Unveiling wave−particle duality via second-order photon correlations

Yanqiang Guo, Chenyu Zhu, Jie Zhao, Taolue Zhou, Jiazhao Tian, Shuangping Han, Kangze Li, Xiaomin Guo, Liantuan Xiao

PDF(3578 KB)
PDF(3578 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 022206. DOI: 10.15302/frontphys.2025.022206
RESEARCH ARTICLE

Unveiling wave−particle duality via second-order photon correlations

Author information +
History +

Abstract

Wave-particle duality as a fundamental tenet of quantum mechanics is crucial for advancing comprehension of quantum theories and developing quantum technologies with practical applications. However, taking into account experimental impact factors to develop a feasible measurement for wave-like and particle-like properties of light fields is an ongoing challenge, and the non-classicality extraction and determination remains to be explored. In this work, feasibly measurable second-order photon correlations based on Hanbury Brown−Twiss and Hong−Ou−Mandel interferences are employed to analyze the evolution of wave−particle duality for various input states. The wave-particle dualities of chaotic, coherent and mixed classical states as functions of time delay and coherence time are investigated. The realistic impacts of background noise, detection efficiency, intensity ratio and phase differences on the wave−particle duality of non-classical (Fock and squeezed coherent) states are unveiled. In noisy backgrounds with low detection efficiencies, efficient enhancement and extraction of non-classicality and a continuous transition from classical to non-classical region are achieved in single photon state mixed with coherent state by adjusting the phase difference from 0 to π/2. The non-classicality of squeezed coherent state can be induced by the classical wave-like and particle-like properties. The research provides a practical precision measurement of wave−particle duality that is helpful for the improvement of high-resolution quantum imaging and sensing.

Graphical abstract

Keywords

second-order photon correlation / wave−particle duality / non-classicality / single photon detection

Cite this article

Download citation ▾
Yanqiang Guo, Chenyu Zhu, Jie Zhao, Taolue Zhou, Jiazhao Tian, Shuangping Han, Kangze Li, Xiaomin Guo, Liantuan Xiao. Unveiling wave−particle duality via second-order photon correlations. Front. Phys., 2025, 20(2): 022206 https://doi.org/10.15302/frontphys.2025.022206

