Can vortex quantum droplets be realized experimentally?

Guilong Li, Zibin Zhao, Bin Liu, Yongyao Li, Yaroslav V. Kartashov, Boris A. Malomed

Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 013401.

PDF(1255 KB)
PDF(1255 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 013401. DOI: 10.15302/frontphys.2025.013401
VIEW & PERSPECTIVE

Can vortex quantum droplets be realized experimentally?

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Guilong Li, Zibin Zhao, Bin Liu, Yongyao Li, Yaroslav V. Kartashov, Boris A. Malomed. Can vortex quantum droplets be realized experimentally?. Front. Phys., 2025, 20(1): 013401 https://doi.org/10.15302/frontphys.2025.013401

References

[1]
B. A. Malomed, Multidimensional Solitons, AIP Publishing, 2022
[2]
T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev. 106(6), 1135 (1957)
CrossRef ADS Google scholar
[3]
D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose‒Bose mixture, Phys. Rev. Lett. 115(15), 155302 (2015)
CrossRef ADS arXiv Google scholar
[4]
D. S. Petrov and G. E. Astrakharchik, Ultradilute low-dimensional liquids, Phys. Rev. Lett. 117(10), 100401 (2016)
CrossRef ADS arXiv Google scholar
[5]
I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301 (2016)
CrossRef ADS arXiv Google scholar
[6]
M. Schmitt, M. Wenzel, F. Bӧttcher, I. Ferrier-Barbut, and T. Pfau, Self-bound droplets of a dilute magnetic quantum liquid, Nature 539(7628), 259 (2016)
CrossRef ADS arXiv Google scholar
[7]
C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose‒Einstein condensates, Science 359(6373), 301 (2018)
CrossRef ADS arXiv Google scholar
[8]
P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, Bright soliton to quantum droplet transition in a mixture of Bose‒Einstein condensates, Phys. Rev. Lett. 120(13), 135301 (2018)
CrossRef ADS arXiv Google scholar
[9]
G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets of atomic mixtures in free space, Phys. Rev. Lett. 120(23), 235301 (2018)
CrossRef ADS arXiv Google scholar
[10]
C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Modugno, F. Minardi, and C. Fort, Observation of quantum droplets in a heteronuclear bosonic mixture, Phys. Rev. Res. 1(3), 033155 (2019)
CrossRef ADS arXiv Google scholar
[11]
Z. H. Luo,W. Pang,B. Liu,Y. Y. Li,B. A. Malomed, A new form of liquid matter: Quantum droplets, Front. Phys. 16(3), 32201 (2021)
[12]
M. Guo,T. Pfau, A new state of matter of quantum droplets, Front. Phys. 16(3), 32202 (2021)
[13]
F. Böttcher, J. N. Schmidt, J. Hertkorn, K. S. H. Ng, S. D. Graham, M. Guo, T. Langen, and T. Pfau, New states of matter with fine-tuned interactions: Quantum droplets and dipolar supersolids, Rep. Prog. Phys. 84(1), 012403 (2021)
CrossRef ADS arXiv Google scholar
[14]
Y. V. Kartashov, B. A. Malomed, L. Tarruell, and L. Torner, Three-dimensional droplets of swirling superfluids, Phys. Rev. A 98(1), 013612 (2018)
CrossRef ADS arXiv Google scholar
[15]
A. Cidrim, F. E. A. dos Santos, E. A. L. Henn, and T. Macrì, Vortices in self-bound dipolar droplets, Phys. Rev. A 98(2), 023618 (2018)
CrossRef ADS arXiv Google scholar
[16]
Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and B. A. Malomed, Two-dimensional vortex quantum droplets, Phys. Rev. A 98(6), 063602 (2018)
CrossRef ADS arXiv Google scholar
[17]
G. Li, X. Jiang, B. Liu, Z. Chen, B. A. Malomed, and Y. Li, Two-dimensional anisotropic vortex quantum droplets in dipolar Bose‒Einstein condensates, Front. Phys. 19(2), 22202 (2024)
