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Deep learning, accounting for the use of an elaborate neural network, has recently been developed as
an efficient and powerful tool to solve diverse problems in physics and other sciences. In the present
work, we propose a novel learning method based on a hybrid network integrating two different kinds of
neural networks: Long Short-Term Memory (LSTM) and Deep Residual Network (ResNet), in order
to overcome the difficulty met in numerically simulating strongly-oscillating dynamical evolutions of
physical systems. By taking the dynamics of Bose–Einstein condensates in a double-well potential as
an example, we show that our new method makes a highly efficient pre-learning and a high-fidelity
prediction about the whole dynamics. This benefits from the advantage of the combination of the
LSTM and the ResNet and is impossibly achieved with a single network in the case of direct learning.
Our method can be applied for simulating complex cooperative dynamics in a system with fast multiple-
frequency oscillations with the aid of auxiliary spectrum analysis.
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1 Introduction

Deep learning (DL) has been devoted to solving phys-
ical problems in recent years. With the help of its
extraordinary abilities to make predictions about data
and to extract meaningful features, exciting progresses
have been made in the research fields of quantum dy-
namics [1, 2], many-body physics [3], precision measure-
ment [4], condensed-matter physics [5–9] and quantum
machine learning [10–12]. When applying DL the primary
problem faced by us is to establish a suitable network
for the training data set. So far several neural networks
(NNs) are utilized. For example, the earlier artificial neu-
ral network can approximate any distributions with only
two neural layers [13]; but it becomes inaccurate when the
layer number increases [14]. The restricted Boltzmann
machine is an unsupervised method, which can uncover
the information underlying the data by learning the joint
distribution with Bayesian theory [15]. It is difficult to
train the system without a fine partition-function solu-
tion [16]. Other NNs such as the convolutional NN [17]
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and the recurrent NN [18] are more universal in extracting
local features of data and learning the relationships among
elements with a high accuracy [19, 20], despite that they
may face the problem of gradient exploding or gradient
vanishing due to the complexity of dynamics. Therefore
a single type of NN becomes incapable of solving complex
population dynamics.

The quality of simulating a fast-oscillating dynamics
usually depends on the precision of sampling [21]. When
the number of sampling points is insufficient, exact nu-
merical ways may arise poor outcomes that are largely de-
viated from its real values [22]. However a high-precision
sampling will add to the costs of experiments; at the same
time it also leads to a long-time calculation limited by the
capacity of computers. Therefore it is quite difficult to ac-
curately obtain the data of fast-oscillating dynamics both
in theory and in experiment. In the present work we pro-
pose a hybrid NN involving two different networks which
are so-called Long short-term memory (LSTM) [23] and
Residual network (ResNet) [24, 25], in order to study the
fast-oscillating dynamical evolution of systems. Taking
a generalized double-well dynamics of Bose–Einstein con-
densates (BECs) as an example, we show that our modi-
fied DL method can well solve the time evolution of pop-
ulation difference between two wells with high fidelity of
the phase and the frequency of oscillations. This mod-
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ified DL refers to one kind of series connection between
LSTM and ResNet with its performance enhanced by a
pre-learning of periodicity in dynamics. ResNet will use
the learning outcomes from LSTM to work better. In ad-
dition, an improved integrated DL based on modified DL
is also proposed to facilitate the training time, which is
enabled by changing the loss function for feedback. With
this feedback mechanism, LSTM can benefit from ResNet,
resulting in the reduction of data amount needed for train-
ing.

For atomic Bose–Einstein condensates (BECs) trapped
in a double-well potential, a large number of achieve-
ments were carried out arising a well-solved theoretical
model [26–30]. This leads to an easier generation of
enough training data via the Runge-Kutta method be-
forehand. Our hybrid network enables a highly-efficient
learning of frequency based on the periodicity verification
of strongly-oscillating population dynamics. Moreover,
even if the original data is not enough the LSTM network
can also perform a reliable prediction on the higher fre-
quency values of the population oscillating in the macro-
scopic quantum self-trapping (MQST) regime, which are
far beyond the trained parameters. However, the numer-
ical method fails to work in this case because of the inad-
equate sampling. Compared to the direct DL that only
contains single kind of ResNet, integrating LSTM and
ResNet can deeply increase the learning efficiency despite
expending a slightly longer training time, since more lay-
ers are required for constructing this integrated network.
The final infidelity obtained by estimating the deviation
of fractional population difference can be much lower than
0.01 with the help of a hybrid network learning.

