
Universal power-efficiency trade-off in battery charging
Jia-Rui Lei, Yun-Qian Lin, Shi-Gang Ou, Yu-Han Ma
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 042202.
Universal power-efficiency trade-off in battery charging
Designing efficient and fast-charging batteries is an important goal in the field of energy, crucial for upgrading new energy vehicles and portable electronic devices such as smartphones. Here, we incorporate the concept of finite-time thermodynamics into studying the resistor-capacitor (RC) series circuit and obtain the time-dependence of charging efficiency and charging power. Through this exploration, essential thermodynamic constraints governing the charging process, including the trade-off relation between charging power and efficiency, are obtained. Moreover, we reveal the lower bound for charging time and the corresponding optimal charging strategy, and further demonstrate the power-efficiency trade-off relation in such an optimized strategy. Our findings shed new light on seeking optimal battery charging methods with nonequilibrium thermodynamics.
battery charging / charging strategy / finite-time thermodynamics / optimization
[1] |
W. Liu, T. Placke, and K. Chau, Overview of batteries and battery management for electric vehicles, Energy Rep. 8, 4058 (2022)
CrossRef
ADS
Google scholar
|
[2] |
Q. Lin, J. Wang, R. Xiong, W. Shen, and H. He, Towards a smarter battery management system: A critical review on optimal charging methods of lithium-ion batteries, Energy 183, 220 (2019)
CrossRef
ADS
Google scholar
|
[3] |
Q. Wang, B. Jiang, B. Li, and Y. Yan, A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles, Renew. Sustainable Energy Rev. 64, 106 (2016)
CrossRef
ADS
Google scholar
|
[4] |
G. Ji, L. He, T. Wu, and G. Cui, The design of fast charging strategy for lithium-ion batteries and intelligent application: A comprehensive review, Appl. Energy 377, 124538 (2025)
CrossRef
ADS
Google scholar
|
[5] |
C. P. Grey and D. S. Hall, Prospects for lithium-ion batteries and beyond — a 2030 vision, Nat. Commun. 11(1), 6279 (2020)
CrossRef
ADS
Google scholar
|
[6] |
R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya, Y. S. Hu, and J. Maier, Fundamentals, status and promise of sodium-based batteries, Nat. Rev. Mater. 6(11), 1020 (2021)
CrossRef
ADS
Google scholar
|
[7] |
J. Janek and W. G. Zeier, Challenges in speeding up solid-state battery development, Nat. Energy 8(3), 230 (2023)
CrossRef
ADS
Google scholar
|
[8] |
Y. Liu, Y. Zhu, and Y. Cui, Challenges and opportunities towards fast-charging battery materials, Nat. Energy 4(7), 540 (2019)
CrossRef
ADS
Google scholar
|
[9] |
R. Borah, F. Hughson, J. Johnston, and T. Nann, On battery materials and methods, Mater. Today Adv. 6, 100046 (2020)
CrossRef
ADS
Google scholar
|
[10] |
J. He, J. Meng, and Y. Huang, Challenges and recent progress in fast-charging lithium-ion battery materials, J. Power Sources 570, 232965 (2023)
CrossRef
ADS
Google scholar
|
[11] |
Z. He, Y. Huang, H. Liu, Z. Geng, Y. Li, S. Li, W. Deng, G. Zou, H. Hou, and X. Ji, Anode materials for fast charging sodium-ion batteries, Nano Energy 129, 109996 (2024)
CrossRef
ADS
Google scholar
|
[12] |
A. Kumar Thakur, R. Sathyamurthy, R. Velraj, R. Saidur, A. Pandey, Z. Ma, P. Singh, S. K. Hazra, S. Wafa Sharshir, R. Prabakaran, S. C. Kim, S. Panchal, and H. M. Ali, A state-of-the art review on advancing battery thermal management systems for fast-charging, Appl. Therm. Eng. 226, 120303 (2023)
CrossRef
ADS
Google scholar
|
[13] |
J. Liu, S. Yadav, M. Salman, S. Chavan, and S. C. Kim, Review of thermal coupled battery models and parameter identification for lithium-ion battery heat generation in EV battery thermal management system, Int. J. Heat Mass Transf. 218, 124748 (2024)
CrossRef
ADS
Google scholar
|
[14] |
S. Paul, A. M. Schlaffer, and J. A. Nossek, Optimal charging of capacitors, IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 47(7), 1009 (2000)
CrossRef
ADS
Google scholar
|
[15] |
Y. Perrin, A. Galisultanov, H. Fanet, and G. Pillonnet, Optimal charging of nonlinear capacitors, IEEE Trans. Power Electron. 34(6), 5023 (2019)
CrossRef
ADS
Google scholar
|
[16] |
S. Hemavathi and A. Shinisha, A study on trends and developments in electric vehicle charging technologies, J. Energy Storage 52, 105013 (2022)
CrossRef
ADS
Google scholar
|
[17] |
J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414(6861), 359 (2001)
