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With the rapid development of topological states in crystals, the study of topological states has been
extended to quasicrystals in recent years. In this review, we summarize the recent progress of topo-
logical states in quasicrystals, particularly focusing on one-dimensional (1D) and 2D systems. We first
give a brief introduction to quasicrystalline structures. Then, we discuss topological phases in 1D
quasicrystals where the topological nature is attributed to the synthetic dimensions associated with
the quasiperiodic order of quasicrystals. We further present the generalization of various types of
crystalline topological states to 2D quasicrystals, where real-space expressions of corresponding topo-
logical invariants are introduced due to the lack of translational symmetry in quasicrystals. Finally,
since quasicrystals possess forbidden symmetries in crystals such as five-fold and eight-fold rotation,
we provide an overview of unique quasicrystalline symmetry-protected topological states without crys-
talline counterpart.
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1 Introduction

Topological states of matter are among the most intrigu-
ing research topics of condensed-matter physics during the
last half century [1–3]. Historically, the integer quan-
tum Hall effect (IQHE) discovered in the 1980s [4] is an
early example of topological states where the quantized
Hall conductance was later explained by the Thouless–
Kohmoto–Nightingale–den Nijs (TKNN) integer of occu-
pied energy bands (a topological invariant also known as
the Chern number) [5]. Recently, the discovery of topo-
logical insulators and superconductors and their classifica-
tion for the ten Altland–Zirnbauer symmetry classes based
on internal discrete symmetries (time-reversal, particle–
hole, and chiral symmetry) [6–9] have stimulated vari-
ous theoretical and experimental studies of real topolog-
ical materials [10–16]. The subsequent development of
topological classification has been extended to materials
in which the crystal structure is essential for the protec-
tion of topological phases. This includes topological crys-
talline insulators (TCIs) [17, 18], in which the topological
nature of electronic structures arises from crystal symme-
tries (such as the mirror or rotational symmetries), and
higher-order topological insulators (HOTIs) [19, 20], in
which topologically protected gapless states only occur at
the intersection of crystal facets, but is gapped otherwise.
More recently, the theory of symmetry-based indicator has
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been established to diagnose the underlying band topol-
ogy of a large number of crystalline materials via a high-
throughput computational search in crystalline material
databases [21–26].

The rapid progress of topological states in crystals has
sparked considerable interest in the study of topological
states in aperiodic systems, such as quasicrystals [27–29].
Recent advances have shown various analogous topologi-
cal states in quasicrystals as well as novel topological qua-
sicrystalline states without crystalline counterparts [30–
60]. Although the unique structural feature of quasicrys-
tals leads to significant difficulties in dealing with topo-
logical states, it also opens up new opportunities to realize
exotic topological phenomena that are impossible in crys-
tals.

Quasicrystals, which are special kinds of matter that
possess a long-range orientational order but no transla-
tional symmetry, have attached widespread interest since
their first discovery in 1982 [27]. Due to the lack of trans-
lational symmetry, the Bloch theorem and, therefore, the
topological band theory [61] does not apply to quasicrys-
tals, which prohibits an intuitive analysis of the prevailing
band-inversion mechanism for topological states in qua-
sicrystals. Moreover, most topological invariants, such as
the Z2 index, are defined only for periodic systems [62, 63].
Thus, in order to identify topological states in quasicrys-
tals, new topological invariants that apply to aperiodic
systems are in urgent need.

On the other hand, the long-range quasicrystalline or-
der can be seen as originating from periodic structures of a
dimension higher than the physical one. For example, the
one-dimensional (1D) Fibonacci quasicrystals can be de-
scribed as a projection of a 2D lattice on a line with an ir-
rational slope (see Fig. 1) [29, 64]. Remnants of the higher
dimensionality appear as additional degrees of freedom in
the form of shifts of the origin of the quasiperiodic order,
and can lead to virtual topological properties in dimen-
sions higher than the spatial one, with some “synthetic
dimensions” occurring in parameter spaces [65]. For ex-
ample, it was recently shown that 1D quasicrystals are as-
signed Chern numbers and exhibit topological properties
of the 2D IQHE [30, 31]. More interestingly, beyond the
classical crystallographic restriction of periodicity, qua-
sicrystals contain unique symmetries (such as five-fold and
eight-fold rotations) that are forbidden in conventional
crystals [66–68]. These novel symmetries can lead to new
types of topological states that have no crystalline coun-
terparts [47–50].

Here we review these recent developments of topolog-
ical states in quasicrystals. We first give a concise in-
troduction to quasicrystalline structures in Section 2, dis-
cussing the fundamental definition and the construction
of quasicrystals. Then we summarize the topological as-
pects of quasicrystals in different dimensions. In Section 3,
we focus on 1D quasicrystals where topological properties
are attributed to the synthetic dimensions associated with
the quasiperiodic order of quasicrystals. In Section 4, we

discuss the generalization of topological states existing in
crystals to quasicrystals where different real-space topo-
logical invariants are proposed to characterize these qua-
sicrystalline topological counterparts. In Section 5, we
introduce the unique topological states that are protected
by quasicrystalline rotational symmetries. We end with
a short summary of the current status of this field and
outline some promising directions for future research in
Section 6.

2 Structures of quasicrystals

Quasicrystal was a special form of solid matter that is or-
dered but not periodic. The quasicrystalline structure was
first observed in rapidly solidified aluminium-manganese
alloys (Al6Mn) via X-ray diffraction experiments [27]. The
key experimental feature was the ten-fold diffraction pat-
terns with sharp Bragg peaks, indicating a long-range or-
der that possesses a crystallographically disallowed rota-
tional symmetry which precluded periodicity. The discov-
ery enables the redefinition of “order” in crystalline ma-
terials, which is no longer just “periodic” as in the trans-
lationally invariant crystals. Rather it is suggested that
one should use an operational definition for an ordered
structure: a translationally ordered structure is a struc-
ture whose scattering amplitude is given by a discrete sum
of Bragg peaks [28].

With this definition which includes both crystals and
quasicrystals, one further defines that a crystal in d dimen-
sions is a translationally ordered structure with a basis (to
index the Bragg peaks) whose rank is equal to d, while a
quasiperiodic structure in d dimensions is a translationally
ordered structure with a finite basis whose rank exceeds
d [28]. Steinhardt further proposed a definition to classify
quasiperiodic structures into incommensurate crystals and
quasicrystals according to whether it has crystallographi-
cally disallowed orientational symmetry, such as the five-
fold, eight-fold, ten-fold, and 12-fold rotational symme-
try [28]. However, given the similarity between the two,
in this review, we use Lifshiz’s definition which drops the
forbidden symmetry condition [69], and treats quasicrys-
tals just as an abbreviation of quasiperiodic structures.

In the study of electronic properties of a quasicrystal,
there are generally two ways of building a model [28]:
one is the tight-binding approach, which explicitly con-
structs a quasicrystalline lattice and builds a tight-binding
model based on such a lattice. The other is the “den-
sity wave” approach [70], which considers the ionic lattice
as an incommensurate sum of plane waves according to
the diffraction pattern. In this review, we mainly adopt
the first approach to build models for quasicrystals. To
construct a quasicrystalline lattice, one can use the so-
called “projection” method [71, 72], in which quasicrystals
are generated by the projection from a higher-dimensional
periodic lattice with the projection hyperplane at an in-
commensurate orientation. As shown in Fig. 1, the rela-
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Fig. 1 Illustration of the projection method for the con-
struction of the Fibonacci lattice. The shaded area represents
the projection window, the lattice sites in the projection win-
dow are all projected perpendicularly onto the red line with a
slope of τ−1 = 2/(

√
5 + 1), the resulting green dots form the

quasiperiodic lattice sites.

tion of quasicrystals to higher-dimensional crystals is il-
lustrated by the construction of the 1D Fibonacci qua-
sicrystal, which is obtained by applying the projection
procedure on a square lattice onto the line with a slope
of τ−1 = 2/(1 +

√
5). This relation between quasicrystals

and higher-dimensional crystals can be generalized to 2D
and 3D quasicrystals.

The projection process manifests the fact that the rank
of a quasicrystal in d dimensions exceeds d. Further-
more, the quasiperiodic structure has unique low-energy
excitations due to the rearrangement of atoms, called
“phasons” [73], which are described as phonons in super-
space. Similar to phonons, phasons are associated with the
change of atomic position. While phonons are related to
atomic motion in physical space, phasons actually deforms
the slice of projection that creates the quasiperiodic struc-
ture, therefore, are excitations in superspace. Remnants
of the higher dimensionality provide additional phasonic
degrees of freedom which can induce measurable topologi-
cal effects on the lower-dimensional quasiperiodic systems.
This is also the essential idea for the realization of topo-
logical states in quasicrystals using synthetic dimensions,
which will discuss in Section 3.

Since the experimental study of real quasicrystal ma-
terials is largely obstructed by the rigorous growth pro-
cesses, stability conditions, and the unavoidable presence
of disorder [74], there are also alternative experimental
efforts to study the properties of quasicrystals based on
artificial quasicrystal structures, such as quasicrystalline
optical lattices [75–79], photonic and phononic quasicrys-
talline metacrystals [80–82]. Comparing to real quasicrys-
tals, these composite systems with a quasicrystalline order
can be easily designed and fabricated, which provides an
ideal platform for investigating quasicrystals. Similar to

studying the propagation of electrons in quasicrystals, the
propagation of ultracold atoms, light, or sound through
composite systems with quasicrystalline order are investi-
gated in these artificial quasicrystals [30, 76, 83–91].

In the quasicrystalline optical lattices for ultracold
atoms, the optical lattice is formed by the laser interfer-
ence pattern which traps ultracold atoms. The optical
potential is given by the time-averaged electrical field in-
tensity [92]

Vopt(r) = α
⟨
|E(r, t)|2

⟩
t
, (1)

where α = 3πc3ϵ0Γ/(ω
3
0δ), with Γ being the spontaneous

scattering rate, and δ ≡ ω−ω0 is the detuning of the laser
frequency ω from the atomic resonance ω0. By adjusting
the laser interference pattern, one can simulate different
types of quasicrystals and study novel behaviors of atoms
in the “synthetic” quasicrystalline lattices. For example,
the dynamics of ultracold atoms in five-fold [76, 77] and
eight-fold symmetric quasicrystalline optical lattices [78,
79, 83] have been studied experimentally.

The photonic metacrystals are also widely used to
implement different quasicrystal models, such as the
Harper [30], Fibonacci [84], and Penrose model [85, 86].
Because the time evolution of the Schrödinger equation
for electrons can be approximately mapped to the parax-
ial wave equation for the propagation of light through a
photonic metacrystal with varying refractive index, which
is given by [93]

i∂zE = − 1

2k
∇2

⊥E − k∆n

n0
E, (2)

where ∇⊥ ≡ ∂2x + ∂2y , k is the wavevector of the elec-
tric field, and E is the envelope of the electric field
E(x, y, z) = ẑE(x, y, z) exp(ikz) within the paraxial ap-
proximation [94]. ∆n and n0 are the varying and aver-
age components of the refractive index n, respectively.
Therefore, the propagation of photons in photonic qua-
sicrystals, which is affected by the quasicrystalline nanos-
tructure with spatially varying refractive index, can sim-
ulate the motion of electrons in quasicrystals. Since it
is relatively easy to fabricate photonic quasicrystals, of
which a variety of parameters are controllable, photonic
quasicrystals offer a powerful synthetic platform to study
quasicrystals.

3 Realization of topological state in
quasicrystals using synthetic dimensions

The surprising connection between quasicrystals and topo-
logical states of matter was initially discovered in 1D qua-
sicrystals by Kraus and colleagues [30]. As mentioned
above, 1D quasicrystals can be described by a projection
of 2D crystals. If the Hamiltonian of a 1D quasicrystal
system depends on a periodic parameter, then this pa-
rameter can be considered as a synthetic dimension. The
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Fig. 2 The numerically calculated spectrum of diagonal
Harper as a function of the phase ϕ for t = 1, λ = 0.5,
b = (

√
5 + 1)/2 (the golden mean), and n = −49, · · · , 49.

The insets show the boundary states and bulk states of the
model. Reproduced from Ref. [30].

effective 2D ancestor system may have a nontrivial topo-
logical invariant (such as the Chern number in 2D IQHE)
and, therefore, give rise to topological phenomena in the
1D descendant quasicrystal. A comprehensive review of
topology in 1D quasicrystals is already available [95]. Here
we briefly introduce the basic idea for the realization of
topological states in quasicrystal using synthetic dimen-
sions.

3.1 Topological states in 1D quasiperiodic structures

In 2012, Kraus et al. established the mathematical con-
nection between 1D quasicrystals and 2D IQHE by consid-
ering a 1D quasicrystal model given by the general tight-
binding Hamiltonian with nearest-neighbor hopping and
an on-site potential [30, 31]

H =
∑
n

[(
t+ λodV od

n

)
c†ncn+1 + H.c.+ λdV d

n c
†
ncn
]
,

(3)

where cn is the single-particle annihilation operator at
site n, t is the hopping amplitude, the real and posi-
tive parameters λod and λd control the strength of off-
diagonal and diagonal potential modulation, respectively.
The quasiperiodicity of different quasicrystal models is en-
coded in potential modulations V od

n and V d
n .

They first considered the Harper model (also known as
the Aubry–André model) [96] whose potential modulation
can be written as V H

n (ϕ) = cos(2πbn + ϕ), where b con-
trols the periodicity of the modulation and ϕ is the modu-
lation phase. Specifically, by setting λod = 0, λd ̸= 0 and
V d
n = V H

n (ϕ) in Eq. (3), one obtains the diagonal Harper
model [30],

H(ϕ) =
∑
n

(tc†ncn+1+H.c.+λd cos(2πbn+ϕ)c†ncn). (4)

Fig. 3 2D lattice ancestor Hamiltonians. The electrons hop
on a rectangular lattice in the presence of a perpendicular mag-
netic field with b flux quantum per unit cell. (a) 2D ances-
tor Hamiltonian of diagonal Harper model. (b) 2D ancestor
Hamiltonian of off-diagonal Harper model. Reproduced from
Ref. [31].

Whenever b is irrational, the modulation is incommensu-
rate with the lattice and describes a quasicrystal. The
modulation phase ϕ, which encodes a “phasonic” contin-
uous shit of the potential, serves as an additional dimen-
sion, and it plays a crucial role in constructing the map-
ping between 1D quasicrystals and 2D IQHEs. The energy
spectrum of the diagonal Harper model as a function of ϕ
is presented in Fig. 2. Although the bulk bands are almost
unchanged, boundary states, which are the physical man-
ifestation of the nontrivial topological phase, are found in
the bulk gap.

To map the diagonal Harper model to the lattice version
of the 2D IQHE, they consider ϕ as the dimensionless
crystal momentum ka, where a is the lattice spacing along
the second dimension. Therefore, for any given ϕ, Eq. (4)
can be viewed as the k-th Fourier component of a 2D
ancestor Hamiltonian. By performing an inverse Fourier
transformation with respect to ϕ, one can obtain the 2D
real-space ancestor model [31],

Hd =
∑
n,m

(
tc†n,mcn+1,m+

λd

2
ei2πbnc†n,mcn,m+1+H.c.

)
,

(5)

where m represents lattice site of the second dimension.
This model describes electrons hopping on a 2D rectan-
gular lattice in the presence of a uniform perpendicular
magnetic field with b flux quantum per unit cell, as shown
in Fig. 3(a).

Due to the presence of magnetic field which breaks
the lattice translational symmetry, the magnetic trans-
lation group can be introduced [97]. It is generated by
the operators Tm̂ and Tn̂ where Tm̂cn,mT

−1
m̂ = cn,m+1

and Tn̂cn,mT
−1
n̂ = e−i2πbmcn+1,m. For a rational flux

b = p/q, it is possible to diagonalize simultaneously
Hd, Tqn̂ = (Tn̂)

q and Tm̂, as they commute with each
other. It actually corresponds to an enlarged real-space
magnetic unit cell, which gives rise to the spectrum com-
posed of q bands [35]. As demonstrated by Thouless et
al. [5], each gap in the spectrum is associated with a quan-
tized Chern number ν (Hall conductance σH = νe2/h).
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Specifically, the Chern number associated with the gap
r = 1, · · · , (q − 1) in the spectrum is given by

νr =
1

2πi

∫ 2π

0

dϕdθCr(ϕ, θ), (6)

where ϕ and θ are phase twists associated with the pe-
riodic boundary conditions (PBCs) for the 2D ancestor
model, and

Cr(ϕ, θ) = Tr
(
Pr

[
∂Pr

∂ϕ
,
∂Pr

∂θ

])
, (7)

is the Chern density with Pr(ϕ, θ) =
∑

En<Er
gap

|n⟩⟨n| be-
ing the projector on the state below the gap r. Alterna-
tively, due to the symmetry of the magnetic translation
group, the Chern number νr also satisfies the Diophantine
equation r = νrp+ trq, where νr and tr are integers, and
0 < |νr| < q/2 [5, 98].

For a quasiperiodic system with an irrational b, the
spectrum, which is fractal, can be approached by taking
an appropriate rational limit with p, q → ∞. As the sys-
tem abides by the Diophantine equation for an arbitrarily
large q, the gaps remain associated with nontrivial Chern
numbers. Note that translating the lattice by m sites is
equivalent to shifting ϕ by 2π (bm mod 1). For a rational
b = p/q, (bm mod 1) has only q different values for all pos-
sible translations. However, for a irrational b, (bm mod 1)
samples the entire [0, 1] interval. Thus, the band structure
as well as Chern density is guaranteed to be invariant for
any shift of ϕ. Therefore, the Harper models in Eq. (4)
with different ϕ have the same bulk band structure and
Chern density. As a consequence, there is no need for an
integration of the Chern density, and the 1D models can
be associated with the same Chern number that charac-
terizes the 2D ancestor model. Since in the 2D IQHE,
different b’s result in different Chern numbers, this indi-
cates that two quasicrystals with different modulation pe-
riodicity b generally belong to different topological phases,
which cannot be smoothly deformed from one to the other
without closing the bulk gap.

Topological states in 1D quasicrystals can also be real-
ized in other 1D models, such as the off-diagonal Harper
model, which is defined by setting λod ̸= 0, λd = 0 and
V od
n = V H

n (ϕ), and the diagonal/off-diagonal Fibonacci
quasicrystal, which is governed by the modulation poten-
tial V od

n = V F
n = 2(⌊(n+ 2)/τ⌋ − ⌊(n+ 1)/τ⌋)− 1, where

τ = (1 +
√
5)/2 is the golden ratio, and ⌊x⌋ is the floor

function. By using the similar dimensional extension pro-
cedure, these models are also related to 2D ancestor mod-
els. Moreover, as demonstrated in Ref. [31], all these 1D
quasicrystal models are topologically equivalent whenever
they have the same irrational modulation frequency which
corresponds to the same flux quanta per unit cell in the
2D IQHE.

Due to the bulk-boundary correspondence, robust chiral
edge states emerge along the edges of 2D IQHEs. The
1D descendant quasicrystal inherits its robust boundary

Fig. 4 (a) A sketch of the experimental setup. (b) An illus-
tration of the conducted experiment. Light is injected into one
of the waveguides and tunnels to neighboring waveguides as it
propagates. (a–c) Experimental observation of the left bound-
ary state for ϕ = π/2. Light was initially injected into a single
waveguide (red arrows). The measured outgoing intensity is
plotted versus the injection position along the lattice. (c, d)
An excitation at the middle of the lattice (site 0) and at the
rightmost site (site 49) results in a significant spread. (e) For
an excitation at the leftmost site (site −49), the light remains
tightly localized at the boundary, marking the existence of a
boundary state. Reproduced from Ref. [30].

state from the 2D ancestor IQHE. Therefore, by scanning
ϕ from −π to π, boundary states traverse the gap with ϕ,
as shown in Fig. 2. Due to their topological origin, the
boundary states are robust against disorder, and cannot
be eliminated unless the energy gap closes.

The 1D quasiperiodic Harper model was experimentally
implemented in photonic quasicrystals, which are com-
posed of a 1D quasiperiodic lattice of evanescently cou-
pled single-mode waveguides, as presented in Fig. 4. The
propagation of light in waveguide lattices are described by
the discrete nonlinear Schrödinger-like equation [99],

i∂ψn

∂z
+ [β0 + λ cos(2πnχ)]ψn + C (ψn−1 + ψn+1)

+ γ |ψn|2 ψn = 0, (8)

where ψn is the wave function at site n, z = ct is the free
propagation axis, c being the speed of light in the medium,
β0 is the single-site eigenvalue of the underlying periodic
lattice, t is the hopping amplitude, λ controls the on-site
amplitude, and γ is the Kerr coefficient. In the linear
limit (γ = 0) the equation is identical to the tight-binding
model, with the propagation of light describing the time
evolution of the 1D tight-binding model. Modulating the
refraction index of the waveguides and the spacing be-
tween them controls the on-site and the hopping terms of
the Hamiltonian, respectively [99–101].
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Using this experimental setup, Kraus et al. found that
light injected in the middle or the rightmost of the lat-
tice showed considerable expansion while light injected in
the leftmost of the lattice remained tightly localized, thus
signaling the existence of the left edge states, which is con-
sistent with the energy spectrum shown in Fig. 2. They
further built a similar device in which the waveguides have
a slowly varying separation between them along the propa-
gation axis, thus realizing a sweep of ϕ in the off-diagonal
Harper model. Based on this device, they observed the
adiabatic pumping effect in which light injected on one
side of the device gradually migrated across the quasicrys-
tal to the other side. Thus, they experimentally demon-
strated the topological connection between quasicrystals
in 1D and the IQHE in 2D.

The dimensional extension technique is also applicable
to quasiperiodic lattices in higher-dimensions, as long as
extra degrees of freedom similar to the above ϕ can be
treated as synthetic dimensions. It is recently shown that
2D (3D) quasiperiodic structures with additional synthetic
dimensions can be mapped to 4D (6D) IQHEs, and these
topological phases are characterized by the second (third)
Chern number [32, 102].

3.2 Topological phase transitions

The topological classification of gapped systems typically
assigns a topological integer index (such as the Chern
number) to its energy gap [5], which remains the same
as long as the gap does not close. Hence, a system
with a given topological index can be continuously de-
formed into another topologically equivalent system with
the same topological index while keeping the bulk gap
open. Inversely, when two systems with different topo-
logical indices are connected smoothly, the bulk gap must
close at the interface between them, which manifests as
the appearance of gap-traversing states. Therefore, the
existence/absence of interface states and bulk gap clo-
sure can be used to determine the topological inequiv-
alence/equivalence between two topological states. As
presented in Section 3.1, the topological states in 1D
quasiperiodic systems can also be assigned Chern num-
bers which are inherited from their 2D ancestor periodic
models, it is, therefore, expected to observe the bulk gap
closure when smoothly deforming between topological in-
equivalent 1D quasicrystals and its absence when the sys-
tems are topological equivalent.

In Ref. [33], Verbin et al. used an array of coupled
single-mode waveguides to construct smooth boundaries
between topologically distinct or equivalent 1D quasicrys-
tals, as presented in Fig. 5. The dynamics of light propa-
gating in these coupled waveguide arrays is described by
the tight-binding model, with the propagation axis z tak-
ing over the role of time. The general form of Hamiltonian
is given by

Hψn = tnψn−1 + tn+1ψn+1, (9)

Fig. 5 Photonic waveguides implementing deformation be-
tween two quasicrystals. Reproduced from Ref. [33].

where ψn is the wave function at waveguide number n
and tn is the hopping amplitude from site n to site
n − 1. As shown in Fig. 5, the two quasiperiodic sys-
tems I and II, where each system has its own set of hop-
ping amplitudes tIn and tIIn , are smoothly connected by
an intermediate region with a deformed hopping profile
tn = fnt

I
n + (1− fn) t

II
n , where

fn =


1, 1 ≤ n ≤ LI,
1− n−L1

LD
, LI < n < LI + LD,

0, LI + LD ≤ n ≤ LI + LD + LII.

(10)

The length of region I, region II and the deforming region
is LI, LII and LD respectively.

