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Abstract Indium gallium nitride (InGaN) based blue
light-emitting diodes (LEDs) suffer from insufficient
crystal quality and serious efficiency droop in large
forward current. In this paper, the InGaN-based blue
LEDs are grown on sputtered aluminum nitride (AlN)
films to improve the device light power and weaken the
efficiency droop. The effects of oxygen flow rate on the
sputtering of AlN films on sapphire and device perfor-
mance of blue LEDs are studied in detail. The mechanism
of external quantum efficiency improvement is related to
the change of V-pits density in multiple quantum wells.
The external quantum efficiency of 66% and 3-Voperating
voltage are measured at a 40-mA forward current of with
the optimal oxygen flow rate of 4 SCCM.

Keywords light-emitting diode (LED), sputtered alumi-
num nitride (AlN), physical vapor deposition (PVD), metal-
organic chemical vapor deposition (MOCVD)

1 