CrossRef
ADS
Google scholar
|
[18] |
A. Tomaszewska, Z. Chu, X. Feng, S. O’kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Y. Li, S. Zheng, S. Vetterlein, M. Gao, J. Du, M. Parkes, M. Ouyang, M. Marinescu, G. Offer, and B. Wu, Lithium-ion battery fast charging: A review, ETransportation 1, 100011 (2019)
CrossRef
ADS
Google scholar
|
[19] |
Q. Lin, J. Wang, R. Xiong, W. Shen, and H. He, Towards a smarter battery management system: A critical review on optimal charging methods of lithium-ion batteries, Energy 183, 220 (2019)
CrossRef
ADS
Google scholar
|
[20] |
Y. H. Liu, J. H. Teng, and Y. C. Lin, Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm, IEEE Trans. Ind. Electron. 52(5), 1328 (2005)
CrossRef
ADS
Google scholar
|
[21] |
S. C. Wang and Y. H. Liu, A PSO-based fuzzy-controlled searching for the optimal charge pattern of Li-ion batteries, IEEE Trans. Ind. Electron. 62(5), 2983 (2015)
CrossRef
ADS
Google scholar
|
[22] |
W. Du, J. Ma, and W. Yin, Orderly charging strategy of electric vehicle based on improved PSO algorithm, Energy 271, 127088 (2023)
CrossRef
ADS
Google scholar
|
[23] |
T. T. Vo, X. Chen, W. Shen, and A. Kapoor, New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation, J. Power Sources 273, 413 (2015)
CrossRef
ADS
Google scholar
|
[24] |
C. H. Lee, C. Y. Hsu, S. H. Hsu, and J. A. Jiang, Effect of weighting strategies on Taguchi-based optimization of the four-stage constant current charge pattern, IEEE Trans. Aerosp. Electron. Syst. 57(5), 2704 (2021)
CrossRef
ADS
Google scholar
|
[25] |
L. Jiang, Y. Li, Y. Huang, J. Yu, X. Qiao, Y. Wang, C. Huang, and Y. Cao, Optimization of multi-stage constant current charging pattern based on Taguchi method for Li-ion battery, Appl. Energy 259, 114148 (2020)
CrossRef
ADS
Google scholar
|
[26] |
L. R. Dung,J. H. Yen, ILP-based algorithm for lithium-ion battery charging profile, in: 2010 IEEE International Symposium on Industrial Electronics, 2010, pp 2286–2291
|
[27] |
Y. Wang, C. Zhou, and Z. Chen, Optimization of battery charging strategy based on nonlinear model predictive control, Energy 241, 122877 (2022)
CrossRef
ADS
Google scholar
|
[28] |
C. Zou, C. Manzie, and D. Nesic, Model predictive control for lithium-ion battery optimal charging, IEEE/ASME Trans. Mechatron. 23(2), 947 (2018)
CrossRef
ADS
Google scholar
|
[29] |
N. Tian, H. Fang, and Y. Wang, Real-time optimal lithium-ion battery charging based on explicit model predictive control, IEEE Trans. Industr. Inform. 17(2), 1318 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[30] |
S. Park, A. Pozzi, M. Whitmeyer, H. Perez, A. Kandel, G. Kim, Y. Choi, W. T. Joe, D. M. Raimondo, and S. Moura, A deep reinforcement learning framework for fast charging of Li-ion batteries, IEEE Trans. Transp. Electrif. 8(2), 2770 (2022)
CrossRef
ADS
Google scholar
|
[31] |
H. M. Abdullah, A. Gastli, and L. Ben-Brahim, Reinforcement learning based EV charging management systems – a review, IEEE Access 9, 41506 (2021)
CrossRef
ADS
Google scholar
|
[32] |
M. H. Abbasi, Z. Arjmandzadeh, J. Zhang, B. Xu, and V. Krovi, Deep reinforcement learning based fast charging and thermal management optimization of an electric vehicle battery pack, J. Energy Storage 95, 112466 (2024)
CrossRef
ADS
Google scholar
|
[33] |
A. B. Khan and W. Choi, Optimal charge pattern for the high-performance multistage constant current charge method for the Li-ion batteries, IEEE Trans. Energ. Convers. 33(3), 1132 (2018)
CrossRef
ADS
Google scholar
|
[34] |
A. B. Khan,V. L. Pham,T. T. Nguyen,W. Choi, Multistage constant-current charging method for Li-ion batteries, in: 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 2016, pp 381–385
|
[35] |
P. Keil and A. Jossen, Charging protocols for lithium-ion batteries and their impact on cycle life — an experimental study with different 18650 high-power cells, J. Energy Storage 6, 125 (2016)
CrossRef
ADS
Google scholar
|
[36] |
M. Ye, H. Gong, R. Xiong, and H. Mu, Research on the battery charging strategy with charging and temperature rising control awareness, IEEE Access 6, 64193 (2018)
CrossRef
ADS
Google scholar
|
[37] |
W. Xie, X. Liu, R. He, Y. Li, X. Gao, X. Li, Z. Peng, S. Feng, X. Feng, and S. Yang, Challenges and opportunities toward fast-charging of lithium-ion batteries, J. Energy Storage 32, 101837 (2020)
CrossRef
ADS
Google scholar
|
[38] |
B. Bose, A. Garg, B. Panigrahi, and J. Kim, Study on Li-ion battery fast charging strategies: Review, challenges and proposed charging framework, J. Energy Storage 55, 105507 (2022)
CrossRef
ADS
Google scholar
|
[39] |
J. Chen, Optimization on the charging process of a capacitor, Int. J. Electron. 88(2), 145 (2001)
CrossRef
ADS
Google scholar
|
[40] |
S. Xia and L. Chen, Theoretical and experimental investigation of optimal capacitor charging process in RC circuit, Eur. Phys. J. Plus 132(5), 235 (2017)
CrossRef
ADS
Google scholar
|
[41] |
B. Andresen, P. Salamon, and R. S. Berry, Thermodynamics in finite time: Extremals for imperfect heat engines, J. Chem. Phys. 66(4), 1571 (1977)
CrossRef
ADS
Google scholar
|
[42] |
R. S. Berry,P. Salamon,B. Andresen (Eds.), Finite-Time Thermodynamics, MDPI-Multidisciplinary Digital Publishing Institute, 2022
|
[43] |
Y. H. Ma,X. H. Zhao, Finite-time thermodynamics: A journey beginning with optimizing heat engines, arXiv: 2024)
arXiv
|
[44] |
L. Chen and Z. Yan, The effect of heat-transfer law on performance of a two-heat-source endoreversible cycle, J. Chem. Phys. 90(7), 3740 (1989)
CrossRef
ADS
Google scholar
|
[45] |
V. Holubec and A. Ryabov, Efficiency at and near maximum power of low-dissipation heat engines, Phys. Rev. E 92(5), 052125 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[46] |
N. Shiraishi, K. Saito, and H. Tasaki, Universal trade-off relation between power and efficiency for heat engines, Phys. Rev. Lett. 117(19), 190601 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[47] |
Y. H. Ma, D. Xu, H. Dong, and C. P. Sun, Universal constraint for efficiency and power of a low-dissipation heat engine, Phys. Rev. E 98(4), 042112 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[48] |
R. X. Zhai, F. M. Cui, Y. H. Ma, C. P. Sun, and H. Dong, Experimental test of power-efficiency trade-off in a finite-time Carnot cycle, Phys. Rev. E 107(4), L042101 (2023)
CrossRef
ADS
Google scholar
|
[49] |
Y. H. Ma,C. Fu, Unified approach to power-efficiency trade-off of generic thermal machines, arXiv: 2024)
arXiv
|
[50] |
D. Wang, The most energy efficient way to charge the capacitor in a RC circuit, Phys. Educ. 52(6), 065019 (2017)
CrossRef
ADS
Google scholar
|
[51] |
M. U. Tahir, A. Sangwongwanich, D. I. Stroe, and F. Blaabjerg, Overview of multi-stage charging strategies for Li-ion batteries, J. Energy Chem. 84, 228 (2023)
CrossRef
ADS
Google scholar
|
[52] |
Y. H. Ma, D. Xu, H. Dong, and C. P. Sun, Optimal operating protocol to achieve efficiency at maximum power of heat engines, Phys. Rev. E 98(2), 022133 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[53] |
Y. H. Ma, R. X. Zhai, J. Chen, C. P. Sun, and H. Dong, Experimental test of the 1/τ-scaling entropy generation in finite-time thermodynamics, Phys. Rev. Lett. 125(21), 210601 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[54] |
G. Li, J. F. Chen, C. P. Sun, and H. Dong, Geodesic path for the minimal energy cost in shortcuts to isothermality, Phys. Rev. Lett. 128(23), 230603 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[55] |
Y. H. Ma, J. F. Chen, C. P. Sun, and H. Dong, Minimal energy cost to initialize a bit with tolerable error, Phys. Rev. E 106(3), 034112 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[56] |
G. J. Chen, Y. H. Liu, S. C. Wang, Y. F. Luo, and Z. Z. Yang, Searching for the optimal current pattern based on Greywolf optimizer and equivalent circuit model of Li-ion batteries, J. Energy Storage 33, 101933 (2021)
CrossRef
ADS
Google scholar
|
[57] |
H. Min, W. Sun, X. Li, D. Guo, Y. Yu, T. Zhu, and Z. Zhao, Research on the optimal charging strategy for Li-ion batteries based on multi-objective optimization, Energies 10(5), 709 (2017)
CrossRef
ADS
Google scholar
|
[58] |
A. Al-Haj Hussein and I. Batarseh, A review of charging algorithms for nickel and lithium battery chargers, IEEE Trans. Vehicular Technol. 60(3), 830 (2011)
CrossRef
ADS
Google scholar
|
[59] |
A. R. Conn,N. I. M. Gould,P. L. Toint, Trust region methods, MPACS-Mathematical Programming Advisory Committee, Society for Industrial and Applied Mathematics, 2000
|
[60] |
Virtanen , R. Gommers, T. E. Oliphant, M. Haberland, and T. Reddy,
CrossRef
ADS
arXiv
Google scholar
|
[61] |
X. Ding, D. Zhang, J. Cheng, B. Wang, and P. C. K. Luk, An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles, Appl. Energy 254, 113615 (2019)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |