
Functional control of anomalous reflection via engineered metagratings without polarization limitations
Jingwen Li, Xiao Li, Guohao Zhang, Jiaqing Liu, Changdong Chen, Youwen Liu, Yangyang Fu
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 024202.
Functional control of anomalous reflection via engineered metagratings without polarization limitations
Metagratings (MGs) have emerged as a promising platform for manipulating the anomalous propagation of electromagnetic waves. However, traditional methods for designing functional MG-based devices face significant challenges, including complex model structures, time-consuming optimization processes, and specific polarization requirements. In this work, we propose an inverse-design approach to engineer simple MG structures comprising periodic air grooves on a flat metal surface, which can control anomalous reflection without polarization limitations. Through rigorous analytical methods, we derive solutions that achieve perfect retroreflection and perfect specular reflection, thereby leading to functional control over the linearly-polarized electromagnetic waves. Such capabilities enable intriguing functionalities including polarization-dependent retroreflection and polarization-independent retroreflection, as confirmed through full-wave simulations. Our work offers a simple and effective method to control freely electromagnetic waves, with potential applications spanning wavefront engineering, polarization splitting, cloaking technologies, and remote sensing.
metagratings / inverse design / perfect retroreflection / polarization control
[1] |
Y. Xu, Y. Fu, and H. Chen, Planar gradient metamaterials, Nat. Rev. Mater. 1(12), 16067 (2016)
CrossRef
ADS
Google scholar
|
[2] |
S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, Electromagnetic metasurfaces: Physics and applications, Adv. Opt. Photonics 11(2), 380 (2019)
CrossRef
ADS
Google scholar
|
[3] |
N. Meinzer, W. L. Barnes, and I. R. Hooper, Plasmonic meta-atoms and metasurfaces, Nat. Photonics 8(12), 889 (2014)
CrossRef
ADS
Google scholar
|
[4] |
S. Wang,P. C. Wu,V. C. Su,Y. C. Lai,M. K. Chen, H. Y. Kuo,B. H. Chen,Y. H. Chen,T. T. Huang,J. H. Wang, R. M. Lin,C. H. Kuan,T. Li,Z. Wang,S. Zhu, D. P. Tsai, A broadband achromatic metalens in the visible, Nat. Nanotechnol. 13(3), 227 (2018)
|
[5] |
Y. Fu, C. Shen, X. Zhu, J. Li, Y. Liu, S. A. Cummer, and Y. Xu, Sound vortex diffraction via topological charge in phase gradient metagratings, Sci. Adv. 6(40), eaba9876 (2020)
CrossRef
ADS
Google scholar
|
[6] |
Y. Fu, Y. Tian, X. Li, S. Yang, Y. Liu, Y. Xu, and M. Lu, Asymmetric generation of acoustic vortex using dual-layer metasurfaces, Phys. Rev. Lett. 128(10), 104501 (2022)
CrossRef
ADS
Google scholar
|
[7] |
N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334(6054), 333 (2011)
CrossRef
ADS
Google scholar
|
[8] |
Y. Cao, Y. Fu, L. Gao, H. Chen, and Y. Xu, Parity-protected anomalous diffraction in optical phase gradient metasurfaces, Phys. Rev. A 107(1), 013509 (2023)
CrossRef
ADS
Google scholar
|
[9] |
X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, Photonic spin Hall effect at metasurfaces, Science 339(6126), 1405 (2013)
CrossRef
ADS
Google scholar
|
[10] |
W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, Photonic spin Hall effect with nearly 100% efficiency, Adv. Opt. Mater. 3(8), 1102 (2015)
CrossRef
ADS
Google scholar
|
[11] |
Y. Fu, C. Shen, Y. Cao, L. Gao, H. Chen, C. T. Chan, S. A. Cummer, and Y. Xu, Reversal of transmission and reflection based on acoustic metagratings with integer parity design, Nat. Commun. 10(1), 2326 (2019)
CrossRef
ADS
Google scholar
|
[12] |
Y. Cao, Y. Fu, Q. Zhou, X. Ou, L. Gao, H. Chen, and Y. Xu, Mechanism behind angularly asymmetric diffraction in phase-gradient metasurfaces, Phys. Rev. Appl. 12(2), 024006 (2019)
CrossRef
ADS
Google scholar
|
[13] |
K. Zhang, X. Li, D. Dong, M. Xue, W. You, Y. Liu, L. Gao, J. Jiang, H. Chen, Y. Xu, and Y. Fu, Geometric phase in twisted topological complementary pair, Adv. Sci. (Weinh.) 10(33), 2304992 (2023)
