
Can vortex quantum droplets be realized experimentally?
Guilong Li, Zibin Zhao, Bin Liu, Yongyao Li, Yaroslav V. Kartashov, Boris A. Malomed
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 013401.
Can vortex quantum droplets be realized experimentally?
[1] |
B. A. Malomed, Multidimensional Solitons, AIP Publishing, 2022
|
[2] |
T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev. 106(6), 1135 (1957)
CrossRef
ADS
Google scholar
|
[3] |
D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose‒Bose mixture, Phys. Rev. Lett. 115(15), 155302 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[4] |
D. S. Petrov and G. E. Astrakharchik, Ultradilute low-dimensional liquids, Phys. Rev. Lett. 117(10), 100401 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[5] |
I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[6] |
M. Schmitt, M. Wenzel, F. Bӧttcher, I. Ferrier-Barbut, and T. Pfau, Self-bound droplets of a dilute magnetic quantum liquid, Nature 539(7628), 259 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[7] |
C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose‒Einstein condensates, Science 359(6373), 301 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[8] |
P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, Bright soliton to quantum droplet transition in a mixture of Bose‒Einstein condensates, Phys. Rev. Lett. 120(13), 135301 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets of atomic mixtures in free space, Phys. Rev. Lett. 120(23), 235301 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Modugno, F. Minardi, and C. Fort, Observation of quantum droplets in a heteronuclear bosonic mixture, Phys. Rev. Res. 1(3), 033155 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
Z. H. Luo,W. Pang,B. Liu,Y. Y. Li,B. A. Malomed, A new form of liquid matter: Quantum droplets, Front. Phys. 16(3), 32201 (2021)
|
[12] |
M. Guo,T. Pfau, A new state of matter of quantum droplets, Front. Phys. 16(3), 32202 (2021)
|
[13] |
F. Böttcher, J. N. Schmidt, J. Hertkorn, K. S. H. Ng, S. D. Graham, M. Guo, T. Langen, and T. Pfau, New states of matter with fine-tuned interactions: Quantum droplets and dipolar supersolids, Rep. Prog. Phys. 84(1), 012403 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
Y. V. Kartashov, B. A. Malomed, L. Tarruell, and L. Torner, Three-dimensional droplets of swirling superfluids, Phys. Rev. A 98(1), 013612 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[15] |
A. Cidrim, F. E. A. dos Santos, E. A. L. Henn, and T. Macrì, Vortices in self-bound dipolar droplets, Phys. Rev. A 98(2), 023618 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[16] |
Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and B. A. Malomed, Two-dimensional vortex quantum droplets, Phys. Rev. A 98(6), 063602 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
G. Li, X. Jiang, B. Liu, Z. Chen, B. A. Malomed, and Y. Li, Two-dimensional anisotropic vortex quantum droplets in dipolar Bose‒Einstein condensates, Front. Phys. 19(2), 22202 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[18] |
G. Li, Z. Zhao, X. Jiang, Z. Chen, B. Liu, B. A. Malomed, and Y. Li, Strongly anisotropic vortices in dipolar quantum droplets, Phys. Rev. Lett. 133(5), 053804 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
L. Dong and M. Fan, Stable higher-charge vortex droplets governed by quantum fluctuations in three dimensions, Chaos Solitons Fractals 173, 113728 (2023)
CrossRef
ADS
Google scholar
|
[20] |
L. Dong, M. Fan, and B. A. Malomed, Stable higher order vortex quantum droplets in an annular potential, Chaos Solitons Fractals 179, 114472 (2024)
CrossRef
ADS
Google scholar
|
[21] |
J. R. Salgueiro, A. Paredes, J. Guerra-Carmenate, and H. Michinel, On the stability of vortex quantum droplets, Results Phys. 64, 107923 (2024)
CrossRef
ADS
Google scholar
|
[22] |
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose‒Einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)
CrossRef
ADS
Google scholar
|
[23] |
K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. Van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose‒Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75(22), 3969 (1995)
