Efficient and tunable photoinduced moiré lattice in an atomic ensemble

Muhua Zhai, Feng Wen, Shaowei Zhang, Huapeng Ye, Zhenkun Wu, Dong Zhong, Yang Lei, Yangxin Gu, Wei Wang, Minghui Zhang, Yanpeng Zhang, Hongxing Wang

Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 034207.

PDF(6308 KB)
PDF(6308 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 034207. DOI: 10.15302/frontphys.2025.034207
RESEARCH ARTICLE

Efficient and tunable photoinduced moiré lattice in an atomic ensemble

Author information +
History +

Abstract

Photonic moiré lattices (PMLs), with unique twisted periodic patterns, provide a valuable platform for investigating strongly correlated materials, unconventional superconductivity, and the localization−delocalization transition. However, PMLs created either by the misorientation between lattice layers or by twisted van der Waals materials are typically non-tunable and inherently possess immutable refractive indices. Unlike those in the moiré lattices of twisted two-dimensional materials, our work reports a moiré lattice formed by overlapping two identical sublattices with twisted angles in an ultracold atomic ensemble. This photoinduced moiré lattice with two twisted sublattices exhibits high flexibility and rich periodicity through adjustable twisted angles. Our results indicate that both the absorption/dispersion coefficients and the transmission of the photoinduced moiré lattices can be effectively tuned by photon detuning and Rabi frequency, resulting in amplitude- and phase-type moiré lattices. Based on the Fraunhofer diffraction theory, we have demonstrated that the far-field diffraction efficiency can be adjusted via altering photon detuning, and the rotation angle serves as a control knob for modulating the diffracted intensity distribution, thereby optimizing the performance of the photonic lattice. It is also found that the operation domains of the moiré lattices with different rotation angles remain consistent, allowing for seamless conversion between various moiré period structures. Furthermore, a moiré lattice composed of three twisted sublattices is investigated, revealing that the diffraction energy is uniformly dispersed in a circular distribution, which provides excellent agility in the design of optical devices. Such tunable PML offer a powerful tool for studying light propagation control and the intriguing physics of twisted systems in atomic media.

Graphical abstract

Keywords

photonic moiré lattices / far-field diffraction / coherent optical effects / phase shift / electromagnetically induced transparency

Cite this article

Download citation ▾
Muhua Zhai, Feng Wen, Shaowei Zhang, Huapeng Ye, Zhenkun Wu, Dong Zhong, Yang Lei, Yangxin Gu, Wei Wang, Minghui Zhang, Yanpeng Zhang, Hongxing Wang. Efficient and tunable photoinduced moiré lattice in an atomic ensemble. Front. Phys., 2025, 20(3): 034207 https://doi.org/10.15302/frontphys.2025.034207

