Functional control of anomalous reflection via engineered metagratings without polarization limitations

Jingwen Li, Xiao Li, Guohao Zhang, Jiaqing Liu, Changdong Chen, Youwen Liu, Yangyang Fu

Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 024202.

PDF(3211 KB)
PDF(3211 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 024202. DOI: 10.15302/frontphys.2025.024202
RESEARCH ARTICLE

Functional control of anomalous reflection via engineered metagratings without polarization limitations

Author information +
History +

Abstract

Metagratings (MGs) have emerged as a promising platform for manipulating the anomalous propagation of electromagnetic waves. However, traditional methods for designing functional MG-based devices face significant challenges, including complex model structures, time-consuming optimization processes, and specific polarization requirements. In this work, we propose an inverse-design approach to engineer simple MG structures comprising periodic air grooves on a flat metal surface, which can control anomalous reflection without polarization limitations. Through rigorous analytical methods, we derive solutions that achieve perfect retroreflection and perfect specular reflection, thereby leading to functional control over the linearly-polarized electromagnetic waves. Such capabilities enable intriguing functionalities including polarization-dependent retroreflection and polarization-independent retroreflection, as confirmed through full-wave simulations. Our work offers a simple and effective method to control freely electromagnetic waves, with potential applications spanning wavefront engineering, polarization splitting, cloaking technologies, and remote sensing.

Graphical abstract

Keywords

metagratings / inverse design / perfect retroreflection / polarization control

Cite this article

Download citation ▾
Jingwen Li, Xiao Li, Guohao Zhang, Jiaqing Liu, Changdong Chen, Youwen Liu, Yangyang Fu. Functional control of anomalous reflection via engineered metagratings without polarization limitations. Front. Phys., 2025, 20(2): 024202 https://doi.org/10.15302/frontphys.2025.024202

References

[1]
Y. Xu, Y. Fu, and H. Chen, Planar gradient metamaterials, Nat. Rev. Mater. 1(12), 16067 (2016)
CrossRef ADS Google scholar
[2]
S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, Electromagnetic metasurfaces: Physics and applications, Adv. Opt. Photonics 11(2), 380 (2019)
CrossRef ADS Google scholar
[3]
N. Meinzer, W. L. Barnes, and I. R. Hooper, Plasmonic meta-atoms and metasurfaces, Nat. Photonics 8(12), 889 (2014)
CrossRef ADS Google scholar
[4]
S. Wang,P. C. Wu,V. C. Su,Y. C. Lai,M. K. Chen, H. Y. Kuo,B. H. Chen,Y. H. Chen,T. T. Huang,J. H. Wang, R. M. Lin,C. H. Kuan,T. Li,Z. Wang,S. Zhu, D. P. Tsai, A broadband achromatic metalens in the visible, Nat. Nanotechnol. 13(3), 227 (2018)
[5]
Y. Fu, C. Shen, X. Zhu, J. Li, Y. Liu, S. A. Cummer, and Y. Xu, Sound vortex diffraction via topological charge in phase gradient metagratings, Sci. Adv. 6(40), eaba9876 (2020)
CrossRef ADS Google scholar
[6]
Y. Fu, Y. Tian, X. Li, S. Yang, Y. Liu, Y. Xu, and M. Lu, Asymmetric generation of acoustic vortex using dual-layer metasurfaces, Phys. Rev. Lett. 128(10), 104501 (2022)
CrossRef ADS Google scholar
[7]
N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334(6054), 333 (2011)
CrossRef ADS Google scholar
[8]
Y. Cao, Y. Fu, L. Gao, H. Chen, and Y. Xu, Parity-protected anomalous diffraction in optical phase gradient metasurfaces, Phys. Rev. A 107(1), 013509 (2023)
CrossRef ADS Google scholar
[9]
X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, Photonic spin Hall effect at metasurfaces, Science 339(6126), 1405 (2013)
CrossRef ADS Google scholar
[10]
W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, Photonic spin Hall effect with nearly 100% efficiency, Adv. Opt. Mater. 3(8), 1102 (2015)
CrossRef ADS Google scholar
[11]
Y. Fu, C. Shen, Y. Cao, L. Gao, H. Chen, C. T. Chan, S. A. Cummer, and Y. Xu, Reversal of transmission and reflection based on acoustic metagratings with integer parity design, Nat. Commun. 10(1), 2326 (2019)
CrossRef ADS Google scholar
[12]
Y. Cao, Y. Fu, Q. Zhou, X. Ou, L. Gao, H. Chen, and Y. Xu, Mechanism behind angularly asymmetric diffraction in phase-gradient metasurfaces, Phys. Rev. Appl. 12(2), 024006 (2019)
CrossRef ADS Google scholar
[13]
K. Zhang, X. Li, D. Dong, M. Xue, W. You, Y. Liu, L. Gao, J. Jiang, H. Chen, Y. Xu, and Y. Fu, Geometric phase in twisted topological complementary pair, Adv. Sci. (Weinh.) 10(33), 2304992 (2023)
CrossRef ADS Google scholar
[14]
X. Li, C. Hu, Y. Tian, Y. Liu, H. Chen, Y. Xu, M. Lu, and Y. Fu, Maximum helical dichroism enabled by an exceptional point in non-Hermitian gradient metasurfaces, Sci. Bull. (Beijing) 68(21), 2555 (2023)
CrossRef ADS Google scholar
[15]
Y. Xu, Y. Wang, Q. Zhou, L. Gao, and Y. Fu, Unidirectional manipulation of Smith–Purcell radiation by phase-gradient metasurfaces, Opt. Lett. 48(15), 4133 (2023)
CrossRef ADS Google scholar
[16]
Y. Ra’di, D. L. Sounas, and A. Alù, Metagratings: Beyond the limits of graded metasurfaces for wave front control, Phys. Rev. Lett. 119(6), 067404 (2017)
CrossRef ADS arXiv Google scholar
[17]
V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Díaz-Rubio, Y. Ra’di, and S. A. Tretyakov, Perfect control of reflection and refraction using spatially dispersive metasurfaces, Phys. Rev. B 94(7), 075142 (2016)
CrossRef ADS arXiv Google scholar
[18]
W. Liu,A. E. Miroshnichenko, Beam steering with dielectric metalattices, ACS Photonics 5(5), 1733 (20187)
[19]
W. Shi, W. Deng, W. Liu, Z. Zhuang, Z. Fan, and J. Dong, Rectangular dielectric metagrating for high-efficiency diffraction with large-angle deflection, Chin. Opt. Lett. 18(7), 073601 (2020)
CrossRef ADS Google scholar
[20]
Y. K. Chiang, S. Oberst, A. Melnikov, L. Quan, S. Marburg, A. Alù, and D. A. Powell, Reconfigurable acoustic metagrating for high-efficiency anomalous reflection, Phys. Rev. Appl. 13(6), 064067 (2020)
CrossRef ADS Google scholar
[21]
E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, Asymmetric nanoantennas for ultrahigh angle broadband visible light bending, Nano Lett. 17(10), 6267 (2017)
CrossRef ADS Google scholar
[22]
M. V. Zhelyeznyakov, S. Brunton, and A. Majumdar, Deep learning to accelerate scatterer-to-field mapping for inverse design of dielectric metasurfaces, ACS Photonics 8(2), 481 (2021)
CrossRef ADS Google scholar
[23]
J. R. Thompson, H. D. Nelson-Quillin, E. J. Coyle, J. P. Vernon, E. S. Harper, and M. S. Mills, Particle swarm optimization of polymer-embedded broadband metasurface reflectors, Opt. Express 29(26), 43421 (2021)
CrossRef ADS Google scholar
[24]
Z. L. Deng,S. Zhang,G. P. Wang, A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces, Nanoscale 8(3), 1588 (2016)
[25]
S. Zhu, Y. Cao, Y. Fu, X. Li, L. Gao, H. Chen, and Y. Xu, Switchable bifunctional metasurfaces: Nearly perfect retroreflection and absorption at the terahertz regime, Opt. Lett. 45(14), 3989 (2020)
CrossRef ADS arXiv Google scholar
[26]
J. Li, X. Li, J. Liu, D. Dong, Y. Liu, and Y. Fu, Multifunctional manipulation of terahertz waves using vanadium-dioxide-based metagratings, Opt. Lett. 47(16), 4207 (2022)
CrossRef ADS Google scholar
[27]
N. Estakhri, V. Neder, M. Knight, A. Polman, and A. Alù, Visible light, wide-angle graded metasurface for back reflection, ACS Photonics 4(2), 228 (2017)
CrossRef ADS Google scholar
[28]
Y. Xie, J. Quan, Q. Shi, Y. Cao, B. Sun, and Y. Xu, Multi-functional high-efficiency light beam splitter based on metagrating, Opt. Express 30(3), 4125 (2022)
CrossRef ADS Google scholar
[29]
Y. Jin, X. Fang, Y. Li, and D. Torrent, Engineered diffraction gratings for acoustic cloaking, Phys. Rev. Appl. 11(1), 011004 (2019)
CrossRef ADS arXiv Google scholar
[30]
Y. Gao, J. Quan, B. Sun, L. Xu, Y. Fu, H. Chen, and Y. Xu, Frequency-doubling perfect negative reflection in phase gradient metasurfaces, Appl. Phys. Lett. 124(19), 191701 (2024)
CrossRef ADS Google scholar
[31]
Y. Fu, J. Tao, A. Song, Y. Liu, and Y. Xu, Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings, Front. Phys. 15(5), 52502 (2020)
CrossRef ADS arXiv Google scholar
[32]
X. Li, D. Dong, J. Liu, Y. Liu, and Y. Fu, Perfect retroreflection assisted by evanescent guided modes in acoustic metagratings, Appl. Phys. Lett. 120(15), 151701 (2022)
CrossRef ADS Google scholar

Declarations

The authors declare no competing interests and no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.024202.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 12274225), the Natural Science Foundation of Jiangsu Province (No. BK20230089), the Science and Technology Plan Special Foundation of Jiangsu Province (No. ZAG23009), and the Fundamental Research Funds for the Central Universities (Nos. NE2022007 and NS2023056).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3211 KB)

Accesses

Citations

Detail

Sections
Recommended

/