[1] Mero J. Ocean-floor manganese nodules.
Economic Geology and the Bulletin of the Society of Economic Geologists , 1962, 57(5): 747-767
[2] Schrope M. Digging deep.
Nature , 2007, 447(7142): 246-247
[3] Murray J. Report on the Scientific Results of the Voyage of H. M. S. Challenger during the Years 1873-76-Deep Sea Deposits.
London:
H. M. S. Stationery Office, 1891
[4] Murray J, Philippi E. Die Grundproben der Deutschen Tiefsee-Expedition, 1898-99 auf dem Dampfer. In:
Valdivia Wiss. Ergeb. Deutschen Tiefsee-Expedition .
Jena:
Gustav Fischer, 1908, Vol. 10: 77-207 (in German)
[5] Francheteau J, Needham H D, Choukroune P,
. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise?
Nature , 1979, 277(5697): 523-528
[6] Lowenstam H A, Weiner S. On Biomineralization.
Oxford:
Oxford University Press, 1989
[7] Müller W E G, ed. Silicon Biomineralization: Biology, Biochemistry, Molecular Biology, Biotechnology.
Berlin-Heidelberg:
Springer-Verlag, 2003
[8] Gilbert P U P A, Abrecht M, Frazer B H. The organic–mineral interface in biominerals.
Reviews in Mineralogy and Geochemistry , 2005, 59(1): 157-185
[9] Amy P S, Caldwell B A, Soeldner A H,
. Microbial activity and ultrastructure of mineral-based marine snow from Howe Sound, British Columbia.
Canadian Journal of Fisheries and Aquatic , 1987, 44(6): 1135-1142
[10] Herndl G J. Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea. . Microbial density and activity in marine snow and its implication to overall pelagic processes.
Marine Ecology Progress Series , 1988, 48: 265-275
[11] Müller W E G, Riemer S, Kurelec B,
. Chemosensitizers of the multixenobiotic resistance in amorphous aggregates (marine snow): etiology of mass killing on the benthos in the Northern Adriatic?
Environmental Toxicology and Pharmacology , 1998, 6(4): 229-238
[12] Leppard G G. Structure/function/activity relationships in marine snow. Current understanding and suggested research thrusts.
Annali dell'Istituto Superiore di Sanità , 1999, 35(3): 389-395
[13] Cottrell M T, Mannino A, Kirchman D L. Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre.
Applied and Environmental Microbiology , 2006, 72(1): 557-564
[14] Persson A E, Schoeman B J, Sterte J,
. Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA)ZSM-5 crystals.
Zeolites , 1995, 15(7): 611-619
[15] Müller W E G, Wang X H, Belikov S I,
. Formation of siliceous spicules in demosponges: example
Suberites domuncula. In: B?uerleinE, ed.
Handbook of Biomineralization, Vol. 1: Biological Aspects and Structure Formation .
Weinheim:
Wiley-VCH, 2007, 59-82
[16] Schr?der H C, Wang X H, Tremel W,
. Biofabrication of biosilica-glass by living organisms.
Natural Product Reports , 2008, 25(3): 455-474
[17] Cha J N, Shimizu K, Zhou Y,
. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones
in vitro.
Proceedings of the National Academy of Sciences of the United States of America , 1999, 96(2): 361-365
[18] Morse D E. Silicon biotechnology: harnessing biological silica production to construct new materials.
Trends in Biotechnology , 1999, 17(6): 230-232
[19] Krasko A, Lorenz B, Batel R,
. Expression of silicatein and collagen genes in the marine sponge
Suberites domuncula is controlled by silicate and myotrophin.
European Journal of Biochemistry , 2000, 267(15): 4878-4887
[20] Müller W E G, Schlo?macher U, Wang X H,
. Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase).
FEBS Journal , 2008, 275(2): 362-370
[21] Müller W E G, Rothenberger M, Boreiko A,
. Formation of siliceous spicules in the marine demosponge
Suberites domuncula.
Cell and Tissue Research , 2005, 321(2): 285-297
[22] Müller W E G, Eckert C, Kropf K,
. Formation of giant spicules in the deep-sea hexactinellid
Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies.
Cell and Tissue Research , 2007, 329(2): 363-378
[23] Wang X H, Boreiko A, Schlo?macher U,
. Axial growth of hexactinellid spicules: Formation of cone-like structural units in the giant basal spicules of the hexactinellid
Monorhaphis.
Journal of Structural Biology , 2008, 164(3): 270-280
[24] Müller W E G, Wang X H, Kropf K,
. Bioorganic/inorganic hybrid composition of sponge spicules: Matrix of the giant spicules and of the comitalia of the deep sea hexactinellid
Monorhaphis.