References

[1]
Y. Akahane , T. Asano , B. S. Song , and S. Noda , High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature 425(6961), 944 (2003)
CrossRef ADS Google scholar
[2]
H. G. Park , S. H. Kim , S. H. Kwon , Y. G. Ju , J. K. Yang , J. H. Baek , S. B. Kim , and Y. H. Lee , Electrically driven single-cell photonic crystal laser, Science 305(5689), 1444 (2004)
CrossRef ADS Google scholar
[3]
J. D. Joannopoulos,S. G. Johnson,J. N. Winn,R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011
[4]
D. N. Christodoulides , F. Lederer , and Y. Silberberg , Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature 424(6950), 817 (2003)
CrossRef ADS Google scholar
[5]
H. S. Eisenberg , Y. Silberberg , R. Morandotti , A. R. Boyd , and J. S. Aitchison , Discrete spatial optical solitons in waveguide arrays, Phys. Rev. Lett. 81(16), 3383 (1998)
CrossRef ADS Google scholar
[6]
D. R. Smith , J. B. Pendry , and M. C. K. Wiltshire , Metamaterials and negative refractive index, Science 305(5685), 788 (2004)
CrossRef ADS Google scholar
[7]
T. Han , X. Bai , J. T. L. Thong , B. Li , and C. W. Qiu , Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials, Adv. Mater. 26(11), 1731 (2014)
CrossRef ADS Google scholar
[8]
M. Bajcsy , A. S. Zibrov , and M. D. Lukin , Stationary pulses of light in anatomic medium, Nature 426(6967), 638 (2003)
CrossRef ADS Google scholar
[9]
J. L. Everett , G. T. Campbell , Y. W. Cho , P. Vernaz-Gris , D. B. Higginbottom , O. Pinel , N. P. Robins , P. K. Lam , and B. C. Buchler , Dynamical observations of selfstabilizing stationary light, Nat. Phys. 13(1), 68 (2017)
CrossRef ADS arXiv Google scholar
[10]
L. Lu , J. D. Joannopoulos , and M. Soljačić , Topological photonics, Nat. Photonics 8(11), 821 (2014)
CrossRef ADS arXiv Google scholar
[11]
T. Ozawa , H. M. Price , A. Amo , N. Goldman , M. Hafezi , L. Lu , M. C. Rechtsman , D. Schuster , J. Simon , O. Zilberberg , and I. Carusotto , Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
CrossRef ADS arXiv Google scholar
[12]
R. El-Ganainy , K. G. Makris , M. Khajavikhan , Z. H. Musslimani , S. Rotter , and D. N. Christodoulides , Non-Hermitian physics and PT symmetry, Nat. Phys. 14(1), 11 (2018)
CrossRef ADS Google scholar
[13]
Z. Zhang , Y. Feng , S. Ning , G. Malpuech , D. D. Solnyshkov , Z. Xu , Y. Zhang , and M. Xiao , Imaging lattice switching with Talbot effect in reconfigurable non-Hermitian photonic graphene, Photon. Res. 10(4), 958 (2022)
CrossRef ADS Google scholar
[14]
J. D. Joannopoulos , P. R. Villeneuve , and S. Fan , Photonic crystals: Putting a new twist on light, Nature 386(6621), 143 (1997)
CrossRef ADS Google scholar
[15]
M. D. Leistikow , A. P. Mosk , E. Yeganegi , S. R. Huisman , A. Lagendijk , and W. L. Vos , Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap, Phys. Rev. Lett. 107(19), 193903 (2011)
CrossRef ADS arXiv Google scholar
[16]
F. Lederer , G. I. Stegeman , D. N. Christodoulides , G. Assanto , M. Segev , and Y. Silberberg , Discrete solitons in optics, Phys. Rep. 463(1−3), 1 (2008)
CrossRef ADS Google scholar
[17]
P. Longo , P. Schmitteckert , and K. Busch , Few-photon transport in low-dimensional systems: Interaction-induced radiation trapping, Phys. Rev. Lett. 104(2), 023602 (2010)
CrossRef ADS arXiv Google scholar
[18]
S. Carr , D. Massatt , S. Fang , P. Cazeaux , M. Luskin , and E. Kaxiras , Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle, Phys. Rev. B 95(7), 075420 (2017)
CrossRef ADS arXiv Google scholar
[19]
Y. Cao , V. Fatemi , A. Demir , S. Fang , S. L. Tomarken , J. Y. Luo , J. D. Sanchez-Yamagishi , K. Watanabe , T. Taniguchi , E. Kaxiras , R. C. Ashoori , and P. Jarillo-Herrero , Correlated insulator behaviour at half-filling in magicangle graphene superlattices, Nature 556(7699), 80 (2018)
CrossRef ADS arXiv Google scholar
[20]
Y. Cao , V. Fatemi , S. Fang , K. Watanabe , T. Taniguchi , E. Kaxiras , and P. Jarillo-Herrero , Unconventional superconductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
CrossRef ADS arXiv Google scholar
[21]
G. W. Burg , J. Zhu , T. Taniguchi , K. Watanabe , A. H. MacDonald , and E. Tutuc , Correlated insulating states in twisted double bilayer graphene, Phys. Rev. Lett. 123(19), 197702 (2019)
CrossRef ADS arXiv Google scholar
[22]
R. Bistritzer and A. H. MacDonald , Moiré bands in twisted double-layer graphene, Proc. Natl. Acad. Sci. USA 108(30), 12233 (2011)
CrossRef ADS arXiv Google scholar
[23]
Y. Liu , N. O. Weiss , X. Duan , H. C. Cheng , Y. Huang , and X. Duan , Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)
CrossRef ADS Google scholar
[24]
B. Y. Jiang , G. X. Ni , Z. Addison , J. K. Shi , X. Liu , S. Y. F. Zhao , P. Kim , E. J. Mele , D. N. Basov , and M. M. Fogler , Plasmon reflections by topological electronic boundaries in bilayer graphene, Nano Lett. 17(11), 7080 (2017)
CrossRef ADS arXiv Google scholar
[25]
L. Yuan , B. Zheng , J. Kunstmann , T. Brumme , A. B. Kuc , C. Ma , S. Deng , D. Blach , A. Pan , and L. Huang , Twistangle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers, Nat. Mater. 19(6), 617 (2020)
CrossRef ADS arXiv Google scholar
[26]
G. Niu , J. Lu , J. Geng , S. Li , H. Zhang , W. Xiong , Z. Ruan , Y. Zhang , B. Fu , L. Gao , and J. Cai , Electronic properties of monolayer Copper selenide with one-dimensional moiré patterns, Front. Phys. (Beijing) 18(1), 13303 (2023)
CrossRef ADS Google scholar
[27]
L. Li , M. Wu , and X. Lu , Correlation, superconductivity and topology in graphene moiré superlattice, Front. Phys. (Beijing) 18(4), 43401 (2023)
CrossRef ADS Google scholar
[28]
S. Li , K. Wei , Q. Liu , Y. Tang , and T. Jiang , Twistronics and moiré excitonic physics in van der Waals heterostructures, Front. Phys. (Beijing) 19(4), 42501 (2024)
CrossRef ADS Google scholar
[29]
C. Huang , F. Ye , X. Chen , Y. V. Kartashov , V. V. Konotop , and L. Torner , Localization–delocalization wavepacket transition in Pythagorean aperiodic potentials, Sci. Rep. 6(1), 32546 (2016)
CrossRef ADS Google scholar
[30]
P. Wang , Y. Zheng , X. Chen , C. Huang , Y. V. Kartashov , L. Torner , V. V. Konotop , and F. Ye , Localization and delocalization of light in photonic moiré lattices, Nature 577(7788), 42 (2020)
CrossRef ADS arXiv Google scholar
[31]
Q. Fu , P. Wang , C. Huang , Y. V. Kartashov , L. Torner , V. V. Konotop , and F. Ye , Optical soliton formation controlled by angle twisting in photonic moiré lattices, Nat. Photonics 14(11), 663 (2020)
CrossRef ADS arXiv Google scholar
[32]
T. Ning , Y. Ren , Y. Huo , and Y. Cai , Efficient high harmonic generation in nonlinear photonic moiré superlattice, Front. Phys. (Beijing) 18(5), 52305 (2023)
CrossRef ADS arXiv Google scholar
[33]
W. J. M. Kort-Kamp , F. J. Culchac , R. B. Capaz , and F. A. Pinheiro , Photonic spin Hall effect in bilayer graphene moiré superlattices, Phys. Rev. B 98(19), 195431 (2018)
CrossRef ADS arXiv Google scholar
[34]
S. S. Sunku , G. X. Ni , B. Y. Jiang , H. Yoo , A. Sternbach , A. S. McLeod , T. Stauber , L. Xiong , T. Taniguchi , K. Watanabe , P. Kim , M. M. Fogler , and D. N. Basov , Photonic crystals for nano-light in moiré graphene superlattices, Science 362(6419), 1153 (2018)
CrossRef ADS arXiv Google scholar
[35]
X. R. Mao , Z. K. Shao , H. Y. Luan , S. L. Wang , and R. M. Ma , Magic-angle lasers in nanostructured moiré superlattice, Nat. Nanotechnol. 16(10), 1099 (2021)
CrossRef ADS Google scholar
[36]
A. González-Tudela and J. I. Cirac , Cold atoms in twistedbilayer optical potentials, Phys. Rev. A 100(5), 053604 (2019)
CrossRef ADS arXiv Google scholar
[37]
T. Salamon , A. Celi , R. W. Chhajlany , I. Frérot , M. Lewenstein , L. Tarruell , and D. Rakshit , Simulating twistronics without a twist, Phys. Rev. Lett. 125(3), 030504 (2020)
CrossRef ADS arXiv Google scholar
[38]
X. W. Luo and C. Zhang , Spin-twisted optical lattices: Tunable flat bands and Larkin–Ovchinnikov superfluids, Phys. Rev. Lett. 126(10), 103201 (2021)
CrossRef ADS arXiv Google scholar
[39]
Z. Meng , L. Wang , W. Han , F. Liu , K. Wen , C. Gao , P. Wang , C. Chin , and J. Zhang , Atomic Bose–Einstein condensate in twisted-bilayer optical lattices, Nature 615(7951), 231 (2023)
CrossRef ADS arXiv Google scholar
[40]
X. Liu and J. Zeng , Gap solitons in parity–time symmetric moiré optical lattices, Photon. Res. 11(2), 196 (2023)
CrossRef ADS Google scholar
[41]
R. Tian , S. Li , M. Arzamasovs , H. Gao , Y. C. Zhang , and B. Liu , Localization−delocalization transition in an electromagnetically induced photonic lattice, Phys. Rev. A 108(4), 043711 (2023)
CrossRef ADS Google scholar
[42]
Z. Chen , X. Liu , and J. Zeng , Electromagnetically induced moiré optical lattices in a coherent atomic gas, Front. Phys. (Beijing) 17(4), 42508 (2022)
CrossRef ADS arXiv Google scholar
[43]
X. Liu and J. Zeng , Two-dimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices, Front. Phys. (Beijing) 19(4), 42201 (2024)
CrossRef ADS Google scholar
[44]
H. Y. Ling , Y. Q. Li , and M. Xiao , Electromagnetically induced grating: Homogeneously broadened medium, Phys. Rev. A 57(2), 1338 (1998)
CrossRef ADS Google scholar
[45]
S. E. Harris , Electromagnetically induced transparency, Phys. Today 50(7), 36 (1997)
CrossRef ADS Google scholar
[46]
M. Fleischhauer , A. Imamoglu , and P. J. Marangos , Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)
CrossRef ADS Google scholar
[47]
M. S. Kang , A. Butsch , and P. S. J. Russell , Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre, Nat. Photonics 5(9), 549 (2011)
CrossRef ADS Google scholar
[48]
F. Wen , X. Zhang , H. Ye , W. Wang , H. Wang , Y. Zhang , Z. Dai , and C. W. Qiu , Efficient and tunable photoinduced honeycomb lattice in an atomic ensemble, Laser Photonics Rev. 12(9), 1800050 (2018)
CrossRef ADS Google scholar
[49]
F. Wen , H. Ye , X. Zhang , W. Wang , S. Li , H. Wang , Y. Zhang , and C. W. Qiu , Optically induced atomic lattice with tunable near-field and far-field diffraction patterns, Photon. Res. 5(6), 676 (2017)
CrossRef ADS Google scholar
[50]
J. Yuan , C. Wu , L. Wang , G. Chen , and S. Jia , Observation of diffraction pattern in two-dimensional optically induced atomic lattice, Opt. Lett. 44(17), 4123 (2019)
CrossRef ADS Google scholar
[51]
F. Wen , S. Zhang , S. Hui , H. Ma , S. Wang , H. Ye , W. Wang , T. Zhu , Y. Zhang , and H. Wang , Terahertz tunable optically induced lattice in the magnetized monolayer graphene, Opt. Express 30(2), 2852 (2022)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 62074127, U21A2073, 62304173, 62304175, 62404177, 61804122, 11874142, 61627812, 61705176, 11874102, 11474048, and 61805068), the Natural Science Fund of Shaanxi Province (Grant Nos. 2018JQ6002, 2021JQ062, 2021JQ056, and 2021GY223), the Postdoctoral Science Foundation (Grant Nos. 2019M653637, 2019M660256, and 2017M620300), the National Key Research and Development Program of China (Grant No. 2018YFE0125900), the Fundamental Research Funds for the Central Universities (FRFCU) (Grant No. ZYGX2019J102), the National Key R&D Program of China (NK R&D PC) (Grant Nos. 2021YFB3602100, 2017YFB0402800, and 2017YFB0402802), and the Natural Science Basic Research Program of Shaanxi Province (Grant No. 2024JC-YBMS-505).

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(6308 KB)

Accesses

Citations

Detail

Sections
Recommended

/