CrossRef
ADS
Google scholar
|
[24] |
C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose‒Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett. 75(9), 1687 (1995)
CrossRef
ADS
Google scholar
|
[25] |
C. Pethick,H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press, New York, 2002
|
[26] |
L. Pitaevskii,S. Stringari, Bose−Einstein Condensation and Superfluidity, Oxford University Press, 2016
|
[27] |
Y. Zhang, F. Maucher, and T. Pohl, Supersolidity around a critical point in dipolar Bose‒Einstein condensates, Phys. Rev. Lett. 123(1), 015301 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[28] |
Y. Zhang, T. Pohl, and F. Maucher, Phases of supersolids in confined dipolar Bose‒Einstein condensates, Phys. Rev. A 104(1), 013310 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
Y. Ma, C. Peng, and X. Cui, Borromean droplet in three-component ultracold Bose gases, Phys. Rev. Lett. 127(4), 043002 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[30] |
M. Guo, F. Böttcher, J. Hertkorn, J. N. Schmidt, M. Wenzel, H. P. Büchler, T. Langen, and T. Pfau, The low-energy Goldstone mode in a trapped dipolar supersolid, Nature 574(7778), 386 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[31] |
L. J. He, B. Liu, and Y. C. Zhang, Quantum droplets in dipolar condensate mixtures with arbitrary dipole orientations, Phys. Rev. A 110(1), 013308 (2024)
CrossRef
ADS
Google scholar
|
[32] |
J. Pan, S. Yi, and T. Shi, Quantum phases of self-bound droplets of Bose‒Bose mixtures, Phys. Rev. Res. 4(4), 043018 (2022)
CrossRef
ADS
Google scholar
|
[33] |
R. Liu, W. Wang, and X. Cui, Quartet superfluid in two-dimensional mass-imbalanced fermi mixtures, Phys. Rev. Lett. 131(19), 193401 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
Q. Gu and X. Cui, Self-bound vortex lattice in a rapidly rotating quantum droplet, Phys. Rev. A 108(6), 063302 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[35] |
Y. Deng and S. Yi, Self-ordered supersolid phase beyond Dicke superradiance in a ring cavity, Phys. Rev. Res. 5(1), 013002 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[36] |
L. Peng, J. Pan, S. Yi, and T. Shi, Unveiling quantum phases in quasi-one-dimensional dipolar gases using continuous matrix product states, Phys. Rev. A 110(2), 023330 (2024)
CrossRef
ADS
Google scholar
|
[37] |
E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Dynamics of collapsing and exploding Bose‒Einstein condensates, Nature 412(6844), 295 (2001)
CrossRef
ADS
Google scholar
|
[38] |
C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[39] |
P. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J. Verhaar, Observation of a Feshbach resonance in cold atom scattering, Phys. Rev. Lett. 81(1), 69 (1998)
CrossRef
ADS
Google scholar
|
[40] |
L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303(5−6), 259 (1998)
CrossRef
ADS
Google scholar
|
[41] |
G. Fibich, The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse, Springer, Heidelberg, 2015
|
[42] |
V. E. Zakharov,S. V. Manakov,S. P. Novikov,L. P. Pitaevskii, Solitons: The Inverse Scattering Method, Nauka Publishers, Moscow, 1980
|
[43] |
K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Formation and propagation of matter-wave soliton trains, Nature 417(6885), 150 (2002)
CrossRef
ADS
Google scholar
|
[44] |
L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, Formation of a matter-wave bright soliton, Science 296(5571), 1290 (2002)
CrossRef
ADS
Google scholar
|
[45] |
S. L. Cornish, S. T. Thompson, and C. E. Wieman, Formation of bright matter-wave solitons during the collapse of attractive Bose‒Einstein condensates, Phys. Rev. Lett. 96(17), 170401 (2006)
CrossRef
ADS
Google scholar
|
[46] |
B. A. Malomed, Vortex solitons: Old results and new perspectives, Physica D 399, 108 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[47] |
B. A. Malomed, L. C. Crasovan, and D. Mihalache, Stability of vortex solitons in the cubic‒quintic model, Physica D 161(3-4), 187 (2002)
CrossRef
ADS
Google scholar
