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Optical metasurfaces, composed of planar arrays of sub-wavelength dielectric or metallic structures that collectively
mimic the operation of conventional bulk optical elements, have revolutionized the field of optics by their potential in
constructing high-efficiency and multi-functional optoelectronic systems with a compact form factor. By engineering
the geometry, placement, and alignment of its constituent elements, an optical metasurface arbitrarily controls the
magnitude, polarization, phase, angular momentum, or dispersion of incident light. The study of metasurface now
spans various multidisciplinary fields in both fundamental research on light-matter interaction [1–3], and emerging
applications from solid-state LiDAR [4,5] to compact imaging, spectroscopy, and quantum optical devices [6–11].
High-performance metasurface devices have been experimentally demonstrated over the entire optical spectrum
from the deep ultraviolet to the terahertz (THz) [12–16], and have been employed to manipulate optical waves in both
spatial and temporal domains [17–21].

This special issue on “Recent Advances in Optical Metasurfaces” includes five review articles and five research
articles, covering various topics ranging from metasurface design to practical applications. Qiu et al. [22] provide a
comprehensive review of the fundamentals and applications of spin-decoupled Pancharatnam –Berry (PB)
metasurfaces. Different from traditional PB-phase-based metasurfaces which impinge phase modulations with
opposite signs onto the left-handed and right-handed circularly polarized light, the spin-decoupled PB metasurfaces
release the above spin-locked limitation and allow independent and arbitrary control over orthogonal circular
polarizations. The recent development of bianisotropic metasurfaces has allowed versatile control over the state of
polarization and propagation direction of light. Xiong et al. [23] discuss the electromagnetic properties of photonic
bianisotropic structures using the finite element method. The authors show that the vector wave equation with the
presence of bianisotropy is self-adjoint under the scalar inner product and propose a balanced formulation of weak
form in the practical implementation that outperforms the standard formulation in finite element modeling. Realizing
active devices with adjustable functionalities is of great interest to the metasurface research community. Bi et al. [24]
review the physical mechanisms and device applications of magnetically controllable metasurfaces. Magnetic field
manipulation has advantages of ultra-fast response, non-contact and continuous adjustment, thus paving the way
toward realizing multi-functional and dynamic metasurface-based devices and systems.

Several typical as well as emerging applications of the metasurface technology, are covered by this special issue.
Fu et al. [25] give a comprehensive review of metalenses, tiny planar imaging devices enabled by metasurface
technology. The article covers the basic phase modulation techniques, design principles, characterization methods,
and functional applications of metalenses. Although a metalens might not fully compete with a conventional lens in
terms of imaging quality at the current stage, it possesses unique advantages in terms of multi-dimensional and
multi-degree-of-freedom control over an incident light, thus facilitating novel functionalities that are extremely difficult
or even impossible to implement using conventional technology. The electromagnetic absorber is another typical
application of metasurface technology. Gandhi et al. [26] propose a polarization-insensitive metasurface absorber
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operating in the THz regime. The device consists of metal-dielectric-metal resonators and exhibits absorption
greater than 90% over the 2.54 to 5.54 THz range. In recent years, edge detection using metasurfaces has raised a
significant interest and could find promising applications in all-optical computing and artificial intelligence. Wan et al.
[27] review the development of dielectric metasurfaces for spatial differentiation and edge detection. The article
focuses on the underlying principles of dielectric metasurfaces as first- or second-order spatial differentiators and
their applications in biological imaging and machine vision.

Non-diffractive beams are highly desired for a number of applications, including biomedical imaging, particle
manipulation, and material processing. Liu et al. [28] investigate dual non-diffractive THz beam generation using
dielectric metasurfaces. The authors design and experimentally implement Bessel beams and abruptly autofocusing
beams, two representative kinds of non-diffractive beams with dramatically opposite focusing properties. With its
compact footprint and multiple functionalities, metasurface offers new possibilities in constructing high-performance
optical sensors. Ye et al. [29] introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal
scaling (PTX)-symmetric non-Hermitian metasurfaces. Such devices leverage exotic singularities, such as the
exceptional point and the coherent perfect absorber-laser point, to significantly enhance the sensitivity and
detectability of photonic sensors. Ren et al. [30] propose a U-shaped THz metamaterial with polarization-sensitive
and actively-controllable electromagnetically induced transparency, which could find useful applications in tunable
integrated devices such as biosensors, filters, and THz modulators. Realizing large-scale and low-cost fabrication of
metasurface could greatly facilitate the technology’s practical applications. Oh et al. [31] review the development of
nanoimprint lithography for high-throughput fabrication of optical metasurfaces. The authors elaborate various
imprint methods for scalable fabrication of metasurfaces and share their perspectives on the technology’s future
development.

We hope that this special issue on “Recent Advances in Optical Metasurfaces” could provide useful information for
metasurface researchers and inspire new ideas for their future exploration. We thank all authors for their contribution
to this special issue, and reviewers for their valuable comments. In the end, we would like to express sincere
gratitude to the editors of Frontiers of Optoelectronics for providing us such an excellent opportunity to put together
this special issue and their invaluable assistance along the way.
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