CrossRef ADS arXiv Google scholar
[18]
G. Li, Z. Zhao, X. Jiang, Z. Chen, B. Liu, B. A. Malomed, and Y. Li, Strongly anisotropic vortices in dipolar quantum droplets, Phys. Rev. Lett. 133(5), 053804 (2024)
CrossRef ADS arXiv Google scholar
[19]
L. Dong and M. Fan, Stable higher-charge vortex droplets governed by quantum fluctuations in three dimensions, Chaos Solitons Fractals 173, 113728 (2023)
CrossRef ADS Google scholar
[20]
L. Dong, M. Fan, and B. A. Malomed, Stable higher order vortex quantum droplets in an annular potential, Chaos Solitons Fractals 179, 114472 (2024)
CrossRef ADS Google scholar
[21]
J. R. Salgueiro, A. Paredes, J. Guerra-Carmenate, and H. Michinel, On the stability of vortex quantum droplets, Results Phys. 64, 107923 (2024)
CrossRef ADS Google scholar
[22]
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose‒Einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)
CrossRef ADS Google scholar
[23]
K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. Van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose‒Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75(22), 3969 (1995)
CrossRef ADS Google scholar
[24]
C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose‒Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett. 75(9), 1687 (1995)
CrossRef ADS Google scholar
[25]
C. Pethick,H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press, New York, 2002
[26]
L. Pitaevskii,S. Stringari, Bose−Einstein Condensation and Superfluidity, Oxford University Press, 2016
[27]
Y. Zhang, F. Maucher, and T. Pohl, Supersolidity around a critical point in dipolar Bose‒Einstein condensates, Phys. Rev. Lett. 123(1), 015301 (2019)
CrossRef ADS arXiv Google scholar
[28]
Y. Zhang, T. Pohl, and F. Maucher, Phases of supersolids in confined dipolar Bose‒Einstein condensates, Phys. Rev. A 104(1), 013310 (2021)
CrossRef ADS arXiv Google scholar
[29]
Y. Ma, C. Peng, and X. Cui, Borromean droplet in three-component ultracold Bose gases, Phys. Rev. Lett. 127(4), 043002 (2021)
CrossRef ADS arXiv Google scholar
[30]
M. Guo, F. Böttcher, J. Hertkorn, J. N. Schmidt, M. Wenzel, H. P. Büchler, T. Langen, and T. Pfau, The low-energy Goldstone mode in a trapped dipolar supersolid, Nature 574(7778), 386 (2019)
CrossRef ADS arXiv Google scholar
[31]
L. J. He, B. Liu, and Y. C. Zhang, Quantum droplets in dipolar condensate mixtures with arbitrary dipole orientations, Phys. Rev. A 110(1), 013308 (2024)
CrossRef ADS Google scholar
[32]
J. Pan, S. Yi, and T. Shi, Quantum phases of self-bound droplets of Bose‒Bose mixtures, Phys. Rev. Res. 4(4), 043018 (2022)
CrossRef ADS Google scholar
[33]
R. Liu, W. Wang, and X. Cui, Quartet superfluid in two-dimensional mass-imbalanced fermi mixtures, Phys. Rev. Lett. 131(19), 193401 (2023)
CrossRef ADS arXiv Google scholar
[34]
Q. Gu and X. Cui, Self-bound vortex lattice in a rapidly rotating quantum droplet, Phys. Rev. A 108(6), 063302 (2023)
CrossRef ADS arXiv Google scholar
[35]
Y. Deng and S. Yi, Self-ordered supersolid phase beyond Dicke superradiance in a ring cavity, Phys. Rev. Res. 5(1), 013002 (2023)
CrossRef ADS arXiv Google scholar
[36]
L. Peng, J. Pan, S. Yi, and T. Shi, Unveiling quantum phases in quasi-one-dimensional dipolar gases using continuous matrix product states, Phys. Rev. A 110(2), 023330 (2024)
CrossRef ADS Google scholar
[37]
E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Dynamics of collapsing and exploding Bose‒Einstein condensates, Nature 412(6844), 295 (2001)
CrossRef ADS Google scholar
[38]
C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)
CrossRef ADS arXiv Google scholar
[39]
P. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J. Verhaar, Observation of a Feshbach resonance in cold atom scattering, Phys. Rev. Lett. 81(1), 69 (1998)
CrossRef ADS Google scholar
[40]
L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303(5−6), 259 (1998)
CrossRef ADS Google scholar
[41]
G. Fibich, The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse, Springer, Heidelberg, 2015
[42]
V. E. Zakharov,S. V. Manakov,S. P. Novikov,L. P. Pitaevskii, Solitons: The Inverse Scattering Method, Nauka Publishers, Moscow, 1980
[43]
K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Formation and propagation of matter-wave soliton trains, Nature 417(6885), 150 (2002)
CrossRef ADS Google scholar
[44]
L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, Formation of a matter-wave bright soliton, Science 296(5571), 1290 (2002)
CrossRef ADS Google scholar
[45]
S. L. Cornish, S. T. Thompson, and C. E. Wieman, Formation of bright matter-wave solitons during the collapse of attractive Bose‒Einstein condensates, Phys. Rev. Lett. 96(17), 170401 (2006)
CrossRef ADS Google scholar
[46]
B. A. Malomed, Vortex solitons: Old results and new perspectives, Physica D 399, 108 (2019)
CrossRef ADS arXiv Google scholar
[47]
B. A. Malomed, L. C. Crasovan, and D. Mihalache, Stability of vortex solitons in the cubic‒quintic model, Physica D 161(3-4), 187 (2002)
CrossRef ADS Google scholar
[48]
L. Torner and D. V. Petrov, Azimuthal instabilities and self-breaking of beams into sets of solitons in bulk second harmonic generation, Electron. Lett. 33(7), 608 (1997)
CrossRef ADS Google scholar
[49]
W. J. Firth and D. V. Skryabin, Optical solitons carrying orbital angular momentum, Phys. Rev. Lett. 79(13), 2450 (1997)
CrossRef ADS Google scholar
[50]
J. P. Torres, J. M. Soto-Crespo, L. Torner, and D. V. Petrov, Solitary-wave vortices in quadratic nonlinear media, J. Opt. Soc. Am. B 15(2), 625 (1998)
CrossRef ADS Google scholar
[51]
V. I. Kruglov,R. A. Vlasov, Spiral self-trapping propagation of optical beams in media with cubic nonlinearity, Phys. Lett. A 111(8–9), 401 (1985)
[52]
M. S. Bigelow, P. Zerom, and R. W. Boyd, Breakup of ring beams carrying orbital angular momentum in sodium vapor, Phys. Rev. Lett. 92(8), 083902 (2004)
CrossRef ADS Google scholar
[53]
D. V. Petrov, L. Torner, J. Martorell, R. Vilaseca, J. P. Torres, and C. Cojocaru, Observation of azimuthal modulational instability and formation of patterns of optical solitons in a quadratic nonlinear crystal, Opt. Lett. 23(18), 1444 (1998)
CrossRef ADS Google scholar
[54]
S. Minardi, G. Molina-Terriza, P. Di Trapani, J. P. Torres, and L. Torner, Soliton algebra by vortex-beam splitting, Opt. Lett. 26(13), 1004 (2001)
CrossRef ADS Google scholar
[55]
V. Tikhonenko, J. Christou, and B. Luther-Daves, Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium, J. Opt. Soc. Am. B 12(11), 2046 (1995)
CrossRef ADS Google scholar
[56]
E. A. L. Henn, Quantum vortices get stretched, Front. Phys. 19(3), 31301 (2024)
CrossRef ADS Google scholar
[57]
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose‒Einstein condensate, Phys. Rev. Lett. 83(13), 2498 (1999)
CrossRef ADS Google scholar
[58]
K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose‒Einstein condensate, Phys. Rev. Lett. 84(5), 806 (2000)