References

[1]
X. Lü, Quantitative wave-particle duality as quantum state discrimination, Phys. Rev. A 102(2), 022201 (2020)
CrossRef ADS Google scholar
[2]
N. H. D. Bohr, The quantum postulate and the recent development of atomic theory, Nature 121(3050), 580 (1928)
CrossRef ADS Google scholar
[3]
R. Galazo, I. Bartolomé, L. Ares, and A. Luis, Classical and quantum complementarity, Phys. Lett. A 384(33), 126849 (2020)
CrossRef ADS arXiv Google scholar
[4]
T. Young, The Bakerian lecture: Experiments and calculations relative to physical optics, Philos. Trans. R. Soc. Lond. 94, 1 (1804)
CrossRef ADS Google scholar
[5]
W. K. Wootters and W. H. Zurek, Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr’s principle, Phys. Rev. D 19(2), 473 (1979)
CrossRef ADS Google scholar
[6]
D. M. Greenberger and A. Yasin, Simultaneous wave and particle knowledge in a neutron interferometer, Phys. Lett. A 128(8), 391 (1988)
CrossRef ADS Google scholar
[7]
Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, Two-photon entanglement in type-ii parametric down-conversion, Phys. Rev. A 50(1), 23 (1994)
CrossRef ADS Google scholar
[8]
X. Y. Hu, C. P. Wei, Y. F. Yu, and Z. M. Zhang, Enhanced phase sensitivity of an SU(1, 1) interferometer with displaced squeezed vacuum light, Front. Phys. 11(3), 114203 (2016)
CrossRef ADS Google scholar
[9]
J. P. Dowling, Quantum optical metrology – the low-down on high-N00N states, Contemp. Phys. 49(2), 125 (2008)
CrossRef ADS arXiv Google scholar
[10]
X. F. Qian, A. N. Vamivakas, and J. H. Eberly, Entanglement limits duality and vice versa, Optica 5(8), 942 (2018)
CrossRef ADS arXiv Google scholar
[11]
N. Huo, Y. Liu, J. Li, L. Cui, X. Chen, R. Palivela, T. Xie, X. Li, and Z. Y. Ou, Direct temporal mode measurement for the characterization of temporally multi-plexed high dimensional quantum entanglement in continuous variables, Phys. Rev. Lett. 124(21), 213603 (2020)
CrossRef ADS arXiv Google scholar
[12]
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
CrossRef ADS Google scholar
[13]
A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, and H. Yamada, Evidence for Aharonov–Bohm effect with magnetic field completely shielded from electron wave, Phys. Rev. Lett. 56(8), 792 (1986)
CrossRef ADS Google scholar
[14]
G. Jaeger, M. A. Horne, and A. Shimony, Complementarity of one-particle and two-particle interference, Phys. Rev. A 48(2), 1023 (1993)
CrossRef ADS Google scholar
[15]
T. J. Herzog, P. G. Kwiat, H. Weinfurter, and A. Zeilinger, Complementarity and the quantum eraser, Phys. Rev. Lett. 75(17), 3034 (1995)
CrossRef ADS Google scholar
[16]
M. Jakob and J. A. Bergou, Complementarity and entanglement in bipartite qudit systems, Phys. Rev. A 76(5), 052107 (2007)
CrossRef ADS Google scholar
[17]
A. Halder, H. Partanen, A. Leinonen, M. Koivurova, T. K. Hakala, T. Setälä, J. Turunen, and A. T. Friberg, Mirror-based scanning wavefront-folding interferometer for coherence measurements, Opt. Lett. 45(15), 4260 (2020)
CrossRef ADS Google scholar
[18]
M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, Duality of quantum coherence and path distinguishability, Phys. Rev. A 92(1), 012118 (2015)
CrossRef ADS arXiv Google scholar
[19]
A. Aspect, P. Grangier, and G. Roger, Experimental tests of realistic local theories via Bell’s theorem, Phys. Rev. Lett. 47(7), 460 (1981)
CrossRef ADS Google scholar
[20]
Y. H. Shih and C. O. Alley, New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion, Phys. Rev. Lett. 61(26), 2921 (1988)
CrossRef ADS Google scholar
[21]
V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, Experimental realization of Wheeler’s delayed-choice gedanken experiment, Science 315(5814), 966 (2007)
CrossRef ADS Google scholar
[22]
F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, Entanglement-enabled delayed-choice experiment, Science 338(6107), 637 (2012)
CrossRef ADS arXiv Google scholar
[23]
A. Peruzzo,P. Shadbolt,N. Brunner,S. Popescu,J. L. O’Brien, A quantum delayed-choice experiment, Science 338(6107), 634 (2012)
[24]
H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9(10), 865 (2010)
CrossRef ADS Google scholar
[25]
H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, Y. H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum computational advantage using photons, Science 370(6523), 1460 (2020)
CrossRef ADS arXiv Google scholar
[26]
T. Juffmann, A. Milic, M. Müllneritsch, P. Asenbaum, A. Tsukernik, J. Tüxen, M. Mayor, O. Cheshnovsky, and M. Arndt, Real-time single-molecule imaging of quantum interference, Nat. Nanotechnol. 7(5), 297 (2012)
CrossRef ADS arXiv Google scholar
[27]
G. Brida, I. P. Degiovanni, M. Genovese, V. Schettini, S. V. Polyakov, and A. Migdall, Experimental test of non-classicality for a single particle, Opt. Express 16(16), 11750 (2008)
CrossRef ADS arXiv Google scholar
[28]
H. J. Kimble, M. Dagenais, and L. Mandel, Photon anti-bunching in resonance fluorescence, Phys. Rev. Lett. 39(11), 691 (1977)
CrossRef ADS Google scholar
[29]
M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, Accessing higher order correlations in quantum optical states by time multiplexing, Phys. Rev. Lett. 104(6), 063602 (2010)
CrossRef ADS arXiv Google scholar
[30]
K. Xiao, R. M. Pettit, W. Ge, L. H. Nguyen, S. Dadras, A. N. Vamivakas, and M. Bhattacharya, Higher order correlations in a levitated nanoparticle phonon laser, Opt. Express 28(3), 4234 (2020)
CrossRef ADS Google scholar
[31]
G. H. Zuo,Y. C. Zhang,G. Li,P. F. Zhang,P. F. Yang, Y. Q. Guo,S. Y. Zhu,T. C. Zhang, 10-Hertz squeezed light source generation on the cesium D2 line using single photon modulation, Front. Phys. 18(3), 32301 (2023)
[32]
P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light, Nat. Commun. 3(1), 1174 (2012)
CrossRef ADS arXiv Google scholar
[33]
R. S. Bennink,S. J. Bentley,R. W. Boyd, “two-photon” coincidence imaging with a classical source, Phys. Rev. Lett. 89(11), 113601 (2002)
[34]
R. H. Brown and R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature 177(4497), 27 (1956)
CrossRef ADS Google scholar
[35]
P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, Ghost imaging in the time domain, Nat. Photonics 10(3), 167 (2016)
CrossRef ADS Google scholar
[36]
D. V. Strekalov, B. I. Erkmen, and N. Yu, Ghost imaging of space objects, J. Phys. Conf. Ser. 414, 012037 (2013)
CrossRef ADS Google scholar
[37]
Z. Q. Yan, C. Q. Hu, Z. M. Li, Z. Y. Li, H. Zheng, and X. M. Jin, Underwater photon-inter-correlation optical communication, Photon. Res. 9(12), 2360 (2021)
CrossRef ADS Google scholar
[38]
Z. Hu, J. J. Donatelli, and J. A. Sethian, Cross-correlation analysis of X-ray photon correlation spectroscopy to extract rotational diffusion coefficients, Proc. Natl. Acad. Sci. USA 118(34), e2105826118 (2021)
CrossRef ADS Google scholar
[39]
F. Trost, K. Ayyer, M. Prasciolu, H. Fleckenstein, M. Barthelmess, O. Yefanov, J. L. Dresselhaus, C. Li, S. Bajt, J. Carnis, T. Wollweber, A. Mall, Z. Shen, Y. Zhuang, S. Richter, S. Karl, S. Cardoch, K. K. Patra, J. Möller, A. Zozulya, R. Shayduk, W. Lu, F. Brauße, B. Friedrich, U. Boesenberg, I. Petrov, S. Tomin, M. Guetg, A. Madsen, N. Timneanu, C. Caleman, R. Röhlsberger, J. von Zanthier, and H. N. Chapman, Imaging via correlation of X-ray fluorescence photons, Phys. Rev. Lett. 130(17), 173201 (2023)
CrossRef ADS Google scholar
[40]
T. A. Smith and Y. Shih, Turbulence-free double-slit interferometer, Phys. Rev. Lett. 120(6), 063606 (2018)
CrossRef ADS Google scholar
[41]
Y. Guo, H. Zhang, X. Guo, Y. Zhang, and T. Zhang, High-order continuous-variable coherence of phase-dependent squeezed state, Opt. Express 30(6), 8461 (2022)
CrossRef ADS arXiv Google scholar
[42]
Y. Guo, Z. Hu, J. Zhang, C. Zhu, and X. Guo, High-speed photon correlation monitoring of amplified quantum noise by chaos using deep-learning balanced homodyne detection, Appl. Phys. Lett. 123(5), 051101 (2023)
CrossRef ADS arXiv Google scholar
[43]
C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett. 59(18), 2044 (1987)
CrossRef ADS Google scholar
[44]
R. J. Glauber, The quantum theory of optical coherence, Phys. Rev. 130(6), 2529 (1963)
CrossRef ADS Google scholar
[45]
E. C. G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams, Phys. Rev. Lett. 10(7), 277 (1963)
CrossRef ADS Google scholar
[46]
M. O. Scully,M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
[47]
Y. Guo, L. Wang, Y. Wang, X. Fang, T. Zhao, X. Guo, and T. Zhang, High-order photon correlations through double Hanbury Brown–Twiss measurements, J. Opt. 22(9), 095202 (2020)
CrossRef ADS Google scholar
[48]
Y. Guo, L. Wang, Y. Wang, X. Fang, T. Zhao, and X. Guo, Analysis and measurement of high-order photon correlations of light fields, Acta Phys. Sin. 69(17), 174204 (2020)
CrossRef ADS Google scholar
[49]
H. Zhang, Y. Guo, X. Guo, J. Zhang, G. Zuo, Y. Zhang, and T. Zhang, Higher-order photon antibunching of phase-variable squeezed coherent state, Acta Phys. Sin. 71(19), 194202 (2022)
CrossRef ADS Google scholar
[50]
J. Sales and N. de Almeida, Dynamic statistical properties of squeezed coherent state superpositions, Physica A 392(16), 3308 (2013)
CrossRef ADS Google scholar
[51]
J. Liu, T. Shao, Y. Wang, M. Zhang, Y. Hu, D. Chen, and D. Wei, Enhancement of the phase sensitivity with two-mode squeezed coherent state based on a Mach–Zehnder interferometer, Opt. Express 31(17), 27735 (2023)
CrossRef ADS Google scholar
[52]
C. T. Lee, Nonclassical photon statistics of two-mode squeezed states, Phys. Rev. A 42(3), 1608 (1990)
CrossRef ADS Google scholar
[53]
N. B. Grosse, T. Symul, M. Stobińska, T. C. Ralph, and P. K. Lam, Measuring photon antibunching from continuous variable sideband squeezing, Phys. Rev. Lett. 98(15), 153603 (2007)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFA1404201), the National Natural Science Foundation of China (Nos. 62175176, 62075154, 62475185, U23A20380, and 62305241), and the Natural Science Foundation of Shanxi Province (Nos. 202203021222107 and 202203021222113).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3578 KB)

Accesses

Citations

Detail

Sections
Recommended

/