2 Residual network

Structure of our residual network is shown by a series of
blocks in Fig. 1. The filter kernel serving as a central
element in the learning process, should be carefully cho-
sen. We use filter kernels to scan matrice which enables

Fig. 1 Schematic diagram for ResNet involving a series
of identically-distributed one-dimension convolutional (Conv)
layers and batch normalization (BN) layers. At each convolu-
tional layer it has a dilation rate except the first and the last
layers. Different from the original convolutional NN scheme,
arrows acting on Element-wise sum layers (E-W sum) can pre-
serve the former hidden layer’s information which facilitate the
performance of DL.

the feature extraction from objects. By element-wisely
multiplying matrice and filter kernels, machine can well
learn the features of input data. However, with deeper
networks, a traditional convolutional NN becomes more
difficult to train, since we may face the problem of gra-
dient vanishing or gradient exploding, which leads to a
poor performance in DL. Hence, we choose a deep resid-
ual network (or so-called ResNet) to solve this problem.
An element-wise sum in the ResNet labeled by arrows in
Fig. 1, will prevent the loss of information from passing
through deep networks, and also avoid the vanishing of
gradient by adding the former input with present hidden
layer’s output. This simple process preserves the former
information which means that it increases the volume of
data handled by the next layer. The detail of this technol-
ogy can be seen in Ref. [24]. To be more specific, arrows
linking the batch normalization layer and the element-
wise sum layer in Fig. 1, point to the process of residual
learning.

From physical review, we are more interested in train-
ing or generating useful information within a “black box”
[the red frame in Fig. 5(b)] if the input is determined. Al-
though training a high-performance network needs a lot
of expense yet it may enable a robust prediction about the
unknown results in a short-time period, especially while
dealing with a complex system in the absence of analytical
solutions. Our motivation is building an efficient learning
protocol which can bridge the results from original nu-
merical simulation and unknown prospective result based
on the given input parameters. That may facilitate an
easy and robust simulation for solving complex physical
problems.

3 Double-well dynamics with two BECs

A double-well potential serving as a basic platform in
the study of microscopic mediums, especially for atomic
BECs [31–35], has been focused by researchers for decades.
A typical double-well potential can be easily created
by the combination of a periodic optical potential with
strong harmonic confinement, played by a periodic one-
dimensional light shift [36]. If atomic BECs are confined
in such a double-well optical trap, the effects of boson
Josephson junction (BJJ) or MQST can be observed.

Our study starts from a brief introduction to the dy-
namical evolution of BECs in a double-well potential. The
wave function ψ(r, t) for two weakly-coupled atomic con-
densates is expanded as

ψ(r, t) = a1(t)ϕ1(r) + a2(t)ϕ2(r) (1)

under the mean-field approximation. To be universal, two
wells are asymmetric and has an energy difference γ be-
tween them. A standard treatment for solving the popula-
tion dynamics between two wells, will adopt the nonlinear
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two-mode dynamical equations (here h̄ = 1)

i d
dt

(
a1
a2

)
= Ĥ

(
a1
a2

)
(2)

with the Hamiltonian Ĥ given by

Ĥ =

(
γ + U1N1 −K

−K U2N2

)
(3)

and the amplitudes aj =
√
Njeiθj (j ∈ (1, 2)) with Nj ,

θj the number and the phase of particles in the jth trap.
Here NT = N1 + N2 is a constant and Uj is the trapped
atomic interaction which is related to the atomic scatter-
ing length. K is the inter-trap coupling coefficient [26].
Upon defining the phase difference ϕ = θ2 − θ1 and the
fractional population difference z = N1−N2

NT
, Eq. (2) can

be re-organized as

ż(t) = −
√

1− z2(t) sin[ϕ(t)],

ϕ̇(t) = ∆E + Λz(t) +
z(t)√

1− z2(t)
cos[ϕ(t)],

(4)

in which we rescale the time by 2Kt → t (2K is the fre-
quency unit). Other dimensionless parameters are

∆E = γ/(2K) + (U1 − U2)NT /(4K),

Λ = (U1 + U2)NT /(4K).
(5)

accordingly, which indicate the imbalanced energy of two
wells as well as the atomic tunneling rate respectively.
Solving z(t) and ϕ(t) essentially gives rise to the whole
population dynamics of atomic BECs in a double-well sys-
tem.

It is clearly shown that the pair of variables z(t) and
ϕ(t) are canonically conjugate satisfying ż=−∂H

∂ϕ , ϕ̇=∂H
∂z .

Based on that, the Hamiltonian Ĥ can be rewritten as

Ĥ =
Λ

2
z2 +∆Ez −

√
1− z2 cosϕ, (6)

By simply assuming γ = 0 (symmetric) and ensuring U1 =
U2 = U , it leads to ∆E = 0, Λ = UNT /(2K). The initial
energy starts from

H0 =
Λ

2
z(0)

2 −
√
1− z(0)

2 cosϕ(0), (7)

which is conserved during the dynamical evolution. Ac-
cording to the initial phase difference ϕ(0) = 0 or π we can
obtain the zero-mode or π-phase mode individually. Here
we focus on the former case. z(0) ∈ [−1, 1] stands for the
initial population imbalance and is tunable. In experiment
via the adjustment of Λ ∼ U/K that characterizes the rel-
ative strength between interaction and tunneling rate, we
can observe two different regimes: BJJ and MQST. The
former meets ⟨z(t)⟩ = 0 and ⟨ϕ(t)⟩ = 0 around z = 0
when Λ is small. As increasing Λ that exceeds a critical

Fig. 2 (a, b) Numerical results z(t) and ϕ(t) for Λ = 6.2
(solid), 10 (dashed, critical value) and 13.4 (dash-dotted).
(c) The z–ϕ diagram under Λ= 6.2 (black solid), 8.8 (red
solid), 10 (black-dashed), 11.8 (black-dotted), 13.4 (red-
dotted). (d) Single oscillating frequency f of the population
difference z(t) for Λ ∈ [5.6, 14.6]. At the critical point Λc = 10,
we set f = 0.1.

value Λc, the atomic population oscillation becomes self-
trapped giving to ⟨z(t)⟩ ̸= 0 on average. This behavior
is also accompanied by an unbound and increasing phase
that is winding with time.

The critical value between Josephson oscillation and
self-trapping effects has been analytically solved at H0 =
1, arising [37]

Λc =
2 + 2

√
1− z(0)

2 cosϕ(0)
z(0)2

, (8)

which means if the initial energy increases exceeding H0 =
1 the fractional population difference will reveal a signif-
icant change, corresponding to the critical point between
the two regimes.

By using a standard fourth-order Runge–Kutta method,
our numerical simulations for z(t) and ϕ(t) are explicitly
presented in Figs. 2(a) and (b). As expected, both the
population dynamics and the phase variation manifest the
existence of a significant transition across the critical value
Λc. If Λ < Λc a BJJ appears between two wells accom-
panied by a small phase fluctuation in time, ensuring the
average values ⟨z(t)⟩ = ⟨ϕ(t)⟩ = 0. However when Λ be-
comes larger, atom tends to be self-trapped in single-well
with a time-dependent and increasing phase. Figures 2(c)
and (d) show a global representation of the phase diagram
in the (z, ϕ) space as well as the frequency f of popula-
tion dynamics versus Λ. The critical transition at Λc = 10
is clearly seen, agreeing with the discussions in (a, b).
These numerical results allow us to establish a sufficient
and accurate data set to train the neural network. In ad-
dition the DL method enables a robust prediction about
unknown results which are far beyond the test parameters
in data set.
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4 Direct learning

To show the robustness of DL which can be applied for
diverse physical problems, we first take this double-well
model as an example, since both the fractional population
difference z(t) and the phase dynamics ϕ(t) of two BECs
can be analytically solved here. Nowadays the DL method
is regarded as a shortcut for this target. Because once a
data set has been formed by using part of the original data
obtained from numerical simulations, it reveals a strong
ability of generating similar data ϕ(t) and z(t) with the
training network. Most interestingly, benefiting from the
ability of strong prediction it can even give other unknown
results which are beyond the original data set.

Our work starts from equation (4) by setting e.g. z(0) =
0.6, ϕ(0) = 0, arising Λc = 10. The original parame-
ter range is fixed to Λ ∈ [5.6, 14.6] covering two regimes:
MQST and BJJ. The data set is formed by uniformly sep-
arating 90001 Λ values within this range and solving ϕ(t)
and z(t) for each Λ via the method of fourth-order Runge-
Kutta. The time interval is ∆t = 0.02 with a unit of 1/2K.
As a result, we can finally obtain two two-dimension data
sets for z and ϕ in the space of (Λ, t). Each contains
90001×501 data. While training the network with data
sets we randomly choose 9000 samples as a validation set,
leaving the remaining 81001 samples for training. All com-
puting results are based on Intel Core i7-7900X @3.30GHz
and GeForce RTX 2060 with 1024 batch size and 32 filter
size on Python 3.8.

An efficient learning depends on the design of network.
To search for a suitable network, in Table 1 we select
different hidden-layers and calculate the losses after 400
epochs by using different activation functions. Here the
“layers” means the number of hidden convolutional lay-
ers. In general as the increase of layer numbers the Mean-
squared-error (MSE) becomes lower, however at the ex-
pense of a longer training time. To propose a low-expense
method with high precision, we use efficiency (the last col-
umn in Table 1) as an indication for one network’s compro-
mised performance, which is defined by the training speed
divided by the Tanh-type loss. It is clearly shown that
a seven-layer model is the best one because of the maxi-

Table 1 Comparison for the training efficiencies under dif-
ferent number of hidden layers, activation functions and the
average spending time for one epoch. Efficiency is given by
the speed (=1/Time) divided by the Tanh’s loss.

Layers Loss for Tanh Loss for Sine Time (s) Efficiency

5 0.0173 0.0192 7 8.26
7 0.0112 0.0131 9 9.92
9 0.0097 0.0102 11 9.37
11 0.0088 0.0092 15 7.58
13 0.0086 0.0089 20 5.81

mal efficiency value ∼ 9.92 (bold). Also, we compare the
results based on two different activation functions: Tanh
and Sine. The Tanh-type function can bring a lower learn-
ing loss than the Sine function, which will be considered
in the calculation. In a practical training, we choose op-
timizer Adam for implementing the optimization [38]. In
order to prevent over-fitting, the decay factor is 0.8, the
minimum learning rate is 5× 10−6 and the patience is 2.0
in the stage of Early-stopping and adaptive learning. The
MSE loss function L is defined by

L =
1

NΛ

NΛ∑
Λ

N∑
i

[z(Λ, ti)− g(Λ, ti)]
2

N
, (9)

where z(Λ, ti) is the learning outcome, i.e., the fractional
population imbalance, at ti = ∆t× i (i ∈ [1, N ]) for each
Λ. g(Λ, ti) is the ground-truth from numerical solutions
for each Λ. N is the length of arrays and NΛ is the number
of Λ learned in ResNet. Here N = 501, ∆t = 0.02, NΛ =
81001.

Figure 3 globally displays the population difference z(t)
and the phase variation ϕ(t) in two regimes, extracted
from direct DL and numerical ways respectively. As for
the learning of phase variation our results well fit with the
numerical predictions see (c, d). Note that when plotting
(d) we do not constrain the range of ϕ. So due to the
linear increasing of ϕ accompanied by a slight oscillation in
the long-time regime, the number of layers(here we choose
seven hidden layers) becomes insufficient. As shown in
the inset of (d), with the increase of layer numbers: e.g.,
seven layers (red-solid), nine layers (blue-solid), a nine-
layer network in direct DL provides a better agreement
with the numerical result (black-dashed). However, the
direct DL with single kind of network fails to work well in
the case of z′s learning, especially in the MQST regime.

Fig. 3 Direct DL of z(t) (a, b) and ϕ(t) (c, d) marked
by red stars. Numerical results are contrastively given by
the black-dashed curves, as similar as the results shown in
Figs. 2(a) and (b). For (a, c) Λ = 6.2 (BJJ regime), z(t) and
ϕ(t) solved from the two methods have a perfect agreement.
As turning to the regime of MQST, i.e., (b, d) Λ = 13.4, only
ϕ(t) well agrees with the numerical prediction and z(t) ex-
hibits a larger mismatch as time increases. Inset of (d) shows
the behavior of ϕ(t) as a function of time under different layer
numbers.
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Because in this regime two atomic BECs trapped in one
well, will show a fast-oscillating behavior, leading to the
breakdown of our thin single network (ResNet). We find
the learning outcomes can not catch up with the change
of z(t), see (b). In the core of direct DL, such a rapid
oscillation with small peak-peak amplitudes can not be
easily trained by a limited database. Because the small
loss in the whole process would cause gradient vanishing,
making the whole learning process inefficient.

To improve the learning quality, especially in the case
of MQST where the dynamics of z(t) behaves as rapid
oscillations with ⟨z(t)⟩ ̸= 0, we have to search for a new
learning method. Since the periodicity of population dy-
namics is apparently seen, it is easy to decompose the
function into two components: frequency and amplitude
within one period. So we can learn them separately based
on the dynamical character in one period, instead of im-
plementing a global optimization for all hyper-parameters.
This new learning method will be beneficial owing to the
use of a low-expense network with fewer number of hid-
den layers as compared to the direct DL, if same accuracy
is attainable. The modified network only needs a small
receptive field size which indeed reduces the number of
kernel layers and its size. Before carrying out our new
method we have to verify the periodic feature of z(t).

