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Non-Hermitian systems as theoretical models of open or dissipative systems exhibit rich novel physical
properties and fundamental issues in condensed matter physics. We propose a generalized local–global
correspondence between the pseudo-boundary states in the complex energy plane and topological in-
variants of quantum states. We find that the patterns of the pseudo-boundary states in the complex
energy plane mapped to the Brillouin zone are topological invariants against the parameter defor-
mation. We demonstrate this approach by the non-Hermitian Chern insulator model. We give the
consistent topological phases obtained from the Chern number and vorticity. We also find some novel
topological invariants embedded in the topological phases of the Chern insulator model, which enrich
the phase diagram of the non-Hermitian Chern insulators model beyond that predicted by the Chern
number and vorticity. We also propose a generalized vorticity and its flipping index to understand
physics behind this novel local–global correspondence and discuss the relationships between the local–
global correspondence and the Chern number as well as the transformation between the Brillouin zone
and the complex energy plane. These novel approaches provide insights to how topological invariants
may be obtained from local information as well as the global property of quantum states, which is
expected to be applicable in more generic non-Hermitian systems.
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1 Introduction

Non-Hermitian quantum systems have attracted growing
attention due to their novel physical properties beyond
Hermitian systems and potential applications in quantum
computation [1–4]. In general, non-Hermiticity appears in
open or dissipative systems, such as energy gain or loss,
or non-conservation of probability associated with cur-
rents [1, 5–7]. The non-Hermitian systems contain com-
plex eigen energies and nonorthogonal eigenstates, which
motivate many attempts to explore their novel physi-
cal phenomena and potential applications beyond con-
ventional Hermitian systems, and to explore what novel
mathematical structures exist beyond those of canonical
quantum mechanics [3, 8, 9]. A lot of efforts have been
focused on the classification of the topological equiva-
lence classes based on the symmetry of systems in con-
densed matter physics and on the physical properties of

∗This article can also be found at http://journal.hep.com.
cn/fop/EN/10.1007/s11467-021-1122-5.

these topological phases, as well as their potential appli-
cations [2, 3, 10–15].

The rich structures of complex energy band gaps and
complex exceptional points, such as the robust point-gap
and line-gap structures, lead to some novel phenomena
beyond Hermitian systems [3]. It has been found that
non-Hermiticity enriches topological phases beyond those
of Hermitian systems. The 10-fold topological equiva-
lence classes of Hermitian systems based on the Altland–
Zirnbauer (AZ) symmetry classification were extended to
38-fold topological equivalence classes due to additional
sublattice symmetry and pseudo-Hermticity [2, 3]. These
topological equivalent phases of quantum systems can be
characterized by topological quantum numbers, such as
the winding number, Chern number and vorticity [16, 17].
The vorticity defined by the complex angle of the com-
plex energy band and has been shown to be equivalent
to the winding number classifying the topological invari-
ants for Hermitian systems [3, 18]. The robust topolog-
ical phases are protected by the symmetries of the sys-
tem. The energy band gap structure and symmetries
can be remained under a unitary flattening and Hermi-
tianization of these systems [3]. Even though the non-
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Hermiticity of systems deforms the Bloch-wave behavior
leading to the skin effect for lattice models [19–23], the
biorthogonal polarization was introduced to modify the
conventional bulk–boundary correspondence to detect the
zero modes [24–27], the non-trivial edge states and finite-
size effects in non-Hermitian systems, such as the Su–
Schrieffer–Heeger (SSH) model [28–31]. Thus, the bulk–
boundary correspondence is still valid for non-Hermitian
systems [24, 25, 32–34]. In particular, it has been found
that one can construct a non-Hermitian counterpart to
any Hermitian system whose long-time dynamics realizes
every anomalous Hermitian boundary mode of the AZ
classes, which establishes a correspondence between the
topological classifications of (d+1)-dimensional gapped
Hermitian systems and d-dimensional point-gapped non-
Hermitian systems [35].

In particular, deviations of the quantized Chern number
and the quantum Hall conductance in the non-Hermitian
Chern insulator were found due to non-Hermitian ef-
fects [10, 11]. More interestingly, the quantum Hall con-
ductance in the non-Hermitian Dirac model can be gener-
alized to quantum Hall admittance, namely the quantum
Hall susceptance emerges, such as quantum Hall capac-
ity and induction in non-Hermitian systems. This could
inspire fundamental insights into non-Hermitian systems
and lead to potential application [12].

Non-Hermiticity yields unconventional characteristics
in physical systems, especially the existence of the com-
plex eigen energies and nonorthogonal eigenstates high-
lights some fundamental issues, such as use of the pseudo-
Hermitian concept to reformulate the canonical domain
of non-Hermitian systems and relativistic non-Hermitian
quantum mechanics [8, 9, 36, 37].

The topological classification of quantum states is based
on the symmetries of quantum systems, their energy gap
structures and the bulk–boundary correspondence [2, 3,
38]. In particular, the bulk–boundary correspondence un-
covers the bulk–boundary duality, in which the edge states
play an essential role in the topological phases of systems.
This duality implies that a part of local information in
systems dominates some of their global properties. This
roots the holographic technology in optics, and inspires us
to explore some way to capture the global topological in-
variants based on the local information of quantum states
in non-Hermitian systems.

The complex energy bands in non-Hermitian systems
and their complex band gap structures are mapped to the
complex energy plane, which provides a platform to study
the topological invariants in terms of local information in
the complex energy plane. The complex exceptional point
gap and line gap defects are robust and are associated
with the topological phases [3]. This provides some hints
about how to search for local states in the complex energy
plane in order to detect the topological invariant.

From a mathematical point of view, topology provides
a precise tool to study the global behavior of geometric

objects. Many different topological indexes, or numbers,
are used to characterize different topological invariants for
different geometric objects, such as the intersection num-
ber, winding number, linking number, Chern number and
Euler characteristic. They label the homeomorphic equiv-
alent classes for different geometric objects [39]. Physicist
realized some quantum states exhibiting novel geometric
properties and topological invariants, which can be de-
scribed by the winding number, Berry phase, Berry cur-
vature and Chern number [40, 41]. Quantum Hall con-
ductance can be expressed in terms of the Chern number,
which inspires a lot of attempts to explore the geomet-
ric and topological properties of quantum states and their
potential applications. The Berry phase and Berry cur-
vature depend on the wave function of the system and
are associated with the Chern number for Hermitian sys-
tems [40, 41]. Recently, introduced the wrapping number
was as a unified approach to obtain the topological invari-
ants and give the correlation length, universality classes,
and scaling laws associated with topological phase tran-
sitions in arbitrary dimensions and symmetry classes for
Dirac models [42, 43].

In this paper, we propose a novel approach for char-
acterizing topological invariants in non-Hermitian sys-
tems based on the local–global correspondence between
the pseudo-boundary states (PBS) in the complex en-
ergy plane and topological invariants of the quantum
states. We first set up the conceptual and mathematical
framework of this correspondence in Section 2, in which
we present the mathematical structure and physical con-
clusions of the local–global correspondence, how to con-
nect the PBS to the topological invariants. We also give
this correspondence and its homotopic continuous map.
In Section 2.2, we demonstrate the local–global corre-
spondence by repeating the phase diagram of the non-
Hermitian Chern insulator model. Firstly, we present the
topological invariant patterns in the Brillouin zone (BZ),
which are generated from the PBS in the complex energy
plane. We then obtain a phase diagram that is consistent
with previous results in order to demonstrate the valid-
ity of the local–global correspondence. Next, we present
a novel topological invariant embedded in the phase dia-
gram based on this correspondence. This topological in-
variant is hidden in the conventional approaches, such as
Chern number, winding number and vorticity [16, 17]. In
Section 3, we discuss the physical and mathematical mean-
ings of the topological invariants behind the local–global
correspondence and their relationships to the Chern num-
ber and vorticity. We study the transformation from the
BZ to the complex energy plane and find the Jacobian de-
terminant to be zero for the PBS. This implies that the BZ
and the complex energy plane are not one-to-one. Finally,
we present our conclusions and outlook in Section 4. In
the Appendix, we give the detailed algorithm of the local–
global correspondence and the derivation of the Jacobian
determinants of the transformation from the BZ to the
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complex energy plane.

2 The local–global correspondence on complex

energy plane

2.1 The pseudo boundary states in the complex energy
plane

Let us consider a non-Hermitian Hamiltonian H† ̸= H.
Suppose that the Hamiltonian is bounded and works in
the Brillouin zone (BZ) with a parameter space, H(k, λ),
where k ∈ BZd is the BZ and λ ∈ Mp

λ is a set of pa-
rameters, in which d is the dimension of the BZ and p
is the dimension of the parameter space. A pair of the
eigen equations for a non-Hermitian Hamiltonian and its
adjoint operator are given by [16, 17]

H(k, λ)|ψR
n (k, λ)⟩ = En(k, λ)|ψR

n (k, λ)⟩ (1a)

H†(k, λ)|φL
n(k, λ)⟩ = E∗

n(k, λ)|φL
n(k, λ)⟩. (1b)

where R and L label the right and left sides of the in-
ner product respectively for convenience to non-Hermitian
systems. Suppose that the Hilbert space for this non-
Hermitian system is separable, then the eigen vectors of
the Hamiltonian and its Hermitian adjoint consist of a
biorthogonal basis on the Hilbert space [8, 9],

⟨φL
m(k, λ)|ψR

n (k, λ)⟩ = δmn (2)

where |ψR
n (k, λ)⟩ and ⟨φL

n(k, λ)| are the corresponding
eigenstates of the Hamiltonian and its Hermitian adjoint.
The completeness relation is given by∑

n

|ψR
n (k, λ) ⟩⟨φL

n(k, λ)| = I, (3)

where I is the identity matrix.
Let us first set up a conceptual framework to present a

local–global correspondence between the boundary states
in the complex energy plane and the topological invariants
of the non-Hermitian system. The schematic illustration
is given in Fig. 1.

• For given (k, λ) ∈ BZd × Mp
λ, the eigen equation

of the Hamiltonian gives the eigen energy bands
and their corresponding eigen vectors. The complex
eigen energy bands can be mapped according to πε :
En(k, λ)→ (En,R(k, λ), En,I(k, λ)) ∈ Ec, where Ec is
the complex energy plane and (En,R(k, λ), En,I(k, λ))

are the real and imaginary parts of the energy band
respectively.

• For given a specific parameter λ ∈ Mp
λ, the com-

plex energy band in the BZ is mapped to the com-
plex energy plane in general forms a few of the two-
dimensional regions in the complex energy plane, la-
beled by Ec, which are called the bulk bands [18].

Fig. 1 The schematic representation of the local–global cor-
respondence between the PBS in the complex energy plane
and the topological invariants of non-Hermitian systems. For
a given set of parameters λ ∈ Mp

λ, the eigen energies of the
non-Hermitian Hamiltonian can be transformed into the com-
plex energy plane, Ec ⊂ C, to form a band (green region), in
which the red curve ∂Ec denotes the boundary states of the
bulk band. We refer to these boundary states located at ∂εc

as the PBS.

• The phase diagram of the non-Hermitian system can
be represented by a union of subspaces in the pa-
rameter space, Λ =

⋃
α Λα, where λα ∈ Λα denotes

the topological phase α which are characterized by
a topological index such as the winding number wα,
Chern number Cα or vorticity να [17].

• For a given energy band we define some states ψR,λα

n,PBS

of the bulk band, whose their corresponding eigen
energies are located at the boundary of the energy
band Ec,

ψR,λα

n,PBS :=

ψR
n (k, λ)

∣∣∣∣∣∣∣∣
HψR

n (k, λ) = Enψ
R
n (k, λ),

En(k, λ) = (En,R, En,I) ∈ ∂Ec
k ∈ B ⊂ BZ,
λ ∈ Λα ⊂Mp

λ,

 .

(4)

In other words, the subset in the BZ B is B ←{
ψR,λα

n,PBS

}
↔ (En,R, En,I) ∈ ∂Ec ⊂ Ec, where ∂Ec

is the boundary of the bulk band. We refer to ∂Ec

(ψR,λα

n,PBS) as the pseudo boundary state (PBS) in the
complex energy plane. In general, the bands Ec vary
with the parameters, leading to variation of the PBS.

• For a given topological phase in the parameter space,
Λα, the PBS

{
ψR,λα

n,PBS

}
mapped to the BZ form a

pattern, which is defined as

P (λ) :=

(kx, ky)

∣∣∣∣∣∣∣
k ∈ B ⊂ BZ,
λ ∈ Λα ⊂Mp

λ,

B ←
{
ψR,λα

n,PBS

}
,

 . (5)

P (λ) and B are in one-to-one correspondence with
each other. P (λ) denotes the pattern of the PBS in
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Fig. 2 (a) The topological phase diagrams, in which C = 0,±1 and ν0(π) ̸= 0 characterize the topological gapped and gapless
phases with the white (gapped) and color (gapless) regions, respectively [16]. (b–e) The complex energy bands are transformed
to the complex energy plane for the parameters, m = ±0.5, δ = 0.25, 2.75, respectively, which correspond to the gapped phases
C = ±1, 0. (f–i) The patterns of the PBS in the BZ for the parameters in the ranges Λα,Λβ ,Λσ, and Λρ. The flaws in the line
are numerical approximations. (see Appendix A)

the BZ, B is the position of the PBS in the BZ, and
the PBS is the set of boundary states in the complex
energy plane. Their concrete representations can be
seen in the sub figures of Fig. 2 from (f) to (i).

It should be remarked that the PBS as given in Eq. (4)
is well-defined when the wave vector in the BZ is contin-
uous. In practice, we obtain the PBS using the numerical
methods (see Appendix A), in which the approximation
depends on the discrete precision of the BZ and the input
of the radius of the ball pivoting algorithm [44]. How-
ever, the approximation of the PBS only affects the pre-
cision of the pattern of PBS in the BZ, and does not af-
fect the structure of the pattern when the parameters are
within the gapped regions. In other words, the numer-
ical method and its approximation does not change the
results because the topological invariant is robust and the
numerical method is efficient.

2.2 The local–global correspondence

Based on above conceptual and mathematical frameworks,
we propose a local–global correspondence between the
PBS and topological invariants.

Consider a generalized non-Hermitian Dirac model with
the Hamiltonian, H(k, λ) = h(k, λ) · σ, where h(k, λ) ∈
C. Suppose that there exist two kinds of energy band
structures in the parameter space, gapped and gapless,
which denote Λα and Λβ , respectively.

• The PBS
{
ψR,λα

n,PBS

}
of the energy band in the com-

plex energy plane determines the topological invari-
ants in the parameter space. The pattern P (λα) in
the BZ is a topological invariant in the gapped phases,

P (λ′α) = P (λα) for ∀λα, λ′α ∈ Λα, (6a)

B ←
{
ψR,λα

n,PBS

}
↔ ∂Ec, (6b)

where Λα denotes the gapped phases.
• The P (λβ) of the PBS in the BZ vary in the gapless

phases,

P (λ′β) ̸= P (λβ) for ∀λβ , λ′β ∈ Λβ , (7a)

B ←
{
ψ
R,λβ

n,PBS

}
↔ ∂Ec, (7b)

where Λβ denotes the gapless phases. The boundary
of the topological phase transition can be detected
by changes is the pattern P (λ) when the parameters
vary, crossing the boundary between different topo-
logical phases.

It should be remarked that (i) the PBS is composed of
only some of the eigen states of the energy band in the
complex energy plane, but that dominates the topologi-
cal invariants against the parameter deformation in the
region of the topological phase. This implies that there
exists a correspondence between the PBS (local informa-
tion) and the topological invariant (global property of sys-
tems). Thus, we refer to this correspondence between the
PBS and the topological invariant defined in Eq. (6) as
the local–global correspondence, which can be regarded as
a generalized bulk–boundary correspondence in the com-
plex energy plane. (ii) In the gapless phase, two bulk
bands in the complex energy plane combine together such
that some of the PBS disappear and become bulk states.
The pattern P (λ) of the PES in the BZ becomes unstable
as the parameters vary. (iii) We found that the length
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and the analytic behavior of the PBS change discontin-
uously at the boundary between the gapped and gapless
phase, which provides a criterion for the topological phase
transition. The detailed description was presented else-
where [50]. (iv) For Hermitian cases, the energy bands
are real and the complex energy plane disappears. Thus,
this approach is not available for Hermitian cases.

2.3 The homotopic continuous maps

For given (k, λ) ∈ BZd ×Mp
λ, we define two continuous

maps,

f(λ) : ∂εc(λ)→ P (λ) ∼ B ⊂ BZ (8a)
g(λ′) : ∂εc(λ′)→ P (λ′) ∼ B ⊂ BZ (8b)

where ∀λ, λ′ ∈ Λα. In general, these two maps produce
two patterns of the PBS in the BZ. The patters vary with
varying the parameters. On the other hand, we define two
homotopic functions [39],

H(λ, ξ) = (1− ξ)f(λ) + ξg(λ), ∀λ ∈ Λα, (9)

where ξ ∈ [0, 1]. When ξ = 0, H(λ, λ) = f(λ) and ξ varies
from 0 to 1, H(λ, ξ) varies from f(λ) to g(λ) continuously.
For ∀λ, λ′ ∈ Λα we have P (λ) = P (λ′), namely f(λ) and
g(λ) are homotopic continuous maps and the pattern P (λ)
is a topological invariant under homeomorphisms. How-
ever, for ∀λ ∈ Λα and ∀λ′ ∈ Λβ , where Λα ∩ Λβ = ∅,
we have P (λ) ̸= P (λ′), namely f(λ) and g(λ) are not ho-
motopic continuous maps. This mathematical represen-
tation of the continuous map tells us that the topological
invariant of quantum phase in the parameter space is a
homotopic equivalence.

The detailed description of the local–global correspon-
dence depends on the concrete model. We demonstrate

this correspondence using a typical non-Hermitian model,
Chern insulator model, in the following section. In gen-
eral, the energy band near the Fermi energy play a crucial
role in dominating the physical properties of the system.
The local–global correspondence reveals that only some
of the states in the energy band near the Fermi energy
dominate the topological invariants and their phase tran-
sitions.

3 Non-Hermitian Chern insulator model

3.1 Topological phase diagram

To test the local–global correspondence, we will repeat
the phase diagram of the non-Hermitian Chern insu-
lator model to demonstrate the validity of the local–
global correspondence. The non-Hermitian Chern insu-
lator model contains rich physics and has been studied
extensively [16, 17]. Let us first recall some basic prop-
erties of the non-Hermitian Chern insulator model. The
Bloch Hamiltonian of the non-Hermitian Chern insulator
is given by [16, 17]

H(k) = h(k) · σ, (10)

where

hx(k) = t sin kx, (11a)
hy(k) = t sin ky − iδ, (11b)
hz(k) = m+ t cos kx + t cos ky, (11c)

where t,m, δ ∈ M3
λ are real parameters and t ∈ R+.

(kx, ky) ∈ [−π,π]2. The energy bands of the model are
obtained

E± = ±
√
m2 − δ2 + 2t2(1 + cos kx cos ky) + 2mt(cos kx + cos ky)− 2itδ sin ky. (12)

The real and imaginary parts of the energy bands are
obtained by

ER =

√
ϵ+
√
ϵ2 + ω2

2
, (13a)

EI =

√
−ϵ+

√
ϵ2 + ω2

2
, (13b)

where

ϵ = 2t2 +m2 − δ2 + 2t2 cos kx cos ky
+ 2mt(cos kx + cos ky), (14a)

ω = −2tδ sin ky. (14b)

The complex energy bands can be rewritten as

E± = ±(ER + σiEI), (15)

where σ = 1 for ω ≥ 0 and σ = −1 for ω < 0.
The eigen vectors of the Hamiltonian for the non-

Hermitian Chern insulator model are given by [16, 17]

|ψR
±⟩ =

1√
2E±(E± − hz)

(
hx − ihy
E± − hz

)
, (16)

and its dual vectors are

⟨ψL
±| =

1√
2E±(E± − hz)

(
hx + ihy E± − hz

)
. (17)
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The topological phase transition occurs when the com-
plex energy band closes, such that ER = EI = 0. Using
Eqs. (13) and (14), the quantum phase transitions hap-
pen at the exceptional points, ky = 0,±π. The phase
transition boundary is given by [16]
|m| ≤ |δ| ≤ |m+ 2t| for m ≥ −t, (18a)
|m+ 2t| ≤ |δ| ≤ |m| for m ≤ −t, (18b)

for ky = 0 and
|m− 2t| ≤ |δ| ≤ |m| for m ≥ t, (19a)
|m| ≤ |δ| ≤ |m− 2t| for m ≤ t, (19b)

for ky = ±π. Let us suppose that t = 1 for conve-
nience without loss of generality. The exceptional lines
Eqs. (18) and (19) separate different kinds of quantum
phases, such as gapped and gapless phases in the m–δ
plane. The gapped phase is characterized by the Chern
number [16, 17],

C± =
1

2π

∫
BZ

Ω±(k)d2k, (20)

where Ω±(k) is the Berry curvature, which is given by [12]

Ω±(k) = ∓1

2
ĥ ·

(
∂ĥ

∂kx
× ∂ĥ

∂ky

)
, (21)

where ĥ is the unit vector of h.
Interestingly, for non-Hermitian systems, the Chern

number could be complex in general. The quantum Hall
conductance can be generalized to quantum Hall admit-
tance for the non-Hermitian Dirac model [12]. The imag-
inary part of the Chern number can be interpreted as
susceptance, which implies that intrinsic capacitance and
induction could emerge in non-Hermitian systems. How-
ever, for the non-Hermitian Chern insulator model, nu-
merical results indicate that the imaginary part of the
Chern number is zero in the gapped phase [16, 17, 51].

The gapless phase can be characterized by the vorticity,
which is defined by [16, 17]

νmn(kEP) =
1

2π

∮
C(kEP)

∇k arg[Em(k)− En(k)] · dk,

(22)

where C(kEP) in Eq. (22) denotes a loop encircling the
exceptional point in the BZ. Figure 2(a) shows the phase
diagram obtained from the exceptional lines in Eqs. (18)
and (19) [16, 17], in which the white regions are the topo-
logical gapped phase characterized by the Chern number
C = 0,±1 and the other colored regions are the gapless
phases characterized by the vorticity ν [16, 17]. The phase
diagrams of the Chern insulator model in the parameter
space based on the exceptional lines in Eqs. (18) and (19)
are shown in Fig. 2(a).

3.2 The local–global correspondence and topological
invariants

The local–global correspondence in the complex energy
plane provides a novel way to explore the topological
invariants of non-Hermitian systems. This approach is
implemented based on the conceptual and mathematical
framework presented in Section 2. The detailed numerical
algorithm is presented in Appendix A. The complex en-
ergy bands are transformed to the complex energy plane
in Figs. 2(b)–(e), in which the blue and red parts of the
complex energy bands are negative and positive, respec-
tively. The patterns of the PBS in the BZ are plotted
in Figs. 2 (f)–(i), which correspond to the boundary of
the complex energy bands in Figs. 2(b)–(e). We find that
the patterns are robust and topological invariant in the
gapped topological phases, Λα,Λβ ,Λσ, and Λρ. The pat-
terns in the gapless phase vary with the varying param-
eters. At the boundary between the gapped and gapless
phases, the patterns become unstable and sensitively de-
pend on the parameter values [51]. It should be pointed
out that when we investigate the patterns in the BZ we
should note the translation symmetry and the periodic-
ity of the BZ. Thus, the patterns in Figs. 2(h) and (i) are
topologically equivalent, and have the same lengths. They
become exactly the same due to the translation symmetry
of the BZ. Namely, when the BZ is translated from the
Γ to M point, the patterns in Figs. 2(h) and (i) become
the same [51]. Similarly the patterns in Figs. 2(f) and (g)
are also topologically equivalent. These results are con-
sistent with the previous results obtained using the Chern
number and winding number [16, 17].

Interestingly, when we investigate the topological in-
variants of the patterns of PBS in the BZ in the pa-
rameter regions m = 0.5, 1.5 and 2.5, with δ = 0.25, in
Fig. 3, we find a novel topological invariant embedded in
these regions beyond that given by the Chern number. In
Fig. 3(a) we plot a part of the topological phase diagram
to compare the topological invariants using both of the
local–global correspondence and the Chern number. We
plot the energy bands in the complex energy plane and
the patterns of the PBS in the BZ for different parame-
ter regions in Figs. 3(b)–(d), in which the regions of the
three bands looks similar, but their PBS are quite differ-
ent. The patterns of the PBS are plotted in Figs. 3(e)–(g).
We find that the patterns in Figs. 3(f) and (g) are exactly
the same and are robust in the parameter region, Λγ and
Λη. This implies that the quantum states in the parameter
regions of Λγ and Λη contain some of the same topologi-
cal invariants, but that these are different from one in the
parameter region Λβ . All of these properties are the same
in the negative m region in Fig. 3.

For the gapless region in the phase diagram, ν0(π) ̸= 0,
the patterns of the PBS in the BZ vary with the varying
parameters. Hence, the energy band gap plays an essential
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Fig. 3 (a) The sub-phase diagram in the parameter space within 0 ≤ m/t ≤ 3 and −1 ≤ δ/t ≤ 1. (b–d) The complex energy
bands are transformed to the complex energy band plane for the parameters, m = 0.5, 1.5, and 2.5 with δ = 0.25, respectively.
(e–g) The patterns of the PBS in the BZ for the corresponding parameter regions, Λβ ,Λγ and Λη, in which the flaws on the
line are numerical errors. (see Appendix A)

role in protecting the topological phases of non-Hermitian
systems. At the boundary between the gapped and gapless
regions, the patterns of the PBS are sensitively unstable
and depend on the variation of parameters. These proper-
ties of the patterns of the PBS provide a signal which al-
lows us to detect the topological phases of non-Hermitian
systems.

It should be pointed out that the topological phases
in Λβ and Λγ were characterized by the Chern number
C = 1, but C = 0 in Λη. This implies that the topological
invariants of the quantum states in Λβ and Λγ are the
same, but different from Λη. The topological invariants
based on the local–global correspondence enrich the topo-
logical phase diagram of the non-Hermitian Chern insula-
tor model. The quantum states in the regions Λβ and Λγ

have the same topological invariants labeled by the Chern
number C = 1, which is different from that of the region
Λη, labeled by the Chern number C = 0 [16, 17]. How-
ever, We found from the local–global correspondence that
the patterns of the PBS in the regions Λγ and Λη are ex-
actly same and robust even though their Chern numbers

are different. This reveals a novel topological invariant
in the regions Λγ and Λη beyond that predicted by the
Chern number [16, 17]. We will further demonstrate this
point using the generalized vorticity method in the follow-
ing subsection. From a mathematical point of view, there
exist different topological structures in the same manifold,
which can be detected by different methods.

3.3 Generalized vorticity and topological invariants

The local–global correspondence reveals that the pattern
of the PBS is topological invariant against parameter de-
formations in the topological phase. To understand the
physical mechanism of the PBS behind the local–global
correspondence, we introduce a generalized kx-dependent
vorticity for given kx in the BZ

µn(kx) :=
1

2π

∫ π
−π
∂ky

ϑn(kx, ky)dky (23)

where

ϑn(kx, ky) = arctan
ℑ
(
En(kx, ky)− 1

2 [En(kx, 0) + En(kx,π)]
)

ℜ
(
En(kx, ky)− 1

2 [En(kx, 0) + En(kx,π)]
) . (24)

This generalized kx-dependent vorticity describes a ky-
directional circle in the complex energy plane. Figure 4
shows the loop of the generalized kx-dependent vorticity
in the complex energy plane from kx = −π to 0 for the
parameters m = 1.05, 0.95 and δ = 0.9. Here we plot only

a half of the range of kx due to the parity symmetry of
±kx for the µn(kx). The arrows of the loops are clockwise
from the insets (a) to (e) in Fig. 4 for m = 1.05, but for
m = 0.95 the arrow (green) in the inset (f) is anticlock-
wise, which implies the loop flips at some point between
kx = −π and −3π/4 for the parameter m = 0.95. The flip-
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Fig. 4 Online color: The generalized vorticity µn(kx) in the complex energy plane from kx = −π to 0. In (a–e) the µn(kx)
are for m = 1.05 and δ = 0.9 and in (f–j) the µn(kx) are for m = 0.95 and δ = 0.9. It should be noted that the arrows in (a–e)
are clockwise, but the arrow (green) in (f) is anticlockwise, which implies that the loop of the µn(kx) for m = 0.95 flips at some
point between kx = −π and −3π/4.

ping point kx depends on the parameters m and δ, but the
number of flippings is robust against parameter deforma-
tions, and can be viewed as a topological index. Thus, we
define the flipping index of this generalized kx-dependent
vorticity,
ΘR = |ℜ[µ(0)− µ(π)]| , (25a)

ΘI = |ℑ[µ(0)− µ(π)]| , (25b)

to count the flipping number of the loop in the complex

energy plane within the regions −π ≤ kx ≤ 0 or 0 ≤ kx ≤
π. The flipping index is an integer, which can be regarded
a counterpart of Chern number induced by the edge states
crossing at the Fermi energy in Hermitian systems. The
numerical calculations show the ΘR(I) in the parameter
space. It can be seen that the real flipping index is ΘR =

1 in the region Λβ and whereas ΘR = 0 in the regions
Λγ and Λη. These results are consistent with the results
obtained by the local–global correspondence. The real

Fig. 5 The flipping index of the generalized vorticity Θ in the parameter space. (a) The real part of Θ and (b) its projection
(phase diagram) in the parameter space. (c) The imaginary part of Θ and (d) its projection (phase diagram) in the parameter
space.
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flipping index is ΘR = 1/2 in the regions of the upper and
lower triangles, which corresponds to the Chern number
C = 0. The imaginary flipping index is ΘI = 0 in the
gapped region Λγ and Λη.

It should be remarked that the flipping index of the
generalized vorticity is compatible with the vorticity of
non-Hermitian systems. In principle, we can also define
the generalized ky-dependent vorticity µn(ky). However,
the wave vector-dependent vorticities µn(kx) and µn(ky)

are not always equivalent. In practice, the choices of the
wave vector directions depends on the concrete model.
Moreover, it is worth studying what physical observables
emerge from the varying of this generalized vorticity, in
particulars, what relationship between the variation of the
local flipping point and the global topological invariant of
the flipping index exists and what physical phenomena
emerge from the analytic behaviors of the imaginary part
of the generalized vorticity.

4 Remarks on topological invariants

4.1 Relationship between the Chern number and the
local–global correspondence

Mathematically, the existence of a topological invariant
means that some objects (here quantum states or phases)
are topological (or homotopy) invariant under homeomor-
phisms or are the same for the homotopically equivalent
topological space, where the homeomorphism and homo-
tophically equivalent classes are some regions in the pa-
rameter space.

A quantum system can be described by some topolog-
ical quantum numbers, such as the Berry phase, Chern
number, winding number and vorticity, which character-
ize different equivalence classes of quantum states in the
parameter space. The Chern number depends on the ex-
ceptional points, which correspond to the closure of the en-
ergy band. The energy band gap protects the topological
invariance of the quantum states. The local–global cor-
respondence depends on the PBS in the complex energy
plane, which can be seen from the generalized vorticity
and its corresponding flipping index of the wave-vector-
dependent vorticity. There are two physical mechanisms
that connect the Chern number and the local–global cor-
respondence. One is that the complex phase of the com-
plex energy band changes, which is associated with the
generalized vorticity and its corresponding flipping num-
ber. This can depend on the energy band crossing instead
of closing. The other is the relationship between the clo-
sure of energy bands and the changes of the PBS. When
the energy bands close, their corresponding regions in the
complex energy plane change from two separate regions
to one connected region, which can lead to the PBS and
their corresponding patterns in the BZ changing. These
two mechanisms are independent and give rise to different

parameter-dependent topological invariants of the quan-
tum states.

4.2 Transformation between the BZ and the complex
energy plane

The local–global correspondence involves the transforma-
tion between the BZ and the complex energy plane. Let
us now investigate this transformation in greater detail.

The differential area mapped from BZ2 to Ec for a given
set of parameters is represented as a transformation from
the BZ to the complex energy plane,(

dER

dEI

)
= J(k, λ)

(
dkx
dky

)
, (26)

where J(k, λ) is the transformation matrix, which is given
by

J(k, λ) =

(
∂ER

∂kx

∂ER

∂ky
∂EI

∂kx

∂EI

∂ky

)
. (27)

The Jacobian determinant of the transformation matrix
det J(k, λ) is either nonzero or zero depending on whether
the transformation is invertible or not invertible, respec-
tively. In other words, when the Jacobian determinant is
zero, the transformation is not one-to-one.

For the non-Hermitian Chern insulator model, note that
for the relationship between the real and imaginary parts
of the energy band in Eqs. (13) and (14), we have E2

R −
E2

I = ϵ and E2
RE

2
I = ω2/4 , yielding

E2
R − E2

I = 2− δ2 +m2 + 2 cos kx cos ky
+ 2m(cos kx + cos ky), (28a)

EREI = δ sin ky. (28b)

where we set t = 1 for convenience. Taking derivative with
respect to kx and ky in Eq. (28), for the gapped-band
regions, E =

√
E2

R + E2
I ̸= 0,∀k ∈ BZ, the Jacobian

determinant of the transformation can be expressed as
(see Appendix B)

det J(k, λ) = −δ(m+ cos ky) sin kx cos ky
E2

. (29)

It should be noted that when det J(k, λ) = 0, the solu-
tions are either ky = ±π2 or kx = 0,±π or cos ky = −m.
We find that the quantum states of the zero-Jacobian de-
terminant correspond to the PBS in the complex energy
plane. That is why all patterns in the BZ (see Figs. 2
and 3) are horizontal and vertical lines located at either
ky = ±π2 or kx = 0,±π. The Jacobian determinant is zero
for all PBS in the complex energy plane [51].

The existence of a zero-Jacobian determinant means
that the PBS are degenerate in the complex energy plane,
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which is similar to the previous results obtained for the
topological order of the ground states [47–49]. The map
between the BZ and complex energy plane is not a home-
omorphism.

5 Conclusions and outlooks

In summary, as a theoretical model of open and dissi-
pative systems, non-Hermitian quantum systems exhibit
rich novel physical phenomena and highlight fundamental
issues in condensed matter physics [1–3]. Non-Hermitian
systems contain complex energy structures and their cor-
responding nonorthogonal eigenstates, which not only
lead to novel quantum phases and potential applications,
but also a platform for developing new approaches with
which explore novel physical properties and mathematical
structures beyond those of the canonical Hermitian sys-
tems [3, 8, 9, 12].

We have developed a new approach to determine the
topological invariants of the quantum states in non-
Hermitian systems based on a local–global correspondence
between the PBS in the complex energy plane and their
corresponding patterns in the BZ. We found that the PBS
in the complex energy plane mapped to the BZ forms pat-
terns in the BZ. The patterns are robust due to topo-
logical invariants in the gapped regions of the parame-
ter space, which implies a local–global correspondence be-
tween the PBS and the topological invariants. We have
demonstrated the validity of this approach based on the
non-Hermitian Chern insulator model. We predicted the
standard phase diagram of the non-Hermitian Chern in-
sulator model, but also uncovered some novel topological
invariants embedded in the phase diagram. The local–
global correspondence reveals that only some of quan-
tum states in the complex energy plane dominate the
topological invariants of non-Hermitian systems. In other
words, the local information contained in the PBS deter-
mines the global property of the quantum states. This
approach provides us with a novel insight into the new
physics of non-Hermitian systems beyond that described
by the winding number, Chern number and vorticity. This
local–global correspondence can be regarded as a general-
ized bulk–boundary correspondence in the complex energy
plane. Moreover, this local–global correspondence can be
expected to work for more generic non-Hermitian models
even though we demonstrated it using the specific model,
the non-Hermitian Chern insulator model. Specially, it
should hold provided that the PBS in the complex en-
ergy plane comes from the energy band near the Fermi
energy or the Fermi energy surface for strongly interacting
non-Hermitian systems [47–49]. Interestingly, the scaling
theory of Z2 topological invariants and universal classes of
the topological phase transitions in high-order Dirac mod-
els was recently given in Refs. [45, 46]. In principle, the
local–global correspondence in the complex energy plane

can also be generalized to non-Hermitian systems with
arbitrary dimensions. For non-Hermitian systems with a
small non-Hermitian term, comparative study of differ-
ences between these two approaches for arbitrary dimen-
sional systems should be an interesting issue.

To understand the local–global correspondence in the
complex energy plane we introduced the generalized vor-
ticity and its corresponding flipping index, with which
we demonstrated the consistency of our results. We also
find some connections between the local–global corre-
spondence and the vorticity introduced in previous stud-
ies [17, 18] The key differences between the local–global
correspondence, the generalized vorticity and the Chern
number are that the Chern number depends on the ex-
ceptional points of the energy band structure whereas the
local–global correspondence and generalized vorticity de-
pend on the structure of the PBS in the complex energy
plane.

The complex energy plane and its relevant phases play a
crucial role for the topological invariants using the local–
global correspondence. The Jacobian determinant of the
transformation between the BZ and the complex energy
plane is not positive definite, which implies that the BZ
and the complex energy plane are not homeomorphic for
quantum states.

These results provides some novel insights into the topo-
logical invariants of non-Hermitian systems even though
there are still questions which require further study, such
as what physical observables emerge from the new topo-
logical invariants based on the local–global correspon-
dence and the generalized vorticity, especially what re-
lationships between the local flipping point varying and
the global topological invariant of the flipping index and
what physical phenomena emergence from the analytic be-
havior of the imaginary part of the generalized vorticity.
These raise a lot of fundamental issues and their solutions
may give rise to practical applications.

Appendixes

A Algorithm of local–global correspondence

The local–global correspondence of the topological invari-
ants in the complex energy plane is implemented based
on the conceptual and mathematical framework in Sec-
tion 2. The numerical method is presented in this section
because there is no an analytic method to determine the
PBS in the complex energy plane. The framework of the
algorithm to determine the PBS and their corresponding
patterns in the BZ is presented in the schematic diagram
Fig. A1. The basic steps are as follows.

• For given initial set of the parameters λα, λα+∆α ∈
M2, where λα = (m, δ) in the gapped regions,
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Fig. A1 The schematic diagram of the algorithm of the
local–global correspondence of the topological phase in the
complex energy plane.

• we scan the BZ, (kx, ky) ∈ (−π,π)×λα and (kx, ky) ∈
(−π,π) × λα+∆λα

and solve the eigen equation of
the Hamiltonian to obtain the complex energy bands
E±(kx, ky;λα) and E±(kx, ky;λα+∆α). There is an
analytic solution for the non-Hermitian Chern insu-
lator model for this step.

• The complex energy bands are mapped to the com-
plex energy plane. When we repeat this step for the
whole BZ we obtain either one or two regions εc in the
complex energy plane,which depend on the parame-
ters. Namely, we obtain two regions of the complex
energy band in the complex energy plane for the pa-
rameters λα, λα+∆α ∈ Λα ∈M2.

• Using the ball pivoting algorithm [44], we obtain the
PBS in the complex energy plane, namely ∂Ec(λα)
and ∂Ec(λα+∆λα

), respectively.
• For given an initial set of the parameters between

λα and λα+∆α ∈ M2, namely, λα+∆λα/2, we repeat
above steps to obtain the PBS, ∂Ec(λα+∆λα/2) in the
complex energy plane.

• We compare the point E(ER, EI ;λα+∆α/2) in the
complex energy plane with the PBS, ∂Ec(λα) and
∂Ec(λα+∆λα

), when the point E(ER, EI ;λα+∆α/2) is
located inside ∂Ec(λα) and outside ∂Ec(λα+∆λα

), or
conversely, we output the point E(ER, EI ;λα+∆α/2)

to the BZ as a PBS in the complex energy plane for
the parameter λα, which forms a pattern in the BZ.
Otherwise, we give up this point, which is not PBS.

• By repeating these steps for all BZ (see the schematic
diagram in Fig. A1) we obtain the whole pattern of
the PBS in the complex energy plane in the BZ.

It should be remarked that this numerical algorithm is
efficient and stable because the topological phase is ro-
bust for the parameter perturbation even though there is
some numerical error coming from the ball pivoting algo-
rithm [51]. That is why the patterns contain some flaw
in Figs. 2(f)–(i) and Figs. 3(e)–(g). The numerical errors
depend on the parameter of the radius of the ball in the
ball pivoting algorithm. Reducing the numerical errors
costs additional computing time. However, the numerical
errors do not change the results because the topological
invariant of quantum states is robust for any deformation.

B Jacobian determinant

We present here the derivation of the Jacobian determi-
nant of the transformation between the BZ and the com-
plex energy plane. Note that the relationship between the
real and imaginary parts of the energy band in Eqs. (13)
and (14), is given by

E2
R − E2

I = ϵ, (B1a)

E2
R + E2

I =
√
ϵ2 + ω2, (B1b)

E2
RE

2
I =

ω2

4
. (B1c)

Yielding Eqs. (28a) and (28b), where we set t = 1 for
convenience without loss of generality. Taking derivatives
with respect to kx and ky to Eqs. (B1a) and (B1b), we
have

ER
∂ER

∂kx
− EI

∂EI

∂kx
= − sin kx cos ky −m sin kx, (B2a)

EI
∂ER

∂kx
+ ER

∂EI

∂kx
= 0. (B2b)

and

ER
∂ER

∂ky
− EI

∂EI

∂ky
= − cos kx sin ky −m sin ky, (B3a)

EI
∂ER

∂ky
+ ER

∂EI

∂ky
= δ cos ky. (B3b)
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We can rewrite Eqs. (B2) and (B3) to give(
ER −EI

EI ER

)( ∂ER

∂kx
∂EI

∂kx

)
=

(
−(cos ky +m) sin kx

0

)
, (B4)

and(
ER −EI

EI ER

)( ∂ER

∂ky
∂EI

∂ky

)
=

(
−(cos kx +m) sin ky

δ cos ky

)
. (B5)

For the gapped-band regions, E =
√
E2

R + E2
I ̸= 0,∀k ∈

BZ, there exists the inverse of the energy matrix in
Eqs. (B4) and (B8). Thus, the derivatives of the real and
imaginary energy bands can be expressed as(

∂ER

∂kx
∂EI

∂kx

)
=

(
ER −EI

EI ER

)−1(−(cos ky +m) sin kx
0

)
,

(B6)

and(
∂ER

∂ky
∂EI

∂ky

)
=

(
ER −EI

EI ER

)−1(−(cos kx +m) sin ky
δ cos ky

)
,

(B7)

where the inverse of the matrix is given by(
ER −EI

EI ER

)−1

=
1

E2

(
ER EI

−EI ER

)
, (B8)

with E =
√
E2

R + E2
I . Consequently, the derivatives of

the real and imaginary parts of the energy bands with
respect to kx and ky are given by(

∂ER

∂kx
∂EI

∂kx

)
=

1

E2

(
−ER(cos ky +m) sin kx
EI(cos ky +m) sin kx

)
, (B9)

and(
∂ER

∂ky
∂EI

∂ky

)
=

1

E2

(
δEI cos ky − ER(cos kx +m) sin ky
δER cos ky + EI(cos kx +m) sin ky

)
.

(B10)

The Jacobian determinant of the transformation given
in Eq. (27) can be expressed as

det J(k, λ) =
∣∣∣∣∣∂ER

∂kx

∂ER

∂ky
∂EI

∂kx

∂EI

∂ky

∣∣∣∣∣ . (B11)

By substituting Eqs. (B9) and (B10) into Eq. (B11), we
obtain the Jacobian determinant of the transformation
from the BZ to the complex energy plane

det J(k, λ) = −δ(m+ cos ky) sin kx cos ky
E2

. (B12)
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