|
[48] |
L. Torner and D. V. Petrov, Azimuthal instabilities and self-breaking of beams into sets of solitons in bulk second harmonic generation, Electron. Lett. 33(7), 608 (1997)
CrossRef
ADS
Google scholar
|
[49] |
W. J. Firth and D. V. Skryabin, Optical solitons carrying orbital angular momentum, Phys. Rev. Lett. 79(13), 2450 (1997)
CrossRef
ADS
Google scholar
|
[50] |
J. P. Torres, J. M. Soto-Crespo, L. Torner, and D. V. Petrov, Solitary-wave vortices in quadratic nonlinear media, J. Opt. Soc. Am. B 15(2), 625 (1998)
CrossRef
ADS
Google scholar
|
[51] |
V. I. Kruglov,R. A. Vlasov, Spiral self-trapping propagation of optical beams in media with cubic nonlinearity, Phys. Lett. A 111(8–9), 401 (1985)
|
[52] |
M. S. Bigelow, P. Zerom, and R. W. Boyd, Breakup of ring beams carrying orbital angular momentum in sodium vapor, Phys. Rev. Lett. 92(8), 083902 (2004)
CrossRef
ADS
Google scholar
|
[53] |
D. V. Petrov, L. Torner, J. Martorell, R. Vilaseca, J. P. Torres, and C. Cojocaru, Observation of azimuthal modulational instability and formation of patterns of optical solitons in a quadratic nonlinear crystal, Opt. Lett. 23(18), 1444 (1998)
CrossRef
ADS
Google scholar
|
[54] |
S. Minardi, G. Molina-Terriza, P. Di Trapani, J. P. Torres, and L. Torner, Soliton algebra by vortex-beam splitting, Opt. Lett. 26(13), 1004 (2001)
CrossRef
ADS
Google scholar
|
[55] |
V. Tikhonenko, J. Christou, and B. Luther-Daves, Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium, J. Opt. Soc. Am. B 12(11), 2046 (1995)
CrossRef
ADS
Google scholar
|
[56] |
E. A. L. Henn, Quantum vortices get stretched, Front. Phys. 19(3), 31301 (2024)
CrossRef
ADS
Google scholar
|
[57] |
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose‒Einstein condensate, Phys. Rev. Lett. 83(13), 2498 (1999)
CrossRef
ADS
Google scholar
|
[58] |
K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose‒Einstein condensate, Phys. Rev. Lett. 84(5), 806 (2000)
CrossRef
ADS
Google scholar
|
[59] |
M. J. H. Ku, W. Ji, B. Mukherjee, E. Guardado-Sanchez, L. W. Cheuk, T. Yefsah, and M. W. Zwierlein, Motion of a solitonic vortex in the BEC‒BCS crossover, Phys. Rev. Lett. 113(6), 065301 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[60] |
S. Donadello, S. Serafini, M. Tylutki, L. P. Pitaevskii, F. Dalfovo, G. Lamporesi, and G. Ferrari, Observation of solitonic vortices in Bose‒Einstein condensates, Phys. Rev. Lett. 113(6), 065302 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[61] |
L. Klaus, T. Bland, E. Poli, C. Politi, G. Lamporesi, E. Casotti, R. N. Bisset, M. J. Mark, and F. Ferlaino, Observation of vortices and vortex stripes in a dipolar condensate, Nat. Phys. 18(12), 1453 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[62] |
E. Casotti,E. Poli,L. Klaus,A. Litvinov,C. Ulm, C. Politi, Observation of vortices in a dipolar supersolid, arXiv: 2403.18510 (2024)
|
[63] |
H. Sakaguchi and B. A. Malomed, Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps, J. Phys. B: At. Mol. Opt. Phys. 37(11), 2225 (2004)
CrossRef
ADS
Google scholar
|
[64] |
E. A. Ostrovskaya and Y. S. Kivshar, Matter-wave gap vortices in optical lattices, Phys. Rev. Lett. 93(16), 160405 (2004)
CrossRef
ADS
Google scholar
|
[65] |
H. Sakaguchi, B. Li, and B. A. Malomed, Creation of two-dimensional composite solitons in spin‒orbit coupled self-attractive Bose‒Einstein condensates in free space, Phys. Rev. E 89(3), 032920 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[66] |
X. Jiang, Z. Fan, Z. Chen, W. Pang, Y. Li, and B. A. Malomed, Two-dimensional solitons in dipolar Bose‒Einstein condensates with spin‒orbit coupling, Phys. Rev. A 93(2), 023633 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[67] |
H. Deng, J. Li, Z. Chen, Y. Liu, D. Liu, C. Jiang, C. Kong, and B. A. Malomed, Semi-vortex solitons and their excited states in spin‒orbit-coupled binary bosonic condensates, Phys. Rev. E 109(6), 064201 (2024)
CrossRef
ADS
Google scholar
|
[68] |
Y. C. Zhang, Z. W. Zhou, B. A. Malomed, and H. Pu, Stable solitons in three dimensional free space without the ground state: Self-trapped Bose‒Einstein condensates with spin‒orbit coupling, Phys. Rev. Lett. 115(25), 253902 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[69] |
Z. Y. Bai, W. B. Li, and G. X. Huang, Stable single light bullets and vortices and their active control in cold Rydberg gases, Optica 6(3), 309 (2019)
CrossRef
ADS
Google scholar
|
[70] |
L. Qin, C. Hang, and G. X. Huang, High-fidelity and controllable cloning of high-dimensional optical beams with a Rydberg atomic gas, Phys. Rev. A 102(6), 063707 (2020)
CrossRef
ADS
Google scholar
|
[71] |
J. Qin, G. Dong, and B. A. Malomed, Stable giant vortex annuli in microwave-coupled atomic condensates, Phys. Rev. A 94(5), 053611 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[72] |
Z. Guo, Quantum droplet in a mixture of Rb and Na Bose‒Einstein condensates, Doctoral dissertation, The Chinese University of Hong Kong, 2022
|
[73] |
I. Ferrier-Barbut and T. Pfau, Quantum liquids get thin, Science 359(6373), 274 (2018)
CrossRef
ADS
Google scholar
|
[74] |
L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose‒Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6(4), 041039 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[75] |
F. Böttcher, M. Wenzel, J. Schmidt, M. Guo, T. Langen, I. Ferrier-Barbut, T. Pfau, R. Bombín, J. Sánchez-Baena, J. Boronat, and F. Mazzanti, Dilute dipolar quantum droplets beyond the extended Gross‒Pitaevskii equation, Phys. Rev. Res. 1(3), 033088 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[76] |
T. Lahaye,J. Metz,B. Fröhlich,T. Koch,M. Meister,A. Griesmaier,T. Pfau,H. Saito, Y. Kawaguchi,M. Ueda, D-wave collapse and explosion of a dipolar Bose‒Einstein condensate, Phys. Rev. Lett. 101(8), 080401 (2008)
|
[77] |
Y. V. Kartashov, B. A. Malomed, and L. Torner, Structured heterosymmetric quantum droplets, Phys. Rev. Res. 2(3), 033522 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[78] |
G. H. Chen, H. C. Wang, H. M. Deng, and B. A. Malomed, Vortex quantum droplets under competing nonlinearities, Chin. Phys. Lett. 41, 020501 (2024)
CrossRef
ADS
Google scholar
|
[79] |
Y. V. Kartashov, B. A. Malomed, and L. Torner, Metastability of quantum droplet clusters, Phys. Rev. Lett. 122(19), 193902 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[80] |
L. Dong and Y. V. Kartashov, Rotating multidimensional quantum droplets, Phys. Rev. Lett. 126(24), 244101 (2021)
CrossRef
ADS
Google scholar
|
[81] |
M. N. Tengstrand, P. Stürmer, E. Ö. Karabulut, and S. M. Reimann, Rotating binary Bose‒Einstein condensates and vortex clusters in quantum droplets, Phys. Rev. Lett. 123(16), 160405 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[82] |
T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, The physics of dipolar bosonic quantum gases, Rep. Prog. Phys. 72(12), 126401 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[83] |
J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, P. Pedri, and L. Santos, Observation of dipole‒dipole interaction in a degenerate quantum gas, Phys. Rev. Lett. 95(15), 150406 (2005)
CrossRef
ADS
Google scholar
|
[84] |
S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Dark solitons in Bose‒Einstein condensates, Phys. Rev. Lett. 83(25), 5198 (1999)
CrossRef
ADS
Google scholar
|
[85] |
A. E. Leanhardt, A. Görlitz, A. P. Chikkatur, D. Kielpinski, Y. Shin, D. E. Pritchard, and W. Ketterle, Imprinting vortices in a Bose‒Einstein condensate using topological phases, Phys. Rev. Lett. 89(19), 190403 (2002)
CrossRef
ADS
Google scholar
|
[86] |
G. Andrelczyk, M. Brewczyk, L. Dobrek, M. Gajda, and M. Lewenstein, Optical generation of vortices in trapped Bose‒Einstein condensates, Phys. Rev. A 64(4), 043601 (2001)
CrossRef
ADS
Google scholar
|
[87] |
P. Scherpelz, K. Padavić, A. Rançon, A. Glatz, I. S. Aranson, and K. Levin, Phase imprinting in equilibrating fermi gases: The transience of vortex rings and other defects, Phys. Rev. Lett. 113(12), 125301 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[88] |
Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, Light Sci. Appl. 8(1), 90 (2019)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |