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We theoretically investigate the Higgs oscillation in a one-dimensional Raman-type spin–orbit-coupled
Fermi superfluid with the time-dependent Bogoliubov–de Gennes equations. By linearly ramping
or abruptly changing the effective Zeeman field in both the Bardeen–Cooper–Schrieffer state and
the topological superfluid state, we find the amplitude of the order parameter exhibits an oscillating
behaviour over time with two different frequencies (i.e., two Higgs oscillations) in contrast to the single
one in a conventional Fermi superfluid. The observed period of oscillations has a great agreement
with the one calculated using the previous prediction [Volkov and Kogan, J. Exp. Theor. Phys. 38,
1018 (1974)], where the oscillating periods are now determined by the minimums of two quasi-particle
spectrum in this system. We further verify the existence of two Higgs oscillations using a periodic
ramp strategy with theoretically calculated driving frequency. Our predictions would be useful for
further theoretical and experimental studies of these Higgs oscillations in spin–orbit-coupled systems.

Keywords Higgs mode, spin–orbit coupled Fermi superfluid

1 Introduction

Collective excitation is important dynamics of many-body
quantum system, and becomes an interesting research
topic in all realm of physics. As a kind of gapped collec-
tive excitation, the Higgs mode is a quantum phenomenon
investigated in superconductors [1–4], magnetic materi-
als [5, 6], and ultracold atoms in continuous or lattice
system [7–11]. A review paper about Higgs mode in con-
densed matter physics can be found in Ref. [12]. Physi-
cally the Higgs mode is described by the amplitude fluctu-
ation of the order parameter, which is different from the
gapless Goldstone excitation related to the phase fluctua-
tion of order parameter.

While the appearance of Goldstone mode is easy to
observe when continuous symmetries are broken, sta-
ble Higgs modes require additional symmetry to stop
them from rapidly decaying into other low-energy exci-
tations. In high-energy physics, the stability of Higgs
mode is ensured by Lorentz invariance, whose role is re-
placed by particle–hole symmetry in condensed matter
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physics. The famous Bardeen–Cooper–Schrieffer (BCS)
Hamiltonian describing a weakly interacting superconduc-
tor is a typical example of hosting a stable Higgs mode
with particle–hole mechanism [1, 2], and related evidence
has also been found in conventional BCS superconduc-
tors [3, 13, 14]. The same BCS theory, which is usually
called Bogoliubov–de Gennes (BdG) mean field theory, is
also widely used to study the ultracold Fermi gases. The
Higgs mode has also been theoretically investigated in the
BCS–BEC (Bose–Einstein Condensate) crossover of Fermi
superfluid [7, 15, 16] with a time-dependent Bogoliubov–
de Gennes (BdG) simulation. The order parameter has a
close connection with the condensate fraction [17–19]. Fol-
lowing this relation, experimentally the Higgs mode has
been observed in a strongly interacting fermionic super-
fluid with radiofrequency field technique [20].

To excite the Higgs mode in ultracold Fermi gases, gen-
erally one can resort to the modulation of all parameters
which can decide the order parameter, e.g., the interaction
parameter 1/ (kFa) in the BCS–BEC crossover [7, 21–23].
In 1974, Volkov and Kogan studied the response of super-
conductors in the presence of a small perturbation with
the Green’s functions, and found that the order param-
eter |∆| oscillates with the period πh̄/∆gap, where the
∆gap is the energy gap in the spectrum of fermionic ex-
citations [24]. This also indicates that the Higgs mode is
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greatly influenced by the single-particle excitation. Usu-
ally the Higgs mode is mixed and coupled with the con-
tinuum spectrum of the single-particle excitation in many
Fermi superfluids and thus we will call it a Higgs oscilla-
tion instead in the remaining text. Since the development
of artificial gauge field in Fermi superfluid [25, 26], more
control knobs, like effective Zeeman field and spin–orbit
coupling strength, can be brought in to perturb the am-
plitude of order parameter. Higgs oscillation is expected
to display richer and much interesting dynamical behav-
ior in spin–orbit coupled (SOC) degenerate Fermi gases.
Previously topological phase transition of quench dynam-
ics and dynamical phases had been studied in SOC Fermi
superfluid [27, 28]. But to date there are quite few dis-
cussions to introduce the Higgs oscillation and its physical
properties in SOC Fermi superfluid. In this paper, we will
introduce two kinds of Higgs oscillations with different pe-
riods in SOC Fermi superfluid.