CrossRef
ADS
Google scholar
|
[14] |
X. Li, C. Hu, Y. Tian, Y. Liu, H. Chen, Y. Xu, M. Lu, and Y. Fu, Maximum helical dichroism enabled by an exceptional point in non-Hermitian gradient metasurfaces, Sci. Bull. (Beijing) 68(21), 2555 (2023)
CrossRef
ADS
Google scholar
|
[15] |
Y. Xu, Y. Wang, Q. Zhou, L. Gao, and Y. Fu, Unidirectional manipulation of Smith–Purcell radiation by phase-gradient metasurfaces, Opt. Lett. 48(15), 4133 (2023)
CrossRef
ADS
Google scholar
|
[16] |
Y. Ra’di, D. L. Sounas, and A. Alù, Metagratings: Beyond the limits of graded metasurfaces for wave front control, Phys. Rev. Lett. 119(6), 067404 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Díaz-Rubio, Y. Ra’di, and S. A. Tretyakov, Perfect control of reflection and refraction using spatially dispersive metasurfaces, Phys. Rev. B 94(7), 075142 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[18] |
W. Liu,A. E. Miroshnichenko, Beam steering with dielectric metalattices, ACS Photonics 5(5), 1733 (20187)
|
[19] |
W. Shi, W. Deng, W. Liu, Z. Zhuang, Z. Fan, and J. Dong, Rectangular dielectric metagrating for high-efficiency diffraction with large-angle deflection, Chin. Opt. Lett. 18(7), 073601 (2020)
CrossRef
ADS
Google scholar
|
[20] |
Y. K. Chiang, S. Oberst, A. Melnikov, L. Quan, S. Marburg, A. Alù, and D. A. Powell, Reconfigurable acoustic metagrating for high-efficiency anomalous reflection, Phys. Rev. Appl. 13(6), 064067 (2020)
CrossRef
ADS
Google scholar
|
[21] |
E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, Asymmetric nanoantennas for ultrahigh angle broadband visible light bending, Nano Lett. 17(10), 6267 (2017)
CrossRef
ADS
Google scholar
|
[22] |
M. V. Zhelyeznyakov, S. Brunton, and A. Majumdar, Deep learning to accelerate scatterer-to-field mapping for inverse design of dielectric metasurfaces, ACS Photonics 8(2), 481 (2021)
CrossRef
ADS
Google scholar
|
[23] |
J. R. Thompson, H. D. Nelson-Quillin, E. J. Coyle, J. P. Vernon, E. S. Harper, and M. S. Mills, Particle swarm optimization of polymer-embedded broadband metasurface reflectors, Opt. Express 29(26), 43421 (2021)
CrossRef
ADS
Google scholar
|
[24] |
Z. L. Deng,S. Zhang,G. P. Wang, A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces, Nanoscale 8(3), 1588 (2016)
|
[25] |
S. Zhu, Y. Cao, Y. Fu, X. Li, L. Gao, H. Chen, and Y. Xu, Switchable bifunctional metasurfaces: Nearly perfect retroreflection and absorption at the terahertz regime, Opt. Lett. 45(14), 3989 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
J. Li, X. Li, J. Liu, D. Dong, Y. Liu, and Y. Fu, Multifunctional manipulation of terahertz waves using vanadium-dioxide-based metagratings, Opt. Lett. 47(16), 4207 (2022)
CrossRef
ADS
Google scholar
|
[27] |
N. Estakhri, V. Neder, M. Knight, A. Polman, and A. Alù, Visible light, wide-angle graded metasurface for back reflection, ACS Photonics 4(2), 228 (2017)
CrossRef
ADS
Google scholar
|
[28] |
Y. Xie, J. Quan, Q. Shi, Y. Cao, B. Sun, and Y. Xu, Multi-functional high-efficiency light beam splitter based on metagrating, Opt. Express 30(3), 4125 (2022)
CrossRef
ADS
Google scholar
|
[29] |
Y. Jin, X. Fang, Y. Li, and D. Torrent, Engineered diffraction gratings for acoustic cloaking, Phys. Rev. Appl. 11(1), 011004 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[30] |
Y. Gao, J. Quan, B. Sun, L. Xu, Y. Fu, H. Chen, and Y. Xu, Frequency-doubling perfect negative reflection in phase gradient metasurfaces, Appl. Phys. Lett. 124(19), 191701 (2024)
CrossRef
ADS
Google scholar
|
[31] |
Y. Fu, J. Tao, A. Song, Y. Liu, and Y. Xu, Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings, Front. Phys. 15(5), 52502 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[32] |
X. Li, D. Dong, J. Liu, Y. Liu, and Y. Fu, Perfect retroreflection assisted by evanescent guided modes in acoustic metagratings, Appl. Phys. Lett. 120(15), 151701 (2022)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |