast, the qubit resources required by
Algorithm 1 is 2nq = O(nq), and the state of the work
qubits is directly the reconstructed state, without the
need to convert classical density matrix data into quan-
tum states. We use the number of queries to quantum
gates through the entire process to estimate the upper

bound of time complexity of Algorithm 1. If the final
number of blocks in the PQC is L and there are O(nq)
gates in each connection operator W , the gate complexity
of the final PQC will be LO(nq) and the total query com-
plexity will be

∑L
l=Ls

O(nq)lneg1 + s · (1/r) · neg2, where
g1, g2 are the query complexities of gradient evaluation
in each training step of phase Ⅰ and phase Ⅱ respec-
tively. For example, if parameter-shift rule [34, 40, 41]
is employed in both phases, then g1 = O(nq), g2 =

O(rnp) = O(Lrnq), and the total query complexity will
be O(n2q)neL

2 +LnesO(nq) ≤ O(n2q)neL(L+ s) = O(n2q),
which also presents exponential improvement compared
with classical QST. We owe this reduction of consumed re-
sources to the hybrid quantum-classical framework, which
combines the advantage of the intrinsic quantum repre-
sentability of NISQ devices and well-developed optimiza-
tion algorithms of classical computing.

3 Results

3.1 Numerical simulation

In order to run benchmarks on this quantum state recon-
structing framework, we create random circuits and take
them as unknown input states. The procedure is detailed
in Appendix B.

We carry out 1000 numerical simulations for each nq
in {1, 2, · · · , 6}, and the configurations of our experiments
are detailed in Appendix C. We record the losses at the
end of each epoch and the evolution averaged over 1000
random input states during the complete training process
is shown in Fig. 3(a). At the beginning of each training
step, the loss value may have a sudden rise, which is the
result of non-zero parameters in the newly appended block
WU (i). Nevertheless, the overall performance can finally
be improved by tuning these parameters and the model
circuit will be brought away from local optima (and also
barren plateaus) in the final parameter space. As a result,
the entire curve exhibits a declining shape with fluctua-
tions. For cases where nq = 1, the loss values decrease
so fast that they have been less than the threshold in the
first several epochs before any early-stopping checks are

Table 1 Hyperparameters of the state reconstructing algorithm.

Ls Number of starting blocks.
Lm Maximal number of blocks in the full PQC.
ne Maximal number of epochs in each training steps.
Lth Loss threshold, which is one of the early-stopping criteria. When the loss is less than this value, our algorithm is completed.

δL, npat Another criterion of early-stopping. During the running of gradient-based optimizer, if the reductions of loss do not exceed δL
for npat consecutive epochs, the optimizer will be early-stopped.

r Parameter partition rate in phase Ⅱ.
s Maximal number of sweeps in phase Ⅱ.
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Algorithm 1 Reconstructing unknown quantum states using layerwise method.

Inputs unknown state |ψunkn⟩; hyperparameters in Table 1
Outputs trained PQC U(θ)

Algorithm 1: Quantum state reconstructing
input :

|ψunkn⟩ Enough copies of unknown state.

Ls Number of starting blocks.

Lm Maximal number of blocks in the full PQC.

ne Maximal number of epochs in each step of training.

Lth Loss threshold, which is one of the early-stopping criteria. When the loss is less than this value, our
algorithm is completed.

δL, npat Another criterion of early-stopping. During the running of gradient-based optimizer, if the
reductions of loss do not exceed δL for npat consecutive epochs, the optimizer will be early-stopped.

r Parameter partition rate in phase II.

s Maximal number of sweeps in phase II: s.

output:
optimized PQC U(θ)

// Phase I
1 Prepare the working qubits on the evenly

superposed state [(|0⟩+ |1⟩)/
√
2]⊗nq ;

2 U(θ)← circuit containing no blocks;
3 goOnTraining← true;
4 while the number of blocks in U(θ) < Lm and

goOnTraining is true do
5 if there are no blocks in U(θ) then
6 append Ls blocks into U(θ);
7 else
8 append 1 block into U(θ);
9 end

10 train the parameters in the newly appended
block(s) of U(θ) (ne epochs at most; if the
loss < Lth, stop optimizer and
goOnTraining← false; if the reductions of
loss do not exceed δL for npat consecutive
epochs, stop optimizer and turn to next
loop);

// with other parameter values fixed
11 end

// Phase II
12 np ← number of parameters in θ;
13 paramGroups←
{θ[0, rnp − 1],θ[rnp, 2rnp − 1], · · · };

// collect rnp parameters into a group
14 j ← 0;
15 goOnTraining← true;
16 while j < s and goOnTraining is true do
17 foreach group in paramGroups do
18 train the parameters in group (ne epochs

at most; if the loss < Lth, stop optimizer
and the foreach-loop, and
goOnTraining← false; if the reductions of
loss do not exceed δL for npat
consecutive epochs, stop optimizer and
turn to next group);

// with other parameter values
fixed

19 end
20 j ← j + 1;
21 end

1

performed, while for other cases the early-stopping mech-
anism stops circuit training when the loss values gradually
reach the threshold. This is the reason why the final value
of the case nq = 1 is around 1/10 of those cases where
nq > 1 in Fig. 3(a).

According to Eq. (4), we can evaluate the overlaps from
loss values by | ⟨ψ(θ)|ψunkn⟩ | = 1−

√
L(θ). With this rela-

tionship, we calculate and plot the fidelities per 20 epochs
in Fig. 3(b). For systems containing different number of
qubits, the average final losses and final fidelities varies, as

revealed in Fig. 4. Figures 3(a), (b) and Fig. 4 show that
for systems with less than 5 qubits, the final losses are
smaller than 10−4, meaning that our PQC can learn un-
known states with fidelities higher than 99% theoretically
for systems with dimensions up to 24 = 16. For larger
systems like quantum states of 5 or 6 qubits, the fidelity
of output state of our PQC is expected to be higher than
96%. Analyses on the convergence rate and training time
are attached in Appendix D.

In order to study the effect of each circuit block on the

Fig. 3 (a) Losses at the end of each epoch. (b) Fidelities evaluated per 20 epochs. All values are averaged over 1000 random
input states. The number of qubits in the quantum systems varies from nq = 1 to nq = 6.
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Fig. 4 Final losses and final fidelities (averaged over 1000
random input states) of quantum systems with nq varying from
1 to 6. The quantum state reconstructing framework can effec-
tively reproduce unknown quantum states with high fidelities.

reconstructed state, we conduct our algorithm to recon-
struct the partially entangled state |ϕ0⟩ = |W3⟩ ⊗ |000⟩ =
1√
2
(|000⟩ + |111⟩) ⊗ |000⟩. We start from a 0-block PQC

|ψ0⟩ = (H |0⟩)⊗6 according to the procedure of Algo-
rithm 1. The evolution of von Neumann entropy of the 6
subsystems

Si = −Tr(ρi log2 ρi), i = 0, 1, · · · , 5 (6)

is monitored during the training process, where ρi is the
partially traced density matrix of the i-th qubit. It is
direct to derive that the analytical values of |ϕ0⟩ are

ρ0 = ρ1 = ρ2 =
1

2
I, ρ3 = ρ4 = ρ5 = diag(1, 0); (7)

S0 = S1 = S2 = 1, S3 = S4 = S5 = 0, (8)

which match the simulation results in Fig. 5(a). As the al-
gorithm proceeds, the parameterized circuit will lengthen
gradually. Once converged, the algorithm gives out a cir-
cuit containing 5 blocks. We simulate this final circuit
and evaluate the values of fidelity and entropy after the
state passes each block, as in Fig. 5(b). After the first
block, von Neumann entropy of entangled qubits (0, 1,
2) is mostly recovered, while the entanglement-free qubits
(3, 4, 5) obtain extra entropy inappropriately. Therefore,
a new block is added, with its parameters well-trained so
that it can de-entangle (3, 4, 5) qubits, raising the entropy
of (0, 1, 2) qubits at the same time. The last 3 blocks fine
tune the state, making the degree of entanglement of each
qubit more accurate. As the circuit deepens, the fidelity of
state is gradually increased. Hence, different blocks in the
PQC of our framework can adjust global or local proper-
ties of the work state according to the difference between
input state and work state.