In this work, motivated by previous theoretical studies
and recent experiments, we explore the fascinating Higgs
oscillation in a one-dimensional (1D) SOC Fermi super-
fluid and aim to characterize two distinct Higgs oscilla-
tions by studying the related dynamic behaviour. With
the help of time-dependent BdG equation, we first inves-
tigate the properties of the order parameter as well as the
excitation spectrum on the tunable effective Zeeman field
in different phase regimes. By introducing three time-
dependent ways to tune the effective Zeeman field, we then
obtain the oscillating behaviours of the amplitude of the
order parameter in both the BCS and topological phases.
Finally, by means of a Fourier analysis, we numerically
calculate the oscillating frequency or period to straight-
forwardly characterize the Higgs oscillation, and compare
it with the previous theoretical prediction of Volkov and
Kogan in both two phases.

The paper is organized as follows. In the next section,
we will briefly introduce the model and Hamiltonian of a
SOC Fermi superfluid with the mean-field theory. In Sec-
tion 3, we probe and investigate two Higgs oscillations in
both the BCS and topological states, by tuning the effec-
tive Zeeman field in three different ways and investigating
the oscillating behaviors of the amplitude of the order pa-
rameter. Finally, we summarize and draw conclusions in
Section 4.

2 Model and Hamiltonian

We consider a 1D superfluid Fermi gas with Raman-
type spin–orbit coupling effect. The system can be de-
scribed by a single-channel model Hamiltonian H =∫

dx (H0 +Hint), where

H0 =
[
ψ†
↑ (x) , ψ

†
↓ (x)

] (
Hs + λk̂xσy − hσz

)(
ψ↑ (x)
ψ↓ (x)

)
(1)

is the SOC single-particle part in a uniform system and

Hint = g1Dψ
†
↑ (x)ψ

†
↓ (x)ψ↓ (x)ψ↑ (x) (2)

is the interaction Hamiltonian with g1D = −γh̄2n0/m de-
scribing an attractive s-wave contact interaction between
two spin states (σ =↑, ↓). n0 is the bulk density, and γ de-
notes a dimensionless interaction parameter. Here ψσ or
ψ†
σ is the field operator that annihilates or creates a spin σ

atom with mass m. Hs = −h̄2∂2x/ (2m)− µ describes the
motion of free atoms with chemical potential µ. The term
λk̂xσy − hσz, with the momentum operator k̂x = −i∂/∂x
and Pauli matrices σy and σz, is induced by the Raman
process, describing a synthetic spin–orbit coupling with
a strength λ ≡ h̄2kR/m and an effective Zeeman field
h = ΩR/2. Here kR and ΩR are the recoil momentum and
the Rabi frequency of Raman laser beams, respectively.
In the following, we will set h̄ = 1 for simplicity.

We use the standard mean-field theory to solve the
single-channel model Hamiltonian. Within the mean-field
approximation, we define an order parameter ∆(x) ≡
−g1D ⟨ψ↓ (x)ψ↑ (x)⟩, and the interaction Hamiltonian is
decoupled as

HMF
int ≃ −

(
∆ψ†

↑ψ
†
↓ +∆∗ψ↓ψ↑

)
− |∆|2 /g1D . (3)

After the standard Bogoliubov transformation ψσ =∑
η

(
uσηe−iEηtcη + v∗σηeiEηtc†η

)
to all field operators of

mean-field Hamiltonian, we obtain the BdG equations

HBdGϕη (x) = Eηϕη (x) (4)

in a Nambu spinor representation with BdG Hamiltonian

HBdG ≡


HS − h −λ∂/∂x
λ∂/∂x HS + h

0 −∆(x)
∆ (x) 0

0 ∆∗ (x)
−∆∗ (x) 0

−HS + h λ∂/∂x
−λ∂/∂x −HS − h

 ,

(5)

the quasi-particle wave function ϕη = [u↑η, u↓η, υ↑η, υ↓η]
T

and the corresponding quasi-particle eigenenergy Eη. The
BdG equations above should be solved self-consistently
with the order parameter equation

∆(x) = −g1D

2

∑
η

[
u↑ηυ

∗
↓ηf(Eη) + u↓ηυ

∗
↑ηf(−Eη)

]
(6)

and the density equation

n(x) =
1

2

∑
ση

[
|uση|2f(Eη) + |υση|2f(−Eη)

]
, (7)

where f(E) = 1/[eE/(kBT ) + 1] is the Fermi–Dirac distri-
bution function at a temperature T . It is important to
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Fig. 1 The chemical potential µ and the bulk value of order
parameter ∆bulk as a function of the effective Zeeman field h in
a 1D SOC Fermi gas with a box potential. The vertical dashed
line indicates the position of the phase transition between the
BCS and topological phases at hc ≃ 0.92EF .

note that the use of Nambu spinor representation dou-
bles the size of Hilbert space of the system. As a result,
there is a particle-hole symmetry in the Bogoliubov solu-
tions: for any “particle” solution with the wave function
ϕ
(p)
η = [u↑η, u↓η, υ↑η, υ↓η]

T and energy E
(p)
η ≥ 0, we can

always find the other “hole” solution with a wave function
ϕ
(h)
η =

[
υ∗↑η, υ

∗
↓η, u

∗
↑η, u

∗
↓η

]
T and energy E

(h)
η = −E(p)

η ≤
0. Generally these two states describe the same physi-
cal state. To remove this redundancy, we have added an
extra factor of 1/2 in the expressions for the order parame-
ter (6) and total density (7). In the following discussions,
we focus at zero temperature with a typical interaction
strength γ = π, the SOC strength λ = 1.5EF /kF . As
shown in Fig. 1, the system undergoes a phase transition
from a BCS superfluid to a topological superfluid when
continuously increasing the effective Zeeman field h over
a critical value hc ≃ 0.92EF [29], where the chemical po-
tential µ and the bulk order parameter ∆bulk present a
jump change. We need to emphasize that the value of hc
will be slightly influenced by some parameters in the nu-
merical calculation such as the size of box and the energy
cutoff.

In a uniform and infinite system, the continuous mo-
mentum k is a good quantum number. Thus, it is possible
to get an analytic expression of four quasi-particle eigenen-
ergy E

(p)
± (k) = −E(h)

± (k) ≡ E± (k) in Eq. (4) with [30]

E± (k) =

√
E2

k + h2 + k2λ2 ± 2
√
ξ2kk

2λ2 + E2
kh

2, (8)

where ξk = k2/ (2m)− µ and Ek =
√
ξ2k +∆2. The exci-

tation of the Higgs oscillation is closely related to the min-
imum of quasi-particle energy [24]. In Fig. 2, we present

Fig. 2 The positions and values of minimum in two quasi-
particle energy branches E±(k) as a function of the effective
Zeeman field h.

the positions and values of the minimum in two positive
quasi-particle energy branches E±(k) as a function of the
Zeeman field h. Typically there are three regimes sepa-
rated by hc ≈ 0.92EF and hsp ≈ 1.1EF , where the loca-
tions of minimum in two energy branches marked by blue
arrows in three upper panels are different. The locations
of minimum are both at k = 0 when h < hc, then the min-
imum of E+(k) is shifted to a nonzero momentum while
the one in E−(k) is still at k = 0 when hc < h < hsp, and
finally both of them are shifted to a nonzero momentum
when h > hsp.

3 Results and discussion

In this work, a 1D SOC Fermi superfluid is taken into ac-
count where the quasi-1D geometry is usually realized by
applying a strong confinement along both y and z axes
in a three-dimensional (3D) system [31, 32]. In general,
the order parameter is determined by the realistic param-
eters of the system, such as the interaction strength γ,
the SOC strength λ and the effective Zeeman field h. The
interaction strength can be well controlled by both con-
finement and Feshbach resonances as discussed in refer-
ences [33–38]. However, it is tough to change the inter-
action strength rapidly or in a very short time scale. In
addition, the SOC strength λ cannot be tuned over a large
range in ultracold atoms experiments. Thus, we choose
the effective Zeeman field h as the ramping parameter
in this work. First, the Zeeman field determines directly
the topological structure of the ground state as shown in
Fig. 1 and we can discuss for different cases. Besides, the
effective Zeeman field can be feasibly tuned in a long or
short time scale by the laser intensity or the detuning in
the experiments of the SOC Fermi gases. These experi-
ment features have been introduced in Refs. [25, 26, 39–
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Fig. 3 The oscillation of the order parameter |∆(t)| during
a slow ramp in the BCS state. The Zeeman field is tuned
adiabatically from hi = 0.9EF to hf = 0.7EF (blue solid line),
and from hi = 0.9EF to hf = 0.6EF (gray dotted line). The
inset is the Fourier analysis of the blue solid line with a peak
at ω ≃ 1.02EF indicating the oscillating frequency.

42]. In order to excite and investigate the Higgs oscilla-
tion, we begin with an initial Zeeman field hi to calculate
self-consistently its ground state, and then vary h over
time in a slow linear ramp way or by abruptly changing
to reach a final Zeeman field hf . Therefore, the dynamics
of the order parameter can be then studied by solving the
time-dependent BdG equation

i ∂
∂t
ϕη (x, t) = HBdGϕη (x, t) . (9)

3.1 Slow ramp of the effective Zeeman field

We begin with a slow linear ramp of the Zeeman field h,
namely h(t) = hi + (hf − hi) t/t0, in which t0 is the time
consumed to arrive at the final Zeeman field hf . Generally
the order of t0 can not be very small to make the system
evolve in an almost adiabatic process. So t0 should be at
least in an order of 1/EF .

We first choose an initial Zeeman field hi = 0.9EF ,
and linearly decrease h to hf = 0.7EF in a time regime
t0 = 4/EF . Obviously hi, hf < hc, which means that the
system is in the BCS state. As shown by a smooth blue
solid line in Fig. 3, the amplitude of the order parameter
first increases monotonically from 0.89EF (i.e., the equi-
librium value of |∆eq| at h = hi obtained from Eq. (4)),
and then oscillates around an average value ∆∞ = 1.08EF

(i.e., almost the equilibrium value of |∆eq| at h = hf ). The
oscillation period can be determined by the Fourier anal-
ysis of the oscillation of the order parameter. As shown
in the inset, there’s a frequency peak at ω ≃ 1.02EF in
the Fourier analysis, giving rise to an oscillation period
at about T1 = 2π/ω = 6.16/EF . In addition, Volkov and
Kogan predicted that the oscillation period of the Higgs

Fig. 4 The oscillation of the order parameter |∆(t)| during
a slow ramp in the topological state. The Zeeman field is tuned
from hi = 1.4EF to hf = 1.2EF . The Fourier analysis in the
inset reveals an oscillating frequency at ω ≃ 0.39EF .

oscillation should be [24]

TVK = π/∆gap, (10)

where ∆gap is usually the minimum of quasi-particle en-
ergy, and here

∆gap = ∆(−)
gap = min [E− (k)] (11)

is equal to a half of the minimum energy to break a Cooper
pair. Here the chemical potential µ and the Zeeman field
h in Eq. (8) should use their values at the final state
(h = hf ), while the order parameter should take the value
of ∆∞ [7]. And we find T

(−)
VK = 6.09/EF , which is quite

close to the numerical value T1 ≃ 6.16/EF obtained from
the Fourier analysis with a deviation rate about 1%. For
comparison, we also simulate with another set of parame-
ters (i.e., from hi = 0.9EF to hf = 0.6EF denoted by gray
dotted line), and the difference rate between TVK and the
numerically calculated one is also around 1%. So the Higgs
oscillation here is closely related to the excitation in the
lower branch of quasi-particle spectrum, and we call it the
low Higgs oscillation in the following discussion.

We now turn to consider the topological superfluid
where both values of the initial and final Zeeman field
are larger than the critical one hc. The Zeeman field is
linearly tuned from hi = 1.4EF to hf = 1.2EF . We can
know from Fig. 1 that increasing the Zeeman field in the
topological state will generally decreases the correspond-
ing order parameter in equilibrium. In Fig. 4, we find a
similar oscillation in the amplitude of the order parame-
ter as in the case of the BCS superfluid, around an almost
equilibrium value ∆∞ = 0.21EF . Similarly, we can fig-
ure out the oscillation period T1 ≃ 16.11/EF from the
Fourier analysis, which also agrees well with the theoret-
ical prediction T

(−)
VK = 16.01/EF within a 1% deviation.

Obviously this is also a low Higgs oscillation, originated
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Fig. 5 The oscillation of the order parameter |∆(t)| after
an abrupt ramp in the topological state. The Zeeman field is
changed suddenly from hi = 1.4EF to hf = 1.2EF at time
t = 0. The Fourier analysis in the inset reveals two oscillating
frequencies at ω ≃ 0.35EF and 3.91EF .

from the excitation in the lower quasi-particle spectrum
E−(k). It should also be noted that there are some tiny
sawtooth-like structures in the oscillation curve at rela-
tively large time, which make the curve not so smooth. In
fact these detailed structures are closely associated to the
other Higgs oscillation which will be discussed in the next
subsection.

Overall, we find that the oscillation period of the Higgs
oscillation obtained numerically from its dynamics agrees
well with Volkov and Kogan’s prediction in both the BCS
superfluid and the topological one. Moreover, we also run
simulation and make the Zeeman field h come into the
regime hc < h < hsp, and investigate the Higgs oscillation
there. However, we find a complex oscillating behaviour
in the order parameter, and the numerical result of the pe-
riod is quite far away from TVK due to the rapid variation
of µ and ∆bulk (see Fig. 1), or the switch of the position
of minimum in the spectrum E± (k) (see Fig. 2). Here we
argue that these two reasons make Volkov and Kogan’s
prediction cannot work well in this regime.

3.2 Abrupt ramp of the effective Zeeman field

In this subsection, we consider an abrupt way to vary the
Zeeman field, and investigate the following quench dynam-
ics of the system. Similarly we prepare the system in the
ground state at an initial Zeeman field hi, and then change
immediately the Zeeman field to its destination value hf
at time t = 0.

We first discuss the case in the topological superfluid
by suddenly tuning the Zeeman field from hi = 1.4EF to
hf = 1.2EF and study the quench dynamics of the sys-
tem. The result of the oscillating behaviour in the order
parameter and the associated Fourier analysis are present
in Fig. 5. In contrast to the single oscillation period in
the conventional 3D Fermi gas [7], we find that there ex-

Fig. 6 The oscillation of the order parameter |∆(t)| after an
abrupt ramp in the BCS state. The Zeeman field is changed
suddenly from hi = 0.9EF to hf = 0.7EF at time t = 0. The
Fourier analysis in the inset reveals two oscillating frequencies
at ω ≃ 1.00EF and 3.72EF .