Journal of Structural Biology , 2008, 161(2): 188-203
[25] Somayajulu B L K. Growth rates of oceanic manganese nodules: Implications to their genesis, palaeo-earth environment and resource potential.
Current Science , 2000, 78(3): 300-308
[26] Kerr R A. Manganese Nodules Grow by Rain from Above: The rain of plant and animal remains falling into the deep sea not only provides metals to nodules but also determines nodule growth rates and composition.
Science , 1984, 223(4636): 576-577
[27] Glasby G P. Manganese: predominant role of nodules and crusts. In: Schulz H D, Zabel M, eds.
Marine Geochemistry (
2nd ed).
Berlin:
Springer-Verlag, 2006
[28] Wang X H, Schlossmacher U, Wiens M,
. Biogenic origin of polymetallic nodules from the Clarion-Clipperton Zone in the Eastern Pacific Ocean: electron microscopic and EDX evidence.
Marine Biotechnology , 2009, 11(1): 99-108
[29] Halbach P, Friedrich G, Stackelberg U v. The Manganese Nodule Belt of the Pacific Ocean: Geological Environment, Nodule Formation, and Mining Aspects.
Stuttgart:
Enke Verlag, 1988
[30] Cronan D S, ed. Handbook of Marine Mineral Deposits.
Boca Raton:
CRC Press, 2000
[31] Zhamoida V A, Butylin W P, Glasby G P,
. The nature of ferromanganese concretions from the eastern gulf of Finland, Baltic Sea.
Marine Georesources and Geotechnology , 1996, 14(2): 161-176
[32] Anufriev G, Boltenkov B S. Ferromanganese nodules of the Baltic Sea: Composition, helium isotopes, and growth rate.
Lithology and Mineral Resources , 2007, 42(3): 240-245
[33] Kawamoto H. Japan’s policies to be adopted on rare metal resources.
Quarterly Review , 2008, (27): 57-76
[34] Thijssen T, Glasby G P, Friedrich G,
. Manganese nodules in the Central Peru Basin.
Chemie der Erde , 1985, 44: 1-12
[35] Kester D R. Dissolved gases other than CO
2. In: RileyJ P, SkirrowG, eds.
Chemical Oceanography (
2nd edition).
London:
Academic Press, 1975, 498-556
[36] Bruland K W, Orians K J, Cowen J P. Reactive trace metals in the stratified central North Pacific.
Geochimica et Cosmochimica Acta , 1994, 58(15): 3171-3182
[37] Glasby G P. Mechanism of incorporation of manganese and associated trace elements in marine manganese nodules.
Oceanography and Marine Biology: An Annual Review , 1974, 12: 11-40
[38] Murray J W, Brewer P G. Mechanism of removal of manganese, iron and other trace metals from seawater. In: GlasbyG P, ed.
Marine Manganese Deposits .
Amsterdam:
Elsevier, 1977, 291-325
[39] Chukhrov F V, Zvyagin B B, Yermilova L P,
. Mineralogical criteria in the origin of marine iron-manganese nodules.
Mineralium Deposita , 1976, 11(1): 24-32
[40] Hastings D, Emerson M. Oxidation of manganese by spores of a marine bacillus: kinetics and thermodynamic considerations.
Geochimica et Cosmochimica Acta , 1986, 50(8): 1819-1824
[41] Ehrlich H L. Geomicrobiology.
New York:
Marcel Dekker, 2002, 768
[42] Dymond J, Eklund W. A microprobe study of metalliferous sediment components.
Earth and Planetary Science Letters , 1978, 40(2): 243-251
[43] Post J E. Manganese oxide minerals: crystal structures and economic and environmental significance.
Proceedings of the National Academy of Sciences of the United States of America , 1999, 96(7): 3447-3454
[44] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: Genetic implications.
Geochimica et Cosmochimica Acta , 1995, 59(24): 5113-5132
[45] Bonatti E, Nayudu Y R. The origin of the manganese nodules on the seafloor.
American Journal of Science , 1965, 263(1): 17-39
[46] Moore W S, Ku T-L, Macdougall J D,
. Fluxes of metals to a manganese nodule radiochemical, chemical, structural, and mineral studies.
Earth and Planetary Science Letters , 1981, 52(1): 151-171
[47] Wang X H, Müller W E G. Marine biominerals: perspectives and challenges for polymetallic nodules and crusts.
Trends in Biotechnology , 2009, 27(6): 375-383
[48] Wang X H, Schr?der H C, Schlo?macher U,
. Organized bacterial assemblies in manganese nodules: evidence for a role of S-layers in metal deposition.
Geo-Marine Letters , 2009, 29(2): 85-91
[49] Sleytr U B, Messner P. Crystalline surface layers on bacteria.
Annual Review of Microbiology , 1983, 37(1): 311-339
[50] Sleytr U B, Messner P, Pum D,
. Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology.
Angewandte Chemie International Edition , 1999, 38(8): 1034-1054
[51] Wang X H, Schlo?macher U, Natalio F,
. Evidence for biogenic processes during formation of ferromanganese crusts from the Pacific Ocean: implications of biologically induced mineralization.
Micron , 2009, 40(5-6): 526-535
[52] Wang X H, Schr?der H C, Wiens M,
. Manganese/polymetallic nodules: Micro-structural characterization of exolithobiontic and endolithobiontic microbial biofilms by scanning electron microscopy.
Micron , 2009, 40(3): 350-358
[53] Wang X H, Gan L, Wiens M,
. Distribution of microfossils within polymetallic nodules: Biogenic clusters within manganese layers.
Marine Biotechnology , 2012, 14(1): 96-105
[54] Ryan K J, Ray C G, eds. Sherris Medical Microbiology (
4th ed).
New York:
McGraw Hill, 2004
[55] Szeto J, Ramirez-Arcos S, Raymond C,
. Gonococcal MinD affects cell division in
Neisseria gonorrhoeae and
Escherichia coli and exhibits a novel self-interaction.
Journal of Bacteriology , 2001, 183(21): 6253-6264
[56] Stackelberg U v. Manganese nodules of the Peru Basin. In: CronanD S, ed.
Handbook of Marine Mineral Deposits .
Boca Raton:
CRC Press, 2000, 197-238
[57] Novikov G V, Murdmaa I O. Ion exchange properties of oceanic ferromanganese nodules and enclosing pelagic sediments.
Lithology and Mineral Resources , 2007, 42(2): 137-167
[58] Jedwab J. Cosmic dust in manganese nodules: pictures from the Report on “Deep-sea deposits” of the H.M.S. Challenger’s Expedition. Internet (
http://www.ulb.ac.be/sciences/cosmicdust.pdf), 2011
[59] Mengele R, Sumper M. Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles.
The Journal of Biological Chemistry , 1992, 267(12): 8182-8185
[60] Schultze-Lam S, Thompson J B, Beveridge T J. Metal ion immobilization by bacterial surfaces in fresh water environments.
Water Pollution Research Journal of Canada , 1993, 28: 51-81
[61] Schultze-Lam S, Beveridge T J. Physicochemical characteristics of the mineral-forming S-layer from the
cyanobacterium synechococcus strain GL24.
Canadian Journal of Microbiology , 1994, 40(3): 216-223
[62] Fortin D, Ferris F G, Beveridge T J. Surface-mediated mineral development by bacteria.
Reviews in Mineralogy and Geochemistry , 1997, 35: 161-180
[63] Wang X H, Wiens M, Divekar M,
. Isolation and characterization of a Mn(II)-oxidizing Bacillus strain from the demosponge
Suberites domuncula.
Marine Drugs , 2011, 9(1): 1-28
[64] Bargar J R, Tebo B M, Villinski J E.
In situ characterization of Mn(II) oxidation by spores of the marine
Bacillus sp. strain SG-1.
Geochimica et Cosmochimica Acta , 2000, 64(16): 2775-2778
[65] Müller W E G, Wang X H, Cui F Z,
. Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials.
Applied Microbiology and Biotechnology , 2009, 83(3): 397-413
[66] Dupraz C, Visscher P T. Microbial lithification in marine stromatolites and hypersaline mats.
Trends in Microbiology , 2005, 13(9): 429-438
[67] Ehrlich H L. Ocean manganese nodules: biogenesis and bioleaching. In: KawatraS K, NatarajanK A, eds.
Mineral Biotechnology: Microbial Aspects of Mineral Beneficiation, Metal Extraction, and Environmental Control .
Littleton:
American Technical Publishers Ltd., 2001, 239-252
[68] Rodi D J, Makowski L. Phage-display technology — finding a needle in a vast molecular haystack.
Current Opinion in Biotechnology , 1999, 10(1): 87-93
[69] Coligan J E, Dunn B M, Ploegh H L,
. Current Protocols in Protein Science.
Chichester ,
USA:
John Wiley & Sons, 2000, 2.0.1-2.8.17
[70] Wiens M, Schr?der H C, Korzhev M,
. Inducible ASABF-type antimicrobial peptide from the sponge
Suberites domuncula: microbicidal and hemolytic activity
in vitro and toxic effect on molluscs
in vivo.
Marine Drugs , 2011, 9(10): 1969-1994
[71] Schladt T D, Schneider K, Shukoor M I,
. Highly soluble multifunctional MnO nanoparticles for simultaneous optical and MRI imaging and cancer treatment using photodynamic therapy.
Journal of Materials Chemistry , 2010, 20(38): 8297-8304