CrossRef ADS Google scholar
[59]
M. J. H. Ku, W. Ji, B. Mukherjee, E. Guardado-Sanchez, L. W. Cheuk, T. Yefsah, and M. W. Zwierlein, Motion of a solitonic vortex in the BEC‒BCS crossover, Phys. Rev. Lett. 113(6), 065301 (2014)
CrossRef ADS arXiv Google scholar
[60]
S. Donadello, S. Serafini, M. Tylutki, L. P. Pitaevskii, F. Dalfovo, G. Lamporesi, and G. Ferrari, Observation of solitonic vortices in Bose‒Einstein condensates, Phys. Rev. Lett. 113(6), 065302 (2014)
CrossRef ADS arXiv Google scholar
[61]
L. Klaus, T. Bland, E. Poli, C. Politi, G. Lamporesi, E. Casotti, R. N. Bisset, M. J. Mark, and F. Ferlaino, Observation of vortices and vortex stripes in a dipolar condensate, Nat. Phys. 18(12), 1453 (2022)
CrossRef ADS arXiv Google scholar
[62]
E. Casotti,E. Poli,L. Klaus,A. Litvinov,C. Ulm, C. Politi, Observation of vortices in a dipolar supersolid, arXiv: 2403.18510 (2024)
[63]
H. Sakaguchi and B. A. Malomed, Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps, J. Phys. B: At. Mol. Opt. Phys. 37(11), 2225 (2004)
CrossRef ADS Google scholar
[64]
E. A. Ostrovskaya and Y. S. Kivshar, Matter-wave gap vortices in optical lattices, Phys. Rev. Lett. 93(16), 160405 (2004)
CrossRef ADS Google scholar
[65]
H. Sakaguchi, B. Li, and B. A. Malomed, Creation of two-dimensional composite solitons in spin‒orbit coupled self-attractive Bose‒Einstein condensates in free space, Phys. Rev. E 89(3), 032920 (2014)
CrossRef ADS arXiv Google scholar
[66]
X. Jiang, Z. Fan, Z. Chen, W. Pang, Y. Li, and B. A. Malomed, Two-dimensional solitons in dipolar Bose‒Einstein condensates with spin‒orbit coupling, Phys. Rev. A 93(2), 023633 (2016)
CrossRef ADS arXiv Google scholar
[67]
H. Deng, J. Li, Z. Chen, Y. Liu, D. Liu, C. Jiang, C. Kong, and B. A. Malomed, Semi-vortex solitons and their excited states in spin‒orbit-coupled binary bosonic condensates, Phys. Rev. E 109(6), 064201 (2024)
CrossRef ADS Google scholar
[68]
Y. C. Zhang, Z. W. Zhou, B. A. Malomed, and H. Pu, Stable solitons in three dimensional free space without the ground state: Self-trapped Bose‒Einstein condensates with spin‒orbit coupling, Phys. Rev. Lett. 115(25), 253902 (2015)
CrossRef ADS arXiv Google scholar
[69]
Z. Y. Bai, W. B. Li, and G. X. Huang, Stable single light bullets and vortices and their active control in cold Rydberg gases, Optica 6(3), 309 (2019)
CrossRef ADS Google scholar
[70]
L. Qin, C. Hang, and G. X. Huang, High-fidelity and controllable cloning of high-dimensional optical beams with a Rydberg atomic gas, Phys. Rev. A 102(6), 063707 (2020)
CrossRef ADS Google scholar
[71]
J. Qin, G. Dong, and B. A. Malomed, Stable giant vortex annuli in microwave-coupled atomic condensates, Phys. Rev. A 94(5), 053611 (2016)
CrossRef ADS arXiv Google scholar
[72]
Z. Guo, Quantum droplet in a mixture of Rb and Na Bose‒Einstein condensates, Doctoral dissertation, The Chinese University of Hong Kong, 2022
[73]
I. Ferrier-Barbut and T. Pfau, Quantum liquids get thin, Science 359(6373), 274 (2018)
CrossRef ADS Google scholar
[74]
L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose‒Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6(4), 041039 (2016)
CrossRef ADS arXiv Google scholar
[75]
F. Böttcher, M. Wenzel, J. Schmidt, M. Guo, T. Langen, I. Ferrier-Barbut, T. Pfau, R. Bombín, J. Sánchez-Baena, J. Boronat, and F. Mazzanti, Dilute dipolar quantum droplets beyond the extended Gross‒Pitaevskii equation, Phys. Rev. Res. 1(3), 033088 (2019)