ist two distinct periods in the amplitude of the order pa-
rameter oscillating around ∆∞ = 0.21EF . ∆∞ is usually
smaller than the equilibrium value of the order parameter
at h = hf in the case of an abrupt ramp. The bigger pe-
riod originates from the excitation in the lower branch of
the energy spectrum, as we discussed in the last subsec-
tion and in Fig. 4. However, we find that the smaller pe-
riod, i.e., the sawtooth-like structure in the oscillation, can
be well explained by the excitation to the higher branch
E+ (k) in Eq. (8) in the quasi-particle energy spectrum,
giving rise to the other excitation gap energy

∆(+)
gap = min [E+ (k)] (12)

for calculating the theoretical value using Volkov and Ko-
gan’s prediction [24]. The existence of two types of the
Higgs oscillation can be also seen clearly from the Fourier
analysis in the inset of Fig. 5 which presents two frequency
peaks at ω ≃ 0.35EF and ω ≃ 3.91EF marked by two ar-
rows. The low-frequency peak represents the low Higgs
oscillation coming from the lower energy branch E− (k),
while the high-frequency peak supports the other Higgs os-
cillation with a smaller period T2 ≃ 1.60/EF . This Higgs
oscillation with a small period can be called the high Higgs
oscillation, and has an about 4% deviation from Volkov
and Kogan’s prediction T

(+)
VK = π/∆

(+)
gap = 1.66/EF using

the higher branch in the quasi-particle spectrum. Here,
the ratio between two periods is about T1/T2 ≈ 10, suffi-
ciently large to make these two Higgs oscillations can be
clearly distinguished.

Likewise, we then turn to consider the existence of
high Higgs oscillation in the quench dynamics of the BCS
state, which has not been probed in the case of a slow
ramp as in Fig. 3. We illustrate the results in Fig. 6
by preparing a ground state at hi = 0.9EF and then
suddenly changing the Zeeman field to hf = 0.7EF at
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time t = 0. In general, the order parameter |∆| oscillates
around ∆∞ = 1.05EF , and displays an almost clear period
for t < 25/EF . However, a complex oscillation behaviour
turns out at larger time, and makes it very tough to dis-
tinguish the periodic oscillation by naked eyes. Similarly,
by means of the Fourier analysis of the oscillation dynam-
ics, we can also find two frequency peaks marked by two
arrows in the inset of Fig. 6. Using the peak frequency,
the calculated periods of these two periodic oscillations are
T1 = 6.31EF and T2 = 1.69EF respectively, which just fit
well with Volkov and Kogan’s prediction T (−)

VK = 6.41/EF

and T
(+)
VK = 1.66/EF using two energy branches in the

quasi-particle spectrum. Compared with the topological
case in Fig. 5, the low-frequency peak of the low Higgs
oscillation here is still remarkable, while the signal of the
high Higgs oscillation is relatively much weaker. In fact
similar to other resonance phenomena, these two Higgs
oscillations are always coupled with each other, only a
large period (or frequency) contrast can help to distin-
guish them. However, the period ratio T1/T2 ≈ 3.73 here
is much smaller than the one in the topological case, which
is consistent with the expectation from Fig. 2, i.e., the
minima of two energy branches approaching each other.
Thus, these factors make two Higgs oscillations tangled
with each other and display a complex dynamical be-
haviour in Fig. 6.

3.3 Further verification of two Higgs oscillations

To further probe and study these two Higgs oscillations
in both the BCS and topological states, we introduce a
new way to tune the Zeeman field following the resonance
theory. In the last two sections, we find that the Volkov
and Kogan’s prediction T (−)

VK and T (+)
VK agree well with the

corresponding numerical results. Thus, we can use these
frequencies calculated theoretically as a driving frequency
to excite two Higgs oscillations respectively in only 1.5
oscillation periods (longer driving-resonance time can do
help to strengthen the resonance effect and is beneficial to
the associated Fourier analysis), and stop driving in the
following time, namely

h(t) = hi +A sin
(
2πt/T

(±)
VK

)
, (13)

with A being a small amplitude of the perturbation. In
fact a larger value of A will not only strengthen the am-
plitude of oscillation, but also possibly make the system
comes into different regimes as shown in Fig. 2. So we
choose A = 0.1EF in the following discussions. With this
periodic ramp strategy described above, we can then in-
vestigate its evolving dynamics at an initial Zeeman field
hi.

In the BCS state with a Zeeman field hi = 0.6EF , we
find two different oscillations in the amplitude of the or-
der parameter as anticipated. The behaviour is shown

Fig. 7 (a) The oscillation of the order parameter |∆(t)| after
a periodic ramp in Eq. (13) at hi = 0.6EF . (b, c) are the
corresponding Fourier analysis. Solid and dotted lines are the
high and low Higgs oscillations, respectively.

in Fig. 7(a), where the blue dotted line depicts the low
Higgs oscillation with a big oscillation period, and the
olive solid line is the high Higgs oscillation with a much
smaller period. The big period contrast of these two Higgs
oscillations makes it quite easy to distinguish each other
by naked eyes. In panels (b) and (c) of Fig.7, the corre-
sponding results from the Fourier analysis are present and
agree well with Volkov and Kogan’s prediction in Eq. (10).
The low Higgs oscillation in the blue solid line on the left
panel exhibits a clear low-frequency peak at ω ≃ 1.31EF

(i.e., T1 = 4.80/EF ), not far from the position of the high-
frequency peak for the high Higgs oscillation marked by
an arrow on the right panel. The lower peaks in (c) are
from coupling effect of the Higgs oscillation to other ex-
citations, and we have checked that this coupling can be
weakened by taking a relatively larger driving amplitude
A.

In addition, we show the results in the topological phase
in Fig. 8 with hi = 1.1EF where two Higgs oscillations are
manifested in two significant oscillating behaviours of the
order parameter. Different with the case in the BCS state,
it is now much easier to distinguish two Higgs oscillations
owing to their larger period contrast which may weaken
the coupling between two Higgs oscillations following the
resonance theory. The Fourier analysis in panels (b) and
(c) of Fig. 8 further verifies the existence of two Higgs
oscillations and shows an excellent agreement with the
Volkov and Kogan’s prediction in Eq. (10).

In a word from Figs. 7 and 8, we can clearly distinguish
the high Higgs oscillation (solid lines) and the low Higgs
oscillation (dotted lines) by this periodic ramp strategy
in Eq. (13) using their own driving frequency calculated
from Volkov and Kogan’s prediction at fixed 1.5 periods.
The oscillation amplitude of low Higgs oscillation is always
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Fig. 8 (a) The oscillation of the order parameter |∆(t)| after
a periodic ramp in Eq. (13) at hi = 1.1EF . (b, c) are the
corresponding Fourier analysis. Solid and dotted lines are the
high and low Higgs oscillations, respectively.

larger than that of the high Higgs oscillation in both the
BCS superfluid and the topological superfluid. We use this
strategy to further verify the existence of two Higgs oscil-
lations which can be determined by two energy branches
in the quasi-particle spectrum. The large period contrast
in the topological state makes it much easier to display
these two Higgs oscillations than that in the BCS state.

4 Conclusions

In summary, we theoretically probe and study two Higgs
oscillations in a one-dimensional Raman-type spin–orbit-
coupled Fermi superfluid, by solving the time-dependent
BdG equations with three different ways to tune the ef-
fective Zeeman field. In contrast to the single Higgs os-
cillation in the conventional Fermi superfluid, we find two
distinct Higgs oscillations in both the BCS and topolog-
ical states when investigating numerically the oscillation
of the order parameter. The Higgs oscillation can be well
explained from the excitation in two quasi-particle en-
ergy spectrum, whose oscillation periods exhibit a great
agreement with previous Volkov and Kogan’s theoretical
prediction over a large range of the Zeeman field except
for crossing the phase transition point. Further research
could be undertaken to thoroughly explore the oscillation
behaviours related to other physical observables, such as
density and spin polarization.
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