This interface structure enables the study of the tran-
sition between different 1D quasicrystals, on a single
waveguide array. For each quasicrystal, the quasiperi-
odic hopping amplitude is modulated according to tn =
t0 [1 + λdn], where t0 is the characteristic hopping am-
plitude, λ ∈ [0, 1) is the modulation strength, and dn ∈
[−1, 1] is the quasiperiodic modulation function. Specif-
ically, they considered two types of modulations: the
Harper modulation

dH
n = cos(2πbn+ ϕ), (11)

and the Fibonacci modulation

dF
n = 2

(⌊
τ

τ + 1
(n+ 2)

⌋
−
⌊

τ

τ + 1
(n+ 1)

⌋)
− 1 = ±1,

(12)

where τ = (1 +
√
5)/2 is irrational and ⌊x⌋ is the floor

function. As presented in Section 3.1, the Harper qua-
sicrystal is controlled by the irrational modulation fre-
quency b, and the Fibonacci-like quasicrystal which is con-
structed from a sequence of two values as illustrated in
Fig. 1. Since the energy spectrum as well as the associ-
ated Chern number of the Harper quasicrystal depend on
the modulation frequency b, two Harper quasicrystals with
bI ̸= bII are topological inequivalent. Hence, the bulk gap
closure is expected at the intermediate region. Compara-
bly, the Fibonacci-like quasicrystal is topologically equiv-
alent with the Harper quasicrystal whenever the modula-
tion frequency b = (τ + 1)/τ [31], and therefore, can be
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continuously deformed into the Harper quasicrystal with-
out topological phase transition.

To experimentally observe the topological phase transi-
tion between the two quasicrystals, they study the contin-
uously deformed photonic quasicrystal by injecting light
into one of the waveguides in the array and imaging the
outgoing intensity at the output facet using a CCD cam-
era. The width of the outgoing intensity distribution re-
veals the existence or absence of localized eigenstates near
the injection site. To quantify the localization of the out-
going light at different sites, they introduce the general-
ized return probability

ξ =

(
n+∆∑

m=n−∆

|ψm|2
)/(

LI+LD+LII∑
m=1

|ψm|2
)
, (13)

which measures the amount of light that remains within
a small distance ∆ from the injection site n.

As shown in Fig. 6(a), two clear peaks appear in
the deformation region between topologically inequivalent
Harper quasicrystals with modulation frequencies bI ̸= bII,
indicating the existence of localized states within the de-
formation region. These peaks observed in ξn are also
consistent with the numerically calculated local density
of density which describes the spatial distribution of the
eigenstates of the structure as a function of energy. On
contrary, no sign of localized states within the deforma-
tion region between the topologically equivalent Harper
quasicrystal and Fibonacci-like quasicrystal [as shown in
Fig. 6(b)], which agrees with the open gap observed along
the deformation in the LDOS. The experimental observa-
tion and numerical calculations, which consistently show
the absence of phase transition, confirm the topological
equivalence between the Fibonacci and the Harper qua-

sicrystals.

4 Generalization of crystalline topological
states in quasicrystals

Next, we turn to the realization of quasicrystalline coun-
terparts of topological states already proposed in crystals.
As various 2D topological states have been discovered in
crystals, it is natural to generalize these states to 2D qua-
sicrystals. Since quasicrystals possess long-range orienta-
tional order but lack translational symmetry, one cannot
use the Bloch theorem as for crystals. Moreover, various
topological invariants defined for periodic systems, are no
longer applicable in quasicrystals. Here we mainly discuss
basic tight-binding Hamiltonians to realize 2D topologi-
cal states in 2D quasicrystals and topological invariants
to identify their topological nature.

4.1 Quantum Hall states

The IQHE is a well-known example of 2D topological
states [4]. In an IQHE, 2D lattices subjected to a strong
perpendicular magnetic field display nontrivial topolog-
ical bands characterized by the Chern number [5]. As
the 2D lattice is not necessarily periodic, it is possible
to generalize the IQHE to 2D quasicrystals. There has
been some research exploring the IQHE in 2D quasicrys-
tals [34, 36–38]. For example, Tran et al. [34] investigated
the topological properties of a 2D quasicrystal subjected
to a uniform magnetic field. The 2D quasicrystal is based
on the generalized Rauzy tilling, as presented in Fig. 7.

In order to describe the quasicrystal in the presence of a
uniform magnetic field, they introduce the spinless tight-

Fig. 6 Summary of results between (a–c) topologically inequivalent Harper model and (d–f) topologically equivalent Harper
and Fibonacci model. (a, d) The hopping amplitude tn as a function of the site index n. (b, e) Experimentally measured return
probability as a function of the lattice site n. (c, f) Local density of states (LDOS) of the structure. Reproduced from Ref. [33].
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Fig. 7 Top: Isometric generalized Rauzy tiling. Bottom:
The red arrows represent directions of the three nearest hop-
pings, their corresponding Peierls phase factors are shown. The
magnetic flux per tile is ϕ = Bl2

√
3/2. Reproduced from

Ref. [34].

binding model with Peierls phase factors:

Ĥ = −J
∑
⟨j,k⟩

eiθjk ĉ†k ĉj , θjk =

∫ rk

rj

A · dl, (14)

where c†j creates a fermion at the lattice site rj , J is the
hopping matrix element, exp (iθjk) denotes the Peierls
phase factor due to the magnetic field [35], and A is the
corresponding vector potential. The magnetic flux per
tile is ϕ = Bl2

√
3/2 over the entire quasicrystal, where l

is the distance between neighboring sites. The flux quan-
tum equals ϕ0 = 2π in the present units where h̄ = e = 1.

The density of states (DOS) of the Rauzy tiling with
open boundary conditions (OBCs) were calculated based
on Eq. (14). Figure 8(a) depicts the DOS in terms of the
magnetic flux ϕ, which shows similarities with the Hofs-
tadter’s butterfly in the square lattices case [35]. More-
over, this figure has regions of very low density (in red),
which correspond to the spectral gaps in the closed (torus)
geometry (i.e., in a PBC). To further analyze the prop-
erties of the DOS diagram, they used the edge-locality
marker

Bλ =
∑

r∈edge
|ψλ(r)|2, (15)

to characterize the localization of each eigenstate ψλ, with
eigenenergy Eλ, at the boundary. As shown in Fig. 8(b),
the distribution of Bλ over all states in the Eλ–ϕ plane
follows the shape of the butterfly in Fig. 8(a), indicating

that these low-DOS regions host chiral edge states. This is
in agreement with the fact that these regions correspond
to bulk energy gaps in the closed geometry.

As in periodic lattices, the chiral states residing within
the low-DOS regions of the spectrum are associated with
a Chern number. However, the conventional numerical
method of computing the Chern number [103, 104] relies
on the restoration of spatial periodicity. Due to the lack of
translational symmetry, it is more satisfactory to evaluate
the topological number without invoking any reciprocal-
space parameters (such as the wave vector k). This is
achieved using the real-space Chern invariant C, as intro-
duced by Bianco and Resta [105]. This method provides
a local characterization of the bulk topological invariant,
and hence, is independent of the boundary conditions.

As introduced by Bianco and Resta [105], the real-space
Chern invariant can characterize the topology of finite-size
systems with OBC locally in real space. Tran et al. [34]
applied this method to quasicrystals. To do so, they in-
troduced the local Chern marker

C(ri) = −4π Im
[∑

rj

⟨ri |x̂Q| rj⟩ ⟨rj |ŷP | ri⟩

]
, (16)

where

⟨ri |x̂Q| rj⟩ =
∑
rk

Q (ri, rk)xkP (rk, rj) , (17)

⟨rj |ŷP | ri⟩ =
∑
rk

P (rj , rk) ykQ (rk, ri) , (18)

and the projection operator in the position basis is defined
as

P (ri, rj) =
∑

Eλ<EF

⟨ri | ψλ⟩ ⟨ψλ | rj⟩ , (19)

Q (ri, rj) =
∑

Eλ>EF

⟨ri | ψλ⟩ ⟨ψλ | rj⟩ , (20)

where {|ri⟩} denotes the lattice-position basis. For a non-
periodic system, a smoothened real-space Chern number

Fig. 8 (a) Density of states (DOS) in terms of the magnetic
flux ϕ for the Rauzy tiling quasicrystal with an OBC. (b)
The edge-locality marker Bλ as a function of the flux ϕ and
eigenenergy Eλ. The states lying in the low-DOS regions of
(a) are located at the boundary. Reproduced from Ref. [34].
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is obtained by an average of C(ri) over a disk D of radius
rD, cebtered ariybd r0 and located within the bulk,

CD (r0) =
1

AD

∫
D

C (r′)dr′, (21)

where AD is the disk area. Note that the quantity CD (r0)
in Eq. (21) is still local, and thus, it can be exploited to
probe (potentially different) topological orders in nonpe-
riodic systems.