CrossRef ADS arXiv Google scholar
[76]
T. Lahaye,J. Metz,B. Fröhlich,T. Koch,M. Meister,A. Griesmaier,T. Pfau,H. Saito, Y. Kawaguchi,M. Ueda, D-wave collapse and explosion of a dipolar Bose‒Einstein condensate, Phys. Rev. Lett. 101(8), 080401 (2008)
[77]
Y. V. Kartashov, B. A. Malomed, and L. Torner, Structured heterosymmetric quantum droplets, Phys. Rev. Res. 2(3), 033522 (2020)
CrossRef ADS arXiv Google scholar
[78]
G. H. Chen, H. C. Wang, H. M. Deng, and B. A. Malomed, Vortex quantum droplets under competing nonlinearities, Chin. Phys. Lett. 41, 020501 (2024)
CrossRef ADS Google scholar
[79]
Y. V. Kartashov, B. A. Malomed, and L. Torner, Metastability of quantum droplet clusters, Phys. Rev. Lett. 122(19), 193902 (2019)
CrossRef ADS arXiv Google scholar
[80]
L. Dong and Y. V. Kartashov, Rotating multidimensional quantum droplets, Phys. Rev. Lett. 126(24), 244101 (2021)
CrossRef ADS Google scholar
[81]
M. N. Tengstrand, P. Stürmer, E. Ö. Karabulut, and S. M. Reimann, Rotating binary Bose‒Einstein condensates and vortex clusters in quantum droplets, Phys. Rev. Lett. 123(16), 160405 (2019)
CrossRef ADS arXiv Google scholar
[82]
T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, The physics of dipolar bosonic quantum gases, Rep. Prog. Phys. 72(12), 126401 (2009)
CrossRef ADS arXiv Google scholar
[83]
J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, P. Pedri, and L. Santos, Observation of dipole‒dipole interaction in a degenerate quantum gas, Phys. Rev. Lett. 95(15), 150406 (2005)
CrossRef ADS Google scholar
[84]
S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Dark solitons in Bose‒Einstein condensates, Phys. Rev. Lett. 83(25), 5198 (1999)
CrossRef ADS Google scholar
[85]
A. E. Leanhardt, A. Görlitz, A. P. Chikkatur, D. Kielpinski, Y. Shin, D. E. Pritchard, and W. Ketterle, Imprinting vortices in a Bose‒Einstein condensate using topological phases, Phys. Rev. Lett. 89(19), 190403 (2002)
CrossRef ADS Google scholar
[86]
G. Andrelczyk, M. Brewczyk, L. Dobrek, M. Gajda, and M. Lewenstein, Optical generation of vortices in trapped Bose‒Einstein condensates, Phys. Rev. A 64(4), 043601 (2001)
CrossRef ADS Google scholar
[87]
P. Scherpelz, K. Padavić, A. Rançon, A. Glatz, I. S. Aranson, and K. Levin, Phase imprinting in equilibrating fermi gases: The transience of vortex rings and other defects, Phys. Rev. Lett. 113(12), 125301 (2014)
CrossRef ADS arXiv Google scholar
[88]
Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, Light Sci. Appl. 8(1), 90 (2019)
CrossRef ADS Google scholar

Declarations

The authors declare no competing interests and no conflicts.

Acknowledegments

This work was supported by the National Natural Science Foundation of China through Grant Nos. 12274077, 12475014, 11874112, and 11905032, the Natural Science Foundation of Guangdong Province through Grant Nos. 2024A1515030131 and 2023A1515010770, and the Research Fund of Guangdong−Hong Kong−Macao Joint Laboratory for Intelligent Micro−Nano Optoelectronic Technology through Grant No. 2020B1212030010. The work of B.A.M. was supported, in part, by the Israel Science Foundation through Grant No. 1695/2022. Y.V.K. acknowledges funding by research project FFUU-2024-0003 of the Institute of Spectroscopy of the Russian Academy of Sciences.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1255 KB)

Accesses

Citations

Detail

Sections
Recommended

/