5 Modified learning

5.1 Periodicity verification

Periodicity verification can facilitate the design of net-
work in modified DL. Compared to the traditional ways
for that purpose such as Fourier Transform (FT) [39]
and Auto-correlation Function (ACF) [39], here we choose
the method originating from the chaotic physics to deter-
mine z(t)’s periodicity since it is more visible. This is
called Poincaré section [40, 41]. For an orbit in a two-
dimensional phase space, one could always select an appro-
priate hyperplane which should not contain or be tangent
with this orbit. In general, if there exists a fixed-point
or fixed number of discrete points, the orbit must have

Table 2 Relevant parameters under the modified LSTM
network. Way of Mixture means that half of layers use Tanh-
function and the other half layers use Sine-function. The final
efficiency is given by the speed divided by the Mixture’s loss.
Here layers point to the number of hidden LSTM layers.

Layers Tanh Sine Mixture Time (s) Efficiency

4 0.0220 0.0217 0.0206 20 2.43
6 0.0119 0.0103 0.0096 25 4.17
8 0.0103 0.0104 0.0081 32 3.86
10 0.0097 0.0099 0.0079 41 3.09
12 0.0094 0.0099 0.0078 50 2.56

a determined period [42]. Based on the nonlinearity of
Eq. (4) we use this method to determine the periodicity
of dynamics.

In this double-well system, we choose ϕ=0 as a hyper-
plane in the BJJ regime and ϕ=π in the MQST regime.
We draw the points where the trajectory of (z− ż) crosses
this hyperplane. Specific examples are displayed in Fig. S1
of Appendix A, in which we compare the relations of
(z − ϕ), (z − ż) and the Poincaré maps under different
Λ values. When plotting the Poincaré maps the periodic
character of z(t) can be clearly confirmed by the presence
of some discrete points.

5.2 Frequency learning

A direct simulation for the frequency f as a function of Λ
has been solved by adopting numerical ways in Fig. 2(d),
where the critical frequency at Λ = Λc is fixed to be
0.1. When turning to the problem of solving an one-
dimensional array of data, e.g., learning frequency of frac-
tional population difference z(t), ResNet is not the best
choice since it typically suits for extracting features of a
two-dimensional array [43, 44], such as learning z(Λ, t) and
ϕ(Λ, t) in direct DL. Here we introduce a modified Re-
current Neural network which is so-called LSTM for that
purpose [23]. This method has been applied for study-
ing knot types of polymer conformations [45] and phase-
modulation stabilization in quantum key distribution [46].
LSTM is a model which could memorize the important
part of the previous context in a data series and forget
other irrelevant parts selectively. Therefore, it performs
pretty well in time-series fitting and prediction due to the
consideration of correlation in the context. Although its
weakness also lies in the requirement for more time to
train, in contrast to the case of using ResNet when same
number of layers is required. Luckily it performs better in
preventing from gradient vanishing and exploding in the
long-range-series training.

Fig. 4 (a) Frequency learning in the original learning area
labeled by “LA”: Λ ∈ [5.6, 14.6]. The prediction results de-
noted by “P” are given in the area of Λ ∈ [5.2, 5.6] and
[14.6, 15.2]. Our LSTM learning outcomes (blue-dashed) well
agree with the numerical results (red-solid). Insert shows the
corresponding MSE loss in the form of logarithmic function
versus the training epochs. (b) Frequency learning under an
extensive range of Λ ∈ [10, 70]. Here same linetypes are used.
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The results of frequency learning are demonstrated in
Table 2 and Fig. 4. Table 2 compares the MSE losses
under different hidden layers by using various activation
functions: Tanh, Sine and Mixture. For obtaining an op-
timal network we also consider the time expense, leading
to the result of efficiency which can be used to quantita-
tively characterize the learning performance. We find only
six hidden LSTM layers(bold) are sufficient for learning.
Notice that here the definition of efficiency depends on
the application of LSTM network which is different from
that used in Table 1 for the case of direct DL. Besides we
also use Early-stopping to avoid over-fitting. Root mean-
square prop is chosen as a new optimizer in LSTM net-
work. The original training area is the same as in direct
DL i.e. Λ ∈ [5.6, 14.6] and the results from an extensive
range of Λ ∈ [5.2, 15.2] are also given based on the pre-
diction of LSTM. A good agreement between our learning
outcomes and the numerical results is apparently observed
in Fig. 4(a) except for the critical point Λc = 10 since the
network treats it as an outlier (singularity) due to the
discontinuity. Inset plots the change of MSE loss with
epochs which has been reduced to be much smaller than
0.001 when epoch is larger than 1200. Therefore the way
of LSTM is suitable for an individual frequency learning
in the training process.

Remarkably, with the increase of Λ the oscillation of
dynamics becomes stronger. The traditional numerical
method is unable to give accurate results due to the calcu-
lation precision limited by a sampling interval ∆t = 0.02.
Reducing ∆t could enhance the precision yet adding to
the cost. So a bigger mismatch will appear between the
numerically-estimated values and the real numbers when
Λ ≳ 40, see the red-solid curve in Fig. 4(b). This nu-

merical curve is obtained by computing the time duration
between two same waves for extracting the information of
frequency. It is apparent that the oscillating frequency
becomes much larger as Λ increases which makes the
fixed sampling interval inadequate. However the LSTM
network can preserve a robust prediction for higher fre-
quency values (blue-dashed, Λ ∈ [10, 70]) under same ini-
tial preparation. Remember the initial data set based on
Λ ∈ [5.6, 14.6] and ∆t = 0.02 are unchanged in the learn-
ing. Therefore the LSTM network is expected to be more
suitable for solving the fast-oscillating behavior even if
the sampling points are inadequate or in low-frequency
regime.

5.3 Modified network

A new modified network can be reconstructed by taking
account into the role of LSTM in the learning frequency.
Thinner networks can only capture limited local informa-
tion with a small receptive field size [47]. Therefore, our
method makes it possible to produce a hybrid network by
combining LSTM and ResNet which is able to generate the
whole population dynamics within a small receptive field
size. In this hybrid learning network as shown in Fig. 5(b),
the former LSTM network is used for frequency learning
by the way of Poincaré map at the first stage. Addition-
ally, the ResNet is treated as a core network for generating
the whole dynamics of the fractional population difference
z(t,Λ). For the ResNet learning, we also use the MSE
loss function L [Eq. (9)], in which the parameters z(ti),
N , g(ti) are all obtained after implementing LSTM. In
the core of our procedure [see red box in Fig. 5(b)], we
use the Poincaré maps and LSTM network integrated to

Fig. 5 Representation of the population dynamics z in the space of (t,Λ) under (a1) numerical simulation, (a2) direct DL,
(a3) modified DL. Insets show the real population dynamics z(t) for Λ = 13.4 using different methods. (b) The procedure of
our modified network by sequentially combining LSTM and ResNet. Labeling “1” denotes the truth of dynamical periodicity
verified by using Poincaré section, as same as the labeling “1” in Fig. 6(b). (c) Comparison of relative errors in logarithm form
between direct DL (green dashed) and modified DL (black solid). Average values (dashed lines) are also given separately.
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Fig. 6 (a1–a3) Representation of the population dynamics z(t) in space of (t, z0) using the methods of numerical simulation,
direct DL and integrated DL respectively. (b) Integrated DL procedure. The frequency learning by LSTM is facilitated due to
the use of feedback mechanism from ResNet (red arrows). (c) Relative errors σ̄ in logarithm form versus the initial imbalanced
population z0 = z(t = 0) from direct DL (dashed line) and integrated DL (solid line).

transmit extra information to ResNet. More importantly
the way of Poincaré map can improve the learning fidelity
via periodicity verification before learning.

Figures 5(a1)–(a3) globally present the results of z(t,Λ)
under numerical simulation, direct DL as well as our mod-
ified network learning. A special case of z(t, 13.4) is shown
in the insets accordingly. Clearly the direct DL method
gives rise to poor results in the MQST regime as compared
to the numerical calculation because of the strong oscilla-
tion. The direct DL only contains single ResNet that is in-
sufficient for grasping the fast-oscillating behavior. How-
ever a significant improvement can be attainable if two
blocks of Poincaré map and LSTM network are added in
the procedure. A quantitative comparison between direct
and modified DL results uses the mean relative error

σ̄(Λ) =
1

N

N∑
i

|z(ti,Λ)− g(ti,Λ)|
0.1 + |g(ti,Λ)|

, (10)

where z(ti,Λ) and g(ti,Λ) obtained from the network
training and the numerical ground-truth, are also Λ-
dependent. Here 0.1 serves as an arbitrary small quantity
to overcome the divergency. The relative error σ̄ is a met-
ric of the final performance standing for the derivation be-
tween learning outcome and numerical ground-truth, i.e.
the infidelity of learning. While the MSE loss is an indica-
tor at the training stage. In the BJJ region two learning
ways lead to comparable errors (10−1.92 and 10−2.04), con-
firming the efficiency of both learning methods. However
as turning to the MQST region the modified DL appar-
ently leads to the reduction of mean relative error from
10−1.68 to 10−2.31, which extremely increases the capabil-
ity of network in learning a fast-oscillating dynamics.

By now, the hybrid system that contains a sequential
LSTM and ResNet networks can provide an improved
learning for the population dynamics, especially in the
MQST regime. While we also note that, two networks
must be trained independently suffering from a long-time
expense. A typical time expense is 34 seconds for one-
epoch training. To overcome this weakness we propose
an integrated network by combining LSTM and ResNet
together with the help of feedback mechanism. This new
learning method can further accelerate the training speed,
saving the time by 15% or more in an one-epoch training.

6 Integrated learning

A universal study for the population dynamics in an asym-
metric double-well is performed. Motivated by Ref. [48]
it is possible to utilize the feedback of loss from ResNet
learning to train the former LSTM network, instead of a
direct frequency learning by it, in order to accelerate the
learning speed. The role of LSTM is providing the fre-
quency information for the next ResNet learning due to
the thin and small convolutional network of Resnet. Sim-
ilarly, the periodicity verification is carried out by using
Poincaré section as shown in Fig. S2. The feedback mech-
anism in our integrated DL scheme means that the loss
function of ResNet can be treated as an indicator for the
LSTM network’s learning, and it would largely improve its
learning efficiency. Because the MSE loss function defines
the deviation between the final outcome and the ground-
truth value.

In the practical training we follow the procedure dia-
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Table 3 Comparison for time costs and efficiencies of four methods in the training and generation of data z(t,Λ) in one
epoch. Taking the dynamics of BECs in a symmetric double-well potential as an example, the training parameter range, the
relative error and the learning efficiency are comparably given under a same number of training layers. The total layers are
same for modified DL and integrated DL which include 6 hidden LSTM layers and 7 convolutional ResNet layers. For direct
DL we use a total 13-layer ResNet.

Method Training (s) Generation (ms) Parameter Λ Relative error σ̄ Efficiency

Runge–Kutta – 1.15 [5.6, 14,6] – –
Direct learning 20 3.98 [5.2, 10] 0.0123 4.07

20 3.98 [10, 15.2] 0.0209 2.39
Modified learning 34 5.37 [5.2, 15.2] 0.0066 4.46

Integrated learning 29 5.19 [5.2, 15.2] 0.0063 5.47

gram in Fig. 6(b). It differs from the modified DL mainly
by using a new loss function LI , which can be expressed
as

LI = L − k

N∗
z0∑
z0

[f(z0)− fg(z0)]
2

N∗
z0

, (11)

where k is a weight factor and N∗
z0 denotes the partial

data number to train LSTM. In an asymmetric well we
use the initial population difference z0 as a tunable pa-
rameter, instead of Λ. The first term L standing for the
loss estimation in single ResNet, takes a similar form like
Eq. (9). The second term serves as an auxiliary for show-
ing the deviation of real frequency f from the ground-
truth fg with respect to each z0. Therefore the ResNet
learning can offer an efficient feedback for the frequency
learning in the LSTM network. Our scheme follows the
procedure in Fig. 6(b). In order to minimize LI as well as
to speed up the convergence of this integrated network,
we carry out an individual training for two networks at
initial steps. After that we fix the ResNet and let the
LSTM being trained for steps to minimize LI accompa-
nied by generating an array of frequency for each z0. In
addition we also simultaneously train ResNet to reduce
the value of L. Based on our practical training, we set
four steps for LSTM’s training and five steps for ResNet
in each iteration, the weight factor is k = 1.2.

The integrated DL bases on the fractional population
difference z(t, z0) in an asymmetric double well where
γ = 1.0 is assumed. Here we set Λ = 8 and treat
z0 = z(t = 0) ∈ [−0.95, 0.95] as a variable. After im-
plementing a periodic verification of z with the method
of Poincaré maps (see Fig. S2 in Appendix A) we do
the learning following the procedure of Fig. 6(b). Fig-
ures 6(a1)–(a3) plot similar results as Figs. 5(a1)–(a3) yet
within the (t, z0) space. Clearly as compared to the direct
DL, the results obtained from the integrated DL in (a3)
have a better agreement with the numerical results shown
in (a1). To make this discussion more quantitative, we
also calculate the relative errors σ̄ of two learning meth-
ods. From Fig. 6(c), it is clearly shown that the integrated
DL method performs better than the direct DL for arbi-
trary z0 owing to its smaller relative errors. Besides we

observe that σ̄ will increase if |z0| is enhanced because of
the increasing frequency. In the integrated DL we only
have to compute partial data for estimating the frequency
i.e. N∗

z0 = 1201 (the total number is Nz0 = 7601), benefit-
ing from the feedback mechanism. While it can reduce the
relative error σ̄ i.e. the infidelity, from 10−1.66 to 10−2.38

on average by using an integrated neural network.

7 Conclusion and outlook

Before ending we compare the efficiencies of three DL
methods. Note that here the efficiency is defined as the
training speed divided by the relative error σ̄, not the loss
function. Given the original data are obtained by solving
Eq. (4) we display the learning results of various meth-
ods in Table 3. The original data set for z(t) is generated
by setting Λ ∈ [5.6, 14.6]. Although the training process
costs much longer time than the generation it is possible
to predict unknown results beyond the given parameter
range. Note that here a direct DL with a total 13-layer
ResNet fails to fit the real population dynamics on the
MQST regime, leading to a poor efficiency ∼ 2.39 (the in-
fidelity attains 0.0209 when Λ ∈ [10, 15.2]). However, ac-
companied by an auxiliary LSTM network that provides
a certification of the oscillating frequencies, the resulting
hybrid network (modified DL or integrated DL) has shown
a significant improvement for the learning efficiency. The
efficiency reaches as high as ∼ 5.47 (the final infidelity ob-
tained for z(t) is far smaller than 0.01) for the integrated
DL. Besides the hybrid network can also provide a precise
learning in both BJJ and MQST regimes, and can even
make convincing predictions about data with respect to
the unknown parameters. When turning to the case of
learning higher-frequency dynamics such as in the MQST
regime, we find that the Runge–Kutta method becomes
inaccessible due to the finite sampling interval. Instead,
our LSTM network reveals an ability of making predic-
tions about higher frequency values based on the same
data set.

In conclusion we develop a hybrid “LSTM+ResNet”
network to revisit the population and phase dynamics of
two BECs in a double-well potential. Because the fast-
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oscillating behavior of population difference in the MQST
regime makes the traditional direct DL inaccessible, we
propose a novel learning method which integrates LSTM
and ResNet networks and then brings about a strong pro-
motion to the learning efficiency. The LSTM also repre-
sents a robust prediction for the characteristic periodic-
ities of data sets. This hybrid network performs better
with a high precision and a very low relative error (the
final infidelity obtained for the fractional population dif-
ference) ∼ 0.006. Most importantly, it shows a strong
ability of prediction for the data in the fast-oscillating
regime which are far beyond the original data set given
by the exact numerical calculations in the slow-oscillating
regime. This prediction capability of method could find
more applications in solving problems of physics and other
sciences, which are lack of sufficient parameters restrained
by the experimental conditions or costs.

As an outlook we discuss how our hybrid network could
work for other systems possessing more complex popula-
tion dynamics which cannot be analytically solved. For
example, when the effective three-body interactions of
BECs are not negligible there is no longer an analytical
solution of the double-well dynamics and the evolution of
population difference possesses complex multi-frequency
oscillations [49]. Then a Fourier frequency analysis com-
bined with two algorithms, Attention and Sparsity can
help us to realize efficient learning. If there exists several
frequency components from the Fourier transformed data,
Attention, which is a method in computer science to assign
weights for values, will learn the weight of each frequency
in the multi-frequency oscillating dynamics. However, if
the exact frequencies are unknown, we have to put a se-
ries of candidates into the set. Thus, the frequency set
may have many irrelevant elements, making the learning
outcome polluted. Serving as an enhancement trick for
the Attention mechanism, Sparsity ensures the sparsity
of used frequencies, which can make the selected frequen-
cies more effective and reduce the complexity and time
expense for learning [50]. In short, with the aid of Atten-
tion, we can obtain the weight of each frequency compo-
nent and reconstruct them into the final outcome where
Sparsity may help learning in a continuous parameter sys-
tem. Finally, remember that our DL method depends on
a data set to train. This data set can be generated by
solving theoretical equations. Even if the problem is ana-
lytically unsolvable the sample data can still be collected
from experimental measurements. So our method not only
applies to theoretical simulations but also to experimen-
tal estimation. Moreover, our integrated DL method is
not restricted to a sufficient sampling which means an ex-
tensive application in various systems is desirable in the
future.
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Appendix A Numerical results of Poincar
section

Some specific examples of Poincaré section for verifying
the periodicity of population dynamics z(t), are given in
Figs. S1 and S2.

Fig. S1 Poincaré section for a symmetric double-well: Dia-
grams of z–ϕ (left), z–ż (middle), Poincaré maps (right). From
top to bottom Λ = (6.2, 8.8, 11.8, 13.4), respectively.

Fig. S2 Poincaré section for an asymmetric double-well:
Diagrams of z–ϕ (left), z–ż (middle), Poincaré maps (right).
From top to bottom z0 = (−0.8,−0.3, 0.2, 0.8), respectively.
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