For the specific Rauzy quasicrystal studied by Tran et
al., the local real-space Chern number is obtained by the
averaged marker C(ri) over a single quasicrystal tile

C (rj) =
C (rj)

Atile
, Atile = l2

√
3/2. (22)

Then, to reduce the fluctuations of the local real-space
Chern number in the quasicrystal, the smoothened real-
space Chern number is calculated as

CD (r0) =
1

N

∑
j∈D

C (rj) , (23)

where the average is performed over the N points within
the disk D. The calculated real-space Chern numbers of
the Rauzy quasicrystal with different magnetic flux per
tile are all integer within small errors, indicating that the
bulk topology of quasicrystals subjected to a uniform mag-
netic field is well captured by the (local) real-space Chern
number.

Topological states appearing in electronic systems can
usually be generalized to photonic systems [51, 52, 106].
According to Eq. (2), the paraxial wave equation which
describes the propagation of optical wave in photonic lat-
tices, is mathematically equivalent to the Schrödinger
equation — with the propagation coordinate z playing
the role of time, and the local change in the refractive
index being the potential. As an analogue of IQHE in
2D quasicrystals, Bandres et al. [107] proposed a topo-
logical Floquet photonic quasicrystals in a 2D photonic
quasicrystalline lattice composed of evanescently coupled
helical waveguides. In this system, the role of external
magnetic fields as for IQHE is replaced by an artificial
gauge field via dynamic modulation.

Specifically, they consider a Penrose tilling quasicrys-
talline lattice with helical waveguides attached to each
vertex, as shown in Fig. 9. Similar to the IQHE, the sys-
tem can be described by a tight-binding Hamiltonian sub-
ject to a vector potential given by

i∂zΨn =
∑
⟨m⟩

cmneiA(z)·rmnΨm, (24)

where Ψn is the amplitude in the n-th site, cmn and rmn

are the coupling constant and the displacement between
site m and n, respectively. A(z) = A0[cos(Ωz), sin(Ωz)] is
the vector potential (reflecting the helicity of the waveg-
uides). As the Hamiltonian is Z = 2π/Ω periodic, the

Fig. 9 (a, b) Periodic Penrose approximants of Penrose
quasicrystals, containing 199 and 521 vertices. (c) Photonic
Floquet quasicrystal formed by introducing a helical waveguide
in each vertex of the Penrose tilling lattice. Reproduced from
Ref. [107].

Floquet theory applies [108], and the Floquet eigenmodes
are of the form Ψn(z) = exp(iβz)ϕn(z), where ϕn(z) is z
periodic and β is the Floquet eigenvalue, or “quasienergy”,
which are defined modulo the frequency Ω. The existence
of the topological state is demonstrated by directly calcu-
lating the Bott index, which is another topological index
equivalent to the Chern number [109], and by studying
the unidirectional transport of the gapless edge states and
its robustness in the presence of defects.

4.2 Quantum anomalous Hall states

After the discovery of the IQHE, Haldane proposed a
model (termed the Haldane model) on a honeycomb lattice
in which an IQHE appears as an intrinsic property of its
topological band structure, rather than being induced by a
strong external magnetic field [101]. Such a quantum Hall
effect without magnetic fields and associated Landau lev-
els is also known as the “quantum” version of anomalous
Hall effect, which is named as the quantum anomalous
Hall (QAH) state or the Chern insulator (CI). Recently,
QAH states were realized in quasicrystalline systems, such
as quasicrystalline models with staggered flux [45] and 30◦
twisted bilayer graphene [59, 60].

As an example, here we introduce a quasicrystalline
CI [45], which is constructed by elaborately imposing stag-
gered flux on disk geometry with fivefold rotational sym-
metry in Dürer’s pentagonal quasicrystal, as shown in
Fig. 10. Similar to the Haldane model, an inequivalent
staggered flux is introduced on the polygons in the qua-
sicrystalline lattice, which results in different types of qua-
sicrystalline CIs according to the distribution of the stag-
gered fluxes. Taking the type-I model as an example (see
Fig. 10), the staggered fluxes of −4ϕ are imposed on all di-
amonds (shadow), and +2ϕ for all the pentagons (bright)
except the central pentagon. The total flux in the whole
disk is exactly zero if the regular pentagon shape is con-
sidered. The real-space Hamiltonian is given by          
  
H = −t

∑
⟨rr′⟩

a†r′areiϕrr′ − t′
∑

3,⟨rr′⟩

a†r′ar, (25)

where a†r (ar) creates (annihilates) a particle at vertex
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Fig. 10 Type-I quasicrystalline CI model realized by intro-
ducing staggered flux in Dürer’s tiling quasicrystal lattice. Re-
produced from Ref. [45].

(site) r, t (which is set as unit) and t′ are nearest-neighbor
(NN) and next-nearest-neighbor (NNN) hopping, respec-
tively. ⟨rr′⟩ runs over all the NN sites, and 3, ⟨rr′⟩′ de-
notes the NNN sites in each diamond. ϕr′r is the phase
difference between the NN sites as shown in Fig. 10. The
topological feature of this model is investigated by directly
calculating the energy spectrum where edge states are ob-
served in the bulk gap, and the spatial distribution of edge
states, which are mainly localized near the boundaries, as
shown in Fig. 11.

To further identify the quasicrystalline CI, they calcu-
lated the Chern number using the Kitaev formula and the
local Chern number marker. Here we present the method
from the Kitaev formula [111], which defines the real-space
Chern number as

C = 12πi
∑
j∈A

∑
k∈B

∑
l∈C

(PjkPklPlj − PjlPlkPkj). (26)

The disk of the quasicrystal is now cut into three dis-
tinct neighboring regions (labelled as A, B and C) ar-
ranged in the counterclockwise order, as shown in insert

Fig. 11 (a) Energy spectrum of the Type-I quasicrystalline
CI model. L is the quantum number of the angular momen-
tum. (b) and (c) are the spatial distributions of wave func-
tion |ψ(r)|2 for edge states highlighted in (a). (d) and (e) are
similar |ψ(r)|2 but for the correspondingly core states in (a).
Reproduced from Ref. [45].

Fig. 12 Real-space Chern number as a function of Fermi
energy. Reproduced from Ref. [45].

in Fig. 12. j, k, and l denote the vertex (or site) in three
regions, respectively. P̂ =

∑
En<EF

|ϕn⟩ ⟨ϕn| is the pro-
jection operator of occupied states below the Fermi energy
EF , and Pjk =

∑
En<EF

ϕn (rj)ϕn (rk)
∗ is the matrix ele-

ments of P̂ with ϕn (rj) = ⟨j | ϕn⟩. The real-space Chern
number is independent of the choices of the A, B and C
regions [112]. As the Chern number is determined by all
occupied states, it is apparently related to the position
of the Fermi level. As shown in Fig. 12, the real-space
Chern number shows a quantized plateau when the Fermi
energy is located in the bulk gap, indicating the nontrivial
topology of the quasicrystal.

4.3 Quantum spin Hall states

As a cousin of the IQHE, the quantum spin Hall (QSH)
effect which exhibits a quantized spin-Hall conductance
and a vanishing charge-Hall conductance, have attracted
considerable attention since it was initially proposed by
Kane and Mele [113], and independently by Bernevig and
Zhang [114]. Different from the IQHE which is associated
with a nonzero Chern number, QSH states are character-
ized by the topological invariant called the Z2 index, which

Fig. 13 (a) Penrose tiling pattern containing 521 vertices.
(b) Atomic model of a QSH state in a surface-based 2D qua-
sicrystal. The red and blue arrows represent helical edge states
with opposite spin polarizations. Reproduced from Ref. [39].
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is zero for trivial and one for nontrivial cases [62]. More-
over, the nontrivial topological nature of the QSH state
also manifests as topologically protected metallic edge
states with helical spin polarization residing in an insu-
lating bulk gap. For comprehensive reviews of QSH states
please see Refs. [1, 2, 115, 116] and references therein.

Recently, the QSH effect is also explored in quasicrys-
tals [39–41] by one of the authors. As shown in Fig. 13,
Huang and Liu [39] mapped a 2D Penrose tiling to an
atomic quasicrystalline lattice with atomic orbitals, which
is makeable by experiments.

We consider a general atomic basis tight-binding model
for quasicrystalline lattices with three orbitals (s, px, py)
per site, which is given by             

H =
∑
iα

ϵαc
†
iαciα +

∑
⟨iα,jβ⟩

tiα,jβc
†
iαcjβ

+ iλ
∑
i

(c†ipy
σzcipx

− c†ipx
σzcipy

), (27)

where c†iα =
(
c†iα↑, c

†
iα↓

)
are electron creation operators

on the α (= s, px, py) orbital at the i-th site. ϵα is the

on-site energy of the α orbital. The second term is the
hopping term, where tiα,jβ = tα,β (dij) is the hopping
integral, which depends on the orbital type (α and β)
and the vector dij between sites i and j. λ is the spin-
orbit coupling (SOC) strength. In our model, the hopping
integral follows the Slater–Koster formula [117]

tα,β (dij) = SK
[
Vαβ (dij) , d̂ij

]
, (28)

where d̂ij is the unit direction vector. The distance de-
pendence of the bonding parameters Vαβ (dij) is captured
approximately by the Harrison relation [118]:

Vαβ (dij) = Vαβ,0
d20
d2ij

, (29)

where d0 is a scaling factor to uniformly tune the bonding
strengths.

With proper tight-binding parameters, a band inver-
sion between s and p states of different parities can be
realized in the model, which gives rise to a QSH state
in the quasicrystal. As shown in Fig. 14(a), the energy

Fig. 14 Calculation of a Penrose-type quasicrystal sample with 1364 atoms. (a) Energy eigenvalues En versus the state index
n. The system with a PBC shows a gap, while that with an OBC shows midgap states. (b) The wave function |ψ(r)⟩ = ρ(r)eiϕ(r)

of the midgap state [marked as the yellow star in (a)] is localized on the edge of the system. The size and the color of the blob
indicate the norm |ρ(r)|2 and phase ϕ(r) of the wave function, respectively. (c) Two-terminal conductance G as a function of
the Fermi energy E, showing a quantized plateau in the energy gap. (d) Local density of state Dn(E) at E = 0 eV for the
central quasicrystal in the transport simulation. The size of the blue dot represents the relative value of the local density of
state. Reproduced from Ref. [39].
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spectrum of the quasicrystal approximant with an artifi-
cial PBC has an energy gap around the Fermi level, while
some edge states which are localized on the boundary of
the finite sample [see Fig. 14(b)], emerge in the gap in the
presence of an OBC, implying the existence of nontriv-
ial topology. The conductive feature of the edge states is
verified by a quantum transport simulation based on the
nonequilibrium Green’s function method. Remarkably, a
clear quantized plateau at G = 2e2/h for the two-terminal
charge conductance is observed, and the conductive chan-
nels are mostly contributed by the topological edge states,
as seen from the local density of states in Fig. 14(d).

To further identify the QSH states in quasicrystals, we
define the spin Bott index Bs, which is topologically equiv-
alent to the Z2 index, for QSH states in nonperiodic sys-
tems. The inspiration was drawn from the equivalence
between the Bott index and the Chern number [109], and
the definition of the spin Chern number for QSH states
in crystals [119–121]. Although the lack of periodicity
hinders the usage of crystalline momentum, we can still
obtain the eigenenergies and eigenstates of the Hamilto-
nian in quasicrystals via a direct diagonalization, and con-
struct the projector operator of the occupied states P and
the projected spin operator,

P =

Nocc∑
i

|ψi⟩⟨ψi|, Pz = P ŝzP. (30)

Then, we make a smooth decomposition by solving the
eigenvalue problem

Pz|ϕ±⟩ = S±|ϕ±⟩, (31)

and construct new projector operators for two spin sectors,
            

P± =

Nocc/2∑
i

| ± ϕi⟩⟨±ϕi|. (32)

Next, we calculate the projected position operators

U± = P±ei2πXP± + (I − P±),

V± = P±ei2πY P± + (I − P±),
(33)

where X and Y are the rescaled coordinates which are
defined in the interval [0,1). For each spin sector, the Bott
index, which measures the commutativity of the projected
position operators [122–125], is given by

B± =
1

2π
Im{Tr[log(V±U±V

†
±U

†
±)]}. (34)

Finally, the spin Bott index is defined as the half difference
between the Bott indices for the two spin sectors.            

Bs =
1

2
(B+ −B−). (35)

The spin Bott index is a well-defined topological invari-
ant, which applies to quasiperiodic and amorphous sys-
tems. Therefore, it provides a useful tool to determine the

electronic topology of those systems without translational
symmetry. For the quasicrystal in Fig. 13 the calculated
spin Bott index Bs = 1, indicating indeed a QSH state.

Following our work, Chen et al. studied the effect of
disorder on the QSH state in quasicrystals and found that
disorder-induced topological Anderson insulators can also
be realized in quasicrystals [43, 44]. Based on the model
in Eq. (27), they consider random on-site disorder on
the Penrose-type quasicrystal. It is found that a disor-
der can induce a phase transition from a normal insulator
to a QSH state in the quasicrystal system, indicating the
emergence of a topological Anderson insulator state. The
transport simulation shows that a quantized two-terminal
conductance plateau can arise inside the energy gap of the
normal-insulator phase for moderate Anderson disorder
strength. This topological Anderson insulator is further
identified by the disorder-averaged spin Bott index.

4.4 Topological crystalline insulators

The discovery of QSH states in quasicrystals stimulates us
to investigate other symmetry-protected topological states
in quasicrystals. TCIs are special states of matter in which
the topological nature of electronic structures arises from
crystal symmetries, such as mirror or rotation symme-
tries. And a key characteristic of TCIs is the presence
of metallic boundary states on surfaces/edges preserving
that symmetry. Since TCIs could be induced by a band
inversion between states with the same parity but differ-
ent eigenvalues of some lattice symmetries, we explore the
realization of TCIs in quasicrystals which stem from the
band inversion mechanism. In Ref. [46], we propose the
concept of aperiodic TCIs, as exemplified by an octagonal
quasicrystal.

To demonstrate the realization of aperiodic TCIs, we
use a generic atomic-basis model on a 2D quasicrystals
according to the octagonal Ammann–Beenker (AB) tiling,
as shown in Fig. 15(a).

There are three orbitals (px, py, and pz) per site having
opposite eigenvalues with respect to the mirror operation
M̂z. The Hamiltonian is expressed as             

H =
∑
iαµ

ϵαc
†
iαµciαµ +

∑
⟨iα,jβ⟩,µ

tiα,jβc
†
iαcjβ

+ iλ
∑
i,µν

(c†iµ × c†iν) · sµν , (36)

where c†iαµ are electron creation operators on the
α (= px, py, pz) orbital with spin µ(=↑, ↓) at the ith site.
ϵα is the on-site energy of the α orbital. tiα,jβ =
tαβ (rij) is the Slater–Koster hopping integral which de-
pends on orbital types and the intersite vector rij from
sites i to j [117, 118]. λ is the SOC strength, c†iµ =

(c†ipx
, c†ipy

, c†ipz
)µ, and s = (σx, σy, σz) are the Pauli matri-

ces.
As shown in Fig. 15(b), numerically calculated energy

spectrum with a PBC shows an energy gap, while a set
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Fig. 15 (a) Octagonal quasicrystalline lattice based on the Ammann–Beenker tiling containing 264 vertices. Three atomic
p orbitals with different mirror symmetries are placed on vertices. (b) Energy eigenvalues En versus the state index n from the
calculation of a quasicrystal sample with 1393 atoms. The inset shows the orbital-resolved spectrum of the quasicrystal with
a PBC. (c) The wave function of the midgap state [marked as the green star in (a)] is located on the edge. Reproduced from
Ref. [46].

of edge states, which are localized on the boundary [see
Fig. 15(c)], emerge in the gap region for the OBC system.
The existence of bulk energy gap and robust midgap edge
states suggest a nontrivial electronic topology. Moreover,
as shown in the inset Fig. 15(b), the orbital-resolved PBC
spectrum exhibits signatures of a band inversion between
pz and px,y orbitals. However, the calculated spin Bott
index of this system is Bs = 0, indicating that it is not a
QSH state. Further inspection shows that the edge states
of the system are actually protected by the in-plane mirror
symmetry. Therefore, this aperiodic system is actually a
mirror-protected TCI.

Following a similar idea of the spin Bott index for non-
periodic systems, we propose the topological invariant
called the mirror Bott index Bm in analogy to the mir-
ror Chern number [126] of periodic systems to character-
ize the aperiodic TCI. Specifically, we divide the wave
functions in the mirror-invariant plane into two separate
sets according to their mirror eigenvalues (±i), and cal-
culate their respective Bott index B±i. Then, the mirror
Bott index is defined as the half difference between them

Bm = (B+i−B−i)/2. To do so, we construct the projected
mirror operator,

Pm = PM̂zP, (37)

where P is the projector operator defined in Eq. (30) and
M̂z = −iσz ⊗mz with the Pauli matrix σz and mz being
the mirror matrices in the spin and orbital spaces, respec-
tively. By solving the eigenvalue equation,

Pm|ϕ±j ⟩ = ±i|ϕ±j ⟩, (38)

one can construct projector operators for the two mirror
subspaces,

P±i =

Nocc/2∑
j

|ϕ±j ⟩⟨ϕ
±
j |. (39)

Then, it is straightforward to calculate the Bott index
for each subspace as well as the mirror Bott index, fol-
lowing the same algorithm in Eqs. (33)–(35). The mirror
Bott index is topologically equivalent to the mirror Chern
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number, which gives a Z classification for mirror-protected
aperiodic TCIs.

For the quasicrystal in Fig. 15(b), we found that Bm =
2, confirming its nontrivial topological nature. Accord-
ing to the general bulk-edge correspondence, Bm = 2
dictates that there exist two pairs of counterpropagating
edge states within the energy gaps. These edge states also
lead to a quantized two-terminal conductance of 2e2/h per
edge, which is verified by the quantum transport simula-
tion.

4.5 Topological superconductors

In addition to various insulating topological states men-
tioned above, there are also some works studying topologi-
cal superconductors in quasicrystals [53–58]. The effect of
quasiperiodic potentials on 1D topological superconduc-
tors was studied as early as 2012 [53]. Later, 2D topo-
logical superconductors were also explored in quasicrys-
tals [56–58].

In Ref. [56], Fulga et al. considered a 2D topological su-
perconductor on an AB tiling quasicrystal. Similar to the
Bogoliubov–de Gennes (BdG) Hamiltonian of spinless p-
wave superconductors, the Hamiltonian on the quasicrys-
tal is expressed as

HQC =
∑
j

c†jHjcj +
∑
⟨j,k⟩

c†jHjkck, (40)

Hj = −µσz, (41)

Hjk = −tσz −
i
2
∆σx cos(αjk)−

i
2
∆σy sin(αjk), (42)

where c†j = (c†j , cj) contains the fermionic creation and an-
nihilation operators at site j, µ is the chemical potential,
t is the hopping strength, ∆ is the strength of the p-wave
paring and αjk is the angle of the bond between site j and
site k, measured with respect to the horizontal direction.

The numerical calculation shows gapped bulk and gap-
less boundary states at the Fermi level for t = ∆ = 1
and µ = 2 [see Fig. 16(a)]. The transport properties
of the edge states were studied by attaching two infinite
translationally invariant leads to the left and right sides of
the quasicrystal based on scattering theory [56]. For the
parameters of Fig. 16(a), the thermal conductance G is
quantized, G/G0 = 1, with G0 = π2k2BT0/(6h) the quan-
tum of the thermal conductance. This indicates that the
quasicrystal is a topological superconductor with Chern
number |C| = 1.

To confirm the topological superconductor in the qua-
sicrystal, Fulga et al. introduced a real-space formulation
to determine the topological invariant based on the Clif-
ford pseudospectrum [127]. SinceHQC obeys particle–hole
symmetry
ΣxHQCΣx = −H∗

QC (43)
with Σx = σx⊕σx⊕· · ·⊕σx, it still belongs to symmetry
class D in the Altland–Zirnbauer classification [6]. There-
fore, it allows for a topological classification in terms of

Fig. 16 (a) Total wave function amplitude of HQC in the
Ammann–Beenker tiling lattice, corresponding to states with
energies |E| < 0.2, for t = ∆ = 1 and µ = 2. Circles of larger
area and darker color correspond to larger amplitudes. (b)
Total amplitude of wave functions with energies |E| < 0.1 for a
single disorder realization.Thicker hoppings show the positions
of Kitaev chains in the array. Reproduced from Ref. [56].

the Chern number. However, due to the lack of trans-
lational symmetry, the topological invariant is obtained
as the pseudospectrum Z index introduced in Ref. [127].
Specifically, one first performs a change of basis, H̃QC =
ΩHQCΩ

† with Ω = A⊕A⊕ · · · ⊕A, and

A =

√
1

2

(
1 1
−i i

)
, (44)

so that the Hamiltonian becomes an imaginary one,
H̃QC = −H̃∗

QC. After that, the pseudospectrum Z index
can be obtained as

Cps =
1

2
sig
(

X Y − iH̃QC

Y + iH̃QC −X

)
, (45)

where X and Y are the position operators associated to
the sites of the tiling and sig stands for matrix signature,
i.e., the number of positive eigenvalues minus the number
of negative eigenvalues. The calculated Cps = −1, consis-
tent with the quantized values of the thermal conductance.
Therefore, the index Cps is a well-defined topological in-
variant which characterizes 2D topological superconduc-
tors belonging to class D in quasicrystals.

In addition, the compatibility of weak topological super-
conductors with quasicrystals is also explored. Opposite
to strong topological phases which are generally protected
by intrinsic symmetries such as time-reversal, particle–
hole or chiral symmetries, weak topological phases are usu-
ally described in terms of protection by the lattice trans-
lational symmetry. It was shown that a weak topological
phase can be protected by an averaged translational sym-
metry and, therefore, can still be robust even when disor-
der breaks the translational symmetry [128, 129]. Thus,
weak topological superconductors can also be introduced
in quasicrystals.

A weak topological superconductor in 2D class D sys-
tem can be regarded as an array of weakly coupled 1D
Kitaev chains which are 1D strong topological supercon-
ductors [130]. To convert the 2D AB tiling quasicrystals
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into an array of Kitaev chains, they selectively reduce the
hopping amplitudes in stripe regions of quasicrystals, thus
forming an array of coupled quasi-1D strips, as shown in
Fig. 16(b). With this modified Hamiltonian, each quasi-
1D strip becomes a nontrivial Kitaev chain hosting Ma-
jorana end modes, which forms two Kitaev edges due to
weak inter-chain couplings. As shown in Fig. 16, a strong
topological superconductor exhibits extended edge states
along the quasicrystal’s boundary, whereas the weak topo-
logical superconductor possesses edge states only at the
top and bottom boundaries and Cps = 0.

To characterize the weak topological superconductor
phase in quasicrystals, they introduce a real-space formu-
lation of the weak topological invariant based again on the
Clifford pseudospectrum, which is given by

Qy = sgn det
(
Y + iH̃QC

)
. (46)

For the system in Fig. 16(b), a nontrivial value of Qy = −1
is found, which verified the existence of the weak topolog-
ical phase in quasicrystals.

5 Quasicrystalline symmetry-protected
topological states

In addition to the realization of quasicrystalline counter-
parts of topological states already existing in crystals,
it is more interesting to explore novel topological states
that can only appear in quasicrystals. Without classi-
cal crystallographic restriction, quasicrystals may exhibit
rotational symmetries that are forbidden in conventional
crystals. Here we briefly introduce the recently proposed
higher-order topological phase protected by unique qua-
sicrystalline rotational symmetries.

Comparing to the well-studied topological (crystalline)
insulators, which have a gapped n-dimensional bulk and
topologically protected (n−1)-dimensional gapless bound-
ary states, a HOTI in n-dimension has a gapped n-
dimensional bulk and (n − 1)-dimensional boundary, but
the gapless states emerge at lower dimensions, e.g., the 0D
corner of a 2D insulator [19, 20]. As an extension of TCIs,
the recently proposed HOTIs are also related to lattice
symmetry and have been extensively investigated in crys-
tals. Recently, the concept of HOTIs were extended to
quasicrystals, which results in quasicrystalline symmetry-
protected higher-order topological phases [47–50].

For example, Varjas et al. [47] constructed a 2D higher-
order topological superconductor protected by a qua-
sicrystalline eight-fold rotational symmetry, where lo-
calized Majorana zero modes bound to the eight cor-
ners of the octagonal AB tiling. Specifically, they start
from a tight-binding model describing two oppositely
spin-polarized p± ip topological superconductors in class
D [131]. Similar to Eqs. (40)–(42), the real-space BdG

Hamiltonian on the AB tiling quasicrystal is given by

H =
∑
j

Ψ†
jHjΨj +

∑
⟨j,k⟩

Ψ†
jHjkΨk, (47)

Hj = µσzτz, (48)

Hjk =
t

2
σzτz+

∆

2i [cos (αjk)σzτx+sin (αjk)σzτy], (49)

where Ψ†
j =

(
ψ†
j,↑, ψj,↑, ψ

†
j,↓, ψj,↓

)
, ψ†

j,σ is the fermionic
creation operator at site j with spin σ, ⟨· · · ⟩ denotes sites
connected by a bond (see Fig. 17). µ is the chemical poten-
tial, and Pauli matrices τ and σ acts on the electron-hole
and spin degrees of freedom, respectively. t is the hopping
amplitude, ∆ is the p-wave pairing strength and αjk is the
angle formed by the bond with respect to the horizontal
direction.

The system obeys particle–hole symmetry {H,P} = 0,
in-plane mirror symmetry [H,M ] = 0, and particularly a
global eight-fold rotational symmetry [H, C8] = 0. These
symmetry operators are written as: P = τxσ0K,M =
τ0σz, and

C8 = exp(−iπ
8
σ0τz)R, (50)

where K denotes complex conjugation and R is an orthog-
onal matrix permuting the sites of the tiling to rotate the
whole system by an angle of π/4. As the Hamiltonian (47)
describes a bilayer system of two 2D class-D topological
superconductors with opposite Chern number, a pair of
counterpropagating Majorana edge modes, which are pre-
vented from gapping out by M , exist on the boundary
of the quasicrystal, as shown in Fig. 17(a). To obtain a
higher-order topological superconductor, they introduce a
perturbation that breaks both M and C8, but preserves
their product C8M , which is given by

V =
∑
⟨j,k⟩

Ψ†
jVjkΨk, Vjk =

V

2
σyτ0 cos (4αjk) . (51)

Fig. 17 The real-space distributions of the wave function
amplitudes in the eight lowest energy states of the model de-
fined in Eqs. (47) and (51). (a) V = 0, the system hosts
counterpropagating Majorana modes on each edge, protected
by mirror symmetry. (b) V = 1, edge states are gapped out,
leading to a HOTI phase. A single Majorana zero mode is local-
ized in each corner of quasicrystals. Reproduced from Ref. [47].
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Because V anticommutes with both M and C8, the edge
spectrum is gapped out and the gap changes sign alter-
natively across the eight edges of the AB tiling quasicrys-
tal. As a result, eight Majorana zero modes are formed
as domain-wall states at corners of the octagonal sam-
ple [132], as shown in Fig. 17(b). As an important manifes-
tation of the nontrivial bulk topology of the higher-order
topological superconductor, these Majorana zero modes
bound to the corners are robust against any perturbations
preserving P and C8M symmetries. Because the eight-
fold rotational symmetry is forbidden in periodic crystals
by the crystallographic restriction theorem, the resulting
higher-order topological phase has no crystalline counter-
part.

It was previously shown that the existence of Majo-
rana bound states on the corners on the 2D topolog-
ical crystalline superconductors indicates the nontrivial
topology of the bulk and a Z2 index defined at the ro-
tational symmetric points can be constructed to charac-
terize the phase [133]. However, since there is no trans-
lational symmetry in quasicrystalline lattices, Varjas et
al. introduced a momentum-dependent effective Hamilto-
nian Heff = G−1

eff , with the effective Green’s function in
the plane-wave bases             

Geff(k)n,m = ⟨k, n|G|k,m⟩, (52)

where |k, n⟩ is the normalized plane-wave state with
nonzero amplitude in orbital n, and G = limη→0(H+iη)−1

is the zero-energy Green’s function of the full Hamiltonian.
Since the gap of Heff closes only when the gap of the full
Hamiltonain H closes, the topological invariant defined in
terms of Heff can also characterize the topology of the full
Hamiltonian.

Since the Majorana bound states are protected by C8M
and P, the Pfaffian can be computed for each C8M invari-
ant subspace related by P. Specifically, C8M have eight
eigenvalues ωn = exp[i(π/8)n] with n = [±1,±3,±5,±7],
and eigenstates |n⟩ and |−n⟩ related by P. By restricting
Heff(k = 0) to C8M eigensubspaces of ω±n, the signs of
the four Pfaffians νn,k = ±1, for n ∈ [1, 3, 5, 7] in each
subspace represent a Z4

2 classification.
However, this is not a stable topological invariant as it

also distinguishes different atomic insulators with on-site
Hamiltonians of opposite sign and vanishing hoppings. To
solve this issue, they invoke the cut-and-project method
to build the AB tiling from a 4D ancestor lattice [134], and
used the plane-wave states in the 4D lattice as an overcom-
plete basis for the 2D quasicrystals. Then they consider
the effective Hamiltonian at C8 invariant momenta in the
4D lattice, which are just two momenta Γ = (0, 0, 0, 0) ≡ 0
and Π = (π,π,π,π). The Z2 invariant for each subspace
|n⟩ and |−n⟩ is then just νn = νn,0/νn,Π. Because this
model has ν1 = ν7 and ν3 = ν5, the topological invari-
ant is further simplified as ν = ν1ν3, whose nontrivial
value characterizes the presence of the corner Majorana
zero modes.

Although higher-order topological phases were extended

to octagonal quasicrystals [47, 48] (as elucidated above) as
well as dodecagonal quasicrystals [49, 50], the argument
for the existence of eight corner Majorana zero modes re-
lies on an alternating sign of the mass terms at the bound-
ary. It fails in quasicrystals with odd-rotational symme-
tries, e.g., C5. Therefore, it remains unknown whether
higher-order topology can exist in quasicrystals with C5,
which is the characteristic symmetry of the first experi-
mentally discovered quasicrystal [27].

6 Summary and outlook

In summary, we give a general overview of the recent
progress of topological states in quasicrystals. We first
introduce fundamental definition of quasicrystals, basic
theoretical approaches to modeling quasicrystals, and ex-
perimental platforms to realize quasicrystalline structures.
Then, we systematically discuss the topological states in
1D and 2D quasicrystals. In 1D quasicrystals, a phasonic
degree of freedom, which serves as a synthetic dimension,
plays a crucial role in mapping the 1D quasicrystals to 2D
IQHEs. Hence, the 1D quasicrystals are associated with
the same Chern number that characterizes the 2D IQHEs,
and inherits its robust boundary state from the 2D ances-
tors. In 2D, various topological states existing in crystals
are generalized to quasicrystals. However, due to the lack
of translational symmetry in quasicrystals, original topo-
logical invariants defined for crystalline systems do not
apply in quaiscrystals, and different real-space expressions
of corresponding topological invariants are introduced to
characterize these topological states in quasicrystals. Par-
ticularly, with the generalization of HOTIs to quasicrys-
tals, unique quasicrystalline symmetry-protected higher-
order topological phases were proposed. As the topologi-
cal protection of these phases explicitly requires rotational
symmetry that is incompatible with any periodic crystal
structure, thus the resulting phases have no crystalline
counterpart.

The research of topological states in quasicrystals is
of great interest to fundamental research. However, de-
spite some pioneering work, the research field is far from
maturity. There are still many challenging issues to be
resolved in the future. First, topological states in 3D
quasicrystals are rarely studied. New physical mecha-
nism and rich phenomena are expected in higher dimen-
sions. Second, since quasicrystals exhibit crystallographic
forbidden symmetries and unique elementary excitations,
searching for new topological effects that are directly re-
lated to these novel features of quasicrystals is still ongo-
ing. Moreover, opposite to topological states in crystals,
where the topological classification based on crystalline
symmetries and internal discrete symmetries have been
established [7–9, 21–23], however, a comprehensive topo-
logical classification including quasicrystalline symmetries
is as yet lacking. Third, with the rapid development of
controllable shaping of various metamaterials for optical,
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acoustic and matter waves, more exotic topological phe-
nomena in artificial quasicrystal structures are awaiting to
be experimentally explored. In this context, searching for
new topological states in quasicrystals, exploring emerging
new physics, and experimental studying new phenomena
will be promising research subjects in the future, which
may open exciting possibilities in this fascinating research
field.
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