3.2 Experimental results

We deploy our framework on the 5-qubit IBM Quantum
processor ibmq_belem [42] to reconstruct unknown single
qubit states U(α, β, γ) |0⟩ = Rz(α)Ry(β)Rz(γ) |0⟩, where
α, β, γ are randomized. The configurations are detailed
in Appendix E. Due to hardware noise, the loss values
evaluated from real measurement results will eventually
be around 0.015 and not less than 0.010. As a result,
the final fidelity is expected to be ∼ 83.5% according to
Fig. 6(a), where the values represented by solid dots are
averaged over 100 random cases.

Nevertheless, once the algorithm converges, the trained
PQC can serve as a high precision noiseless approximation
to U(α, β, γ) when acted on |0⟩, since the fidelity can reach
∼ 99.1% if we simulate the trained PQC analytically, as
shown in Fig. 6(b). We owe this to the robustness of

Fig. 5 The evolution of fidelity and von Neumann entropy per qubit as (a) training proceeds; (b) the state passes the blocks
in the trained PQC.
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Fig. 6 We perform 100 random experiments for single qubit state reconstructing on ibmq_belem, and display the evolution
of average fidelities from (a) real device output and (b) analytic noiseless simulation of PQC with parameter values same as
(a). Here, the transparent dots represent all (epoch, fidelity) data points in the experiments, while the solid line stands for the
average evolution of fidelity.

the parameter-shift rule adopted in gradient evaluation,
since the gradient yielded still provides effective guidance
to the optimization process even though the hardware is
noisy [43].

3.3 Comparisons with other methods

We implement the QRL algorithm in [20], and do simula-
tions on random input states generated with the same rou-
tine in Section 3.1 for systems containing 1 and 2 qubits.
The QRL algorithm hyperparameter ϵ ranges from 0.1 to
0.9, and we repeat the experiment 1000 times for each con-
figuration. We compare the average final fidelities achieved
by our method in Section 3.1 with the results of the QRL
method in table 2, where the convergence rate stands for
the proportion of converged cases in all 1000 experiments
and the criterion for convergence differs in our algorithm
and in the QRL algorithm, which is detailed in the first ta-
ble annotation. For the simplest case — 1-qubit systems,
the maximal value of average fidelity that can be achieved

by our method is raised to be higher than 99%. All 1000
simulations converged, and the learning process can be
accomplished in 3 epochs on average. For larger systems,
our advantage in fidelity is more obvious: the average fi-
nal fidelity can be raised from around 90% (QRL) to 99%
for 2-qubit systems, and is expected to reach 98.7% for
5-qubit systems if our PQCs converge.

We can also apply our PQC onto the input unknown
state directly as proposed in [44], without need for SWAP-
Test, the auxiliary qubit and the work qubits. In this
construction, we need to optimize the PQC so that it can
reset the state into |0⟩ (all-zero state). To achieve this
goal we should measure all qubits of the state and take
the loss function to be

L(θ) = |⟨ψ(θ)|0⟩ ⟨0|ψ(θ)⟩ − 1|2 . (9)

Once the loss function is reduced to near zero, we can
invert the PQC and get

∏dc

i=1 U
(i)†(θ(i)). Applying this

inverted series to |0⟩ will yield a state that is supposed
to have high overlap with the input unknown state. This

Table 2 The final fidelities achieved by the QRL method and the method of this paper averaged over 1000 random states.

Method Our method QRL (ϵ = 0.1) QRL (ϵ = 0.3) QRL (ϵ = 0.6) QRL (ϵ = 0.9)

1-qubit
Average final fidelity 99.78% 90.43% 91.62% 93.48% 96.35%

Convergence rate∗ 100% 93.10% 91.20% 89.30% 66.10%

2-qubit
Average final fidelity 99.20% 83.29% 84.43% 86.33% 76.99%∗∗

Convergence rate 100% 99.50% 99.70% 98.70% 55.30%

* The convergence rate is evaluated as nconv/1000, where nconv is the number of converged cases. For our method, those cases where
final loss values are less than 10−4 are considered as being converged. For the QRL method, the indicator of convergence is ∆, the
range of random rotation angles in each step [20]. We take those cases where ∆ < 10−5 as converged ones.

** According to the original paper [20], as ϵ grows, the algorithm achieves higher final fidelity but converges slower. Here more than 40%
cases did not converge in the maximal number of iterations, which is set to be 1000 in our simulation. Therefore the corresponding
average final fidelity is lower than cases with smaller ϵs.
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variant only consumes half of the quantum qubits of our
framework, and avoids noisy executions of quantum cir-
cuits resulted from possibly erroneous controlled-SWAP
gates, which involve interactions through the entire quan-
tum system. However, O(nq) times more measurements
are required in order to estimate the fidelities with the
same order of precision. Furthermore, on NISQ devices
with noteworthy shot noise, if the probability of perform-
ing an erroneous measurement on a qubit is pe and we
need to evaluate the fidelity based on M circuit execu-
tion results, then peM results are expected to be correctly
sampled from the probability distribution of the quantum
state in our algorithm, while the value is pnq

e M for the
cSWAP-free method since its fidelity relies on the mea-
surement results of all qubits. As a consequence, the more
qubits are to be measured, the less precise results we will
obtain. Therefore, when we are working on a quantum
device with significant multi-qubit interaction error, the
cSWAP-free method in [44] exhibits higher applicability,
while our method is more robust and more suitable if the
measurement noise is not negligible.

We conduct numerical experiments to compare the per-
formances of our algorithm using layerwise learning strat-
egy and non-layerwise learning strategy, i.e., complete
depth learning. Figure 7(a) illustrates how the fidelities
are raised in a specific example using LL-strategy, where
readout noise with bit-flip probability being 20% is as-
sumed. We run CDL to reconstruct the same state, with
the circuit structure same as the final PQC of LL, and
initial values of all parameters identical to those of LL.
Optimization of CDL converges in only 10 epochs and
early-stops, with the final fidelity being 86.36%, while LL
gives out a fidelity up to 99.32%, from which we can see

that our framework can avoid converging too early and
being stranded in barren plateaus. According to [33],
LL-strategy takes more epochs than CDL-strategy, but
less measurements are to be taken in each epoch due to
fewer parameters to be updated, which leads to the same
amount of calls to quantum devices.

However, LL may not surpass CDL regarding to the
final fidelity under all circumstances, suggested by an-
other example shown in Fig. 7(b). In this case LL method
converges at fidelity 95.84%, while CDL method reaches
96.05%. We opine that given the block structure of the
multi-layer (i.e., block) PQC, the significance of layerwise
learning strategy is to help our algorithm find a relatively
short circuit that can reconstruct the unknown state at
high fidelity in an automatic and heuristic manner, avoid-
ing fixing the structure of the complete PQC beforehand
like in CDL, which may overuse quantum resources if the
PQC contains too many blocks, especially when there is
significant circuit noise, or may not able to achieve the
fidelity goal if the PQC is too short. Our algorithm starts
training with a low-depth circuit. If the PQC is too shal-
low to converge to the input state, which means the algo-
rithm sticks in the barren plateau far away from the input
state, LL-strategy will dynamically extend the circuit by
appending a new block, trying to enlarge the reachable re-
gion in the state space of our PQC to cover the unknown
state. Once phase Ⅰ accomplished, LL-strategy will stop
extending and bring our PQC into phase Ⅱ, fine-tuning
each parameter group. To sum up, LL can find the suit-
able circuit which is neither too short nor over-expressive,
saving quantum computing resources with the final fideli-
ties guaranteed.

Suppose that there exists a minimal circuit that can

Fig. 7 Instances of fidelity evolution curves in the training process using LL-strategy. Here we consider 3-qubit systems with
readout noise, where the bit-flip probability is 20%. The fidelities are evaluated as | ⟨ψ(θ)|ψunkn⟩ |, where |ψ(θ)⟩ is simulated
using the PQC without noise. The sub-figures display the real and imaginary parts of elements in the input unknown state
|ψunkn⟩ (denoted as |ψunknown⟩) and the output state |ψ(θ)⟩ of the noiseless trained PQC (denoted as |ψreconstructed⟩).
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achieve the target fidelity threshold with the same layered
structure, whose depth is denoted as Lmin. The depth of
the trained circuit from layerwise learning can naturally be
regarded as a limited upper bound of Lmin, which is found
adaptively, even though we lack preliminary knowledge of
the input state. Therefore, the parameterized circuit of
LL provides a valuable reference if we wish to further find
the exact value of Lmin.

Similar to the classical analogue, neural network algo-
rithms, the performance of hybrid quantum-classical algo-
rithms is greatly dependent on the form of ansatz, the op-
timization algorithm, and even the initialization method
of trainable parameters. Hence we can improve CDL by
handpicking more adequate instances of these training fa-
cilities, in which case they can also be applied to the
training process of LL. For example, the structure of each
block in a multi-layer CDL parameterized circuit and the
corresponding classical optimizer can be adopted into LL
training as well. The benefits of these facilities are also
effective against the LL-strategy since each LL training
step can be regarded as a CDL-training of the sub-PQC.
Consequently, the adoption of better training techniques
in CDL is expected to bring an equal boost to LL.

4 Discussion

As illustrated above, the algorithm of this paper can find
a suitable PQC to reconstruct an unknown state with
high fidelity in an adaptive way. We design the frame-
work based on parameterized quantum circuits, and intro-
duce classical gradient optimizers into the quantum ma-
chine learning protocol to raise the final fidelities. The
adopted layerwise learning strategy lengthens PQCs and
optimizes newly added parameters gradually, avoiding
barren plateaus of short-depth PQCs while keeping the
entire structure minimal and optimal. As a result, our
method provides high practicality for state reconstructing
in the NISQ-era, reducing the consumed computational
resources and time complexity compared with classical
state tomography, and can reach efficiently high fidelities
for systems of different scales. The output state of PQC
can have more than 96% fidelities for 1–6-qubit systems in
theory. Real device experiments indicate the practicality
of our framework, and comparisons with other methods
reveal its advantage. Our method is helpful for gaining
enough information about the structures of complex non-
analytic quantum systems, or mitigating and eliminating
noises on real quantum devices such as superconducting
systems and ion-trap systems. Furthermore, it can serve
as a general framework for hybrid variational quantum-
classical algorithms that are based on fidelities and pro-
vide a boost for them.

It is worth noticing that given an ansatz of PQC in
our quantum state reconstructing framework, its repre-
sentation ability is fixed. The block structure employed

in our experiment, as shown in Fig. 2, determines that our
ansatz is sufficient for us to learn and reproduce quantum
states of 1–4 qubits, while for larger systems the loss val-
ues may not be optimized to be less than the convergence
threshold. There are many ways to increase the fidelity
and the probability of convergence, one of which is adopt-
ing ansatz more suitable to the system to be considered,
or heuristic ansatz like [29]. Another important idea is
to apply better initialization strategies and optimization
algorithms. We will conduct further studies in our future
works.
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Appendices

A SWAP test

Suppose we have two quantum states |ψ1⟩ and |ψ2⟩ of
equal dimension, between which there is no entanglement.
SWAP test can help us measure the overlap between them,
i.e., |⟨ψ1|ψ2⟩| [49]. To do this job, an auxiliary qubit ini-
tialized in |0⟩ state needs to be introduced. Without loss
of generality, we assume that the two quantum states are
composed of n qubits, and they take the following form
under the computational basis:

|ψ1⟩ =
N−1∑
i=0

c1;i |i⟩1 , (A1)

|ψ2⟩ =
N−1∑
i=0

c2;i |i⟩2 , (A2)

where N = 2n is the dimension of the whole Hilbert
space of one state. Firstly, an Hadamard gate H is ap-
plied to the auxiliary qubit |0⟩a, which is transformed
into (|0⟩a + |1⟩a) /

√
2. Then we act the ancilla-controlled

SWAP gate onto the two states, i.e., swap each pair of
qubits from the two states if the auxiliary qubit is in |1⟩a
state, which yields
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|Ψ⟩ = 1√
2

[
|0⟩a

(
N−1∑
i=0

c1;i |i⟩1

)N−1∑
j=0

c2;j |j⟩2


+ |1⟩a

(
N−1∑
i=0

c2;i |i⟩1

)N−1∑
j=0

c1;j |j⟩2

] (A3)

=
1√
2
[|0⟩a |ψ1⟩ |ψ2⟩+ |1⟩a |ψ2⟩ |ψ1⟩] . (A4)

After the controlled-SWAP gate, another H gate is acted
onto the auxiliary qubit, mixing the unswapped substate
and the swapped substate:

|Ψ⟩ = 1

2

[
|0⟩a (|ψ1⟩ |ψ2⟩+ |ψ2⟩ |ψ1⟩)

+ |1⟩a (|ψ1⟩ |ψ2⟩ − |ψ2⟩ |ψ1⟩)
]
. (A5)

In the last step, we measure the auxiliary qubit in
{|0⟩a , |1⟩a} basis, and the probabilities of obtaining 0 and
1 are

P (i) =
1

4

∥∥|ψ1⟩ |ψ2⟩+ (−1)i |ψ2⟩ |ψ1⟩
∥∥2 (A6)

=
1

2

[
1 + (−1)i| ⟨ψ2|ψ1⟩ |2

]
, i = 0, 1. (A7)

From these relationships we have

| ⟨ψ2|ψ1⟩ |2 = P (0)− P (1) = ⟨Z⟩ , (A8)

which is just the expectation value of the Pauli operator
Ẑ of the auxiliary qubit. The quantum circuit of SWAP
test is shown in Fig. 8.

B Procedure for creating random circuits

We adopt the concept of “moments” in [46]: A moment
is a time slice in a quantum circuit, which contains op-
erations to be performed at the same time. In order to
create random states, we build random symbolic circuits
firstly, with the number of symbols in the random circuit
ds designated beforehand: For the first ds moments, we
sample operations which can fill in it from the set

{I,X, Y, Z,XX, Y Y, ZZ,H,CZ,
CNOT,SWAP, iSWAP, fsim } (B1)

Fig. 8 Quantum circuit of SWAP test.

where fsim is the two-qubit Fermionic simulation gate [50]:

fsim(θ, ϕ) = e−iθ(XX+Y Y )/2e−iϕ(I−Z)⊗(I−Z)/4 (B2)

=


1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iϕ

 . (B3)

Each operation will be raised to a symbolic power which
is sampled from the symbol list, and then be added into
the moment with 90% probability. For remaining unused
symbols, H gates parameterized with them will be ap-
pended to the circuit. Finally, all symbols will be replaced
with random values, generating a fully random quantum
circuit which can be used to produce our input state.

In numerical simulations in Section 3.1, parameter ds is
set to be 10.

C Configurations of numerical simulations

We change the number of qubits nq from 1 to 6, and gen-
erate random input state following the procedure in Ap-
pendix B with ds = 10. Due to the random generating
mechanism, the actual number of moments of input ran-
dom circuits varies from 14 to 26.

We initialize the work qubits as the evenly superposed

state
[

1√
2
(|0⟩+ |1⟩)

]⊗nq

via Hadamard gates U0 = H⊗nq .
The W parts in our PQC blocks are composed of a series
of parameterized two-qubit gates e−iXi⊗XjJij with Jij be-
ing the two-body interaction parameter, having all-to-all
connectivity in our experiment, as shown in Fig. 2. Pa-
rameters in each block are initially set to be random values
close to zero.

In each numerical experiment, our PQC starts with
Ls = 2 blocks. We set the upper limit of the depths
of PQC blocks to be Lm = 5. In phase Ⅱ, we set the
partition rate r = 0.3 and the maximal number of sweeps
s = 10. In each training step of both phases, we opti-
mize our PQC with ne = 15 epochs. For each epoch, we
take 10 copies of the input random circuit to make up a
dataset, which means that there are 10 mini trainings in
an epoch. If the value of loss function is not reduced by a
difference greater than δL = 2×10−5 for npat = 5 epochs,
the training step will be stopped early. And if the value of
loss function is reduced to be less than Lth = 10−4 after a
certain training step, the entire training phase will early-
stop. Because of this early-stopping mechanism, the final
depth of our PQC may be less than Lm and is different
from case to case.

The gradients of loss function are evaluated via adjoint
method [47, 51, 52]. In phase Ⅰ, we use Nadam algo-
rithm [53] with initial learning rate being 0.09 to opti-
mize the parameters, and Adam optimizer [54] with initial
learning rate being 0.09 is used in phase Ⅱ.
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D Convergence rate and training time

We note that as the scale of quantum system increases, the
probability for our PQC to converge to the threshold may
decrease, and the training process may become longer,
which are the natural results of the limited representation
ability of our PQC structure. On the one hand, not all
cases can be optimized to our goal (i.e., loss value being re-
duced to less than 10−4) in the experiment: All 1000 cases
of nq = 1, 2, 3, 4 converged, while the rate of converged
cases is 80% for nq = 5 and decreases to 45% for larger
systems with nq = 6, as illustrated in Fig. 9. Here the
convergence rate is evaluated as nconv/1000, with nconv
representing the number of converged cases. On the other
hand, averagely the training process takes more epochs
when nq is enlarged, which displays a sub-exponential re-
lationship between Ne (the average value of total number
of epochs for convergence) and nq, according to Fig. 9,
where only converged cases are taken into account.

E Configurations of IBM quantum

experiments

We initialize the work qubit as 1√
2
(|0⟩ + |1⟩). For the

purpose of demonstration, our PQC starts from Ls = 1
block, and each block takes the form of Eq. (3). The upper
limit of the depth of PQC blocks is set to be Lm = 3.
Parameters in each block are initially set to be random
values close to zero. In phase Ⅱ, the partition rate r =
0.3, and at most s = 3 sweeps through all parameters are
performed.

Fig. 9 Relations between convergence rate/time and nq. For
larger systems it takes more time for the PQC to converge and
the rate of converged cases decreases, which is because of the
limited representation ability of the PQC structure used in our
experiment.

In each training step, the optimizer runs for 10 itera-
tions at most, which means that parameters in the newly
appended block/parameters collected in a group will be
updated 10 times at most in phase Ⅰ/in each sweep of
phase Ⅱ. If the loss value evaluated from hardware mea-
surement is not optimized by a reduction greater than
δL = 0.005 for npat = 5 iterations, the training step will
be early-stopped and turn to next step. At the end of each
training step, if the loss value is reduced to be lower than
Lth = 0.05, the training phase will be early-stopped.

The gradients of loss function are evaluated via
parameter-shift rule [34, 40, 41]. For each evaluation of
loss function and gradient components, the quantum pro-
cessor will be called 8192 times to obtain high-precision
values. Adam optimizer with initial learning rate being
0.09 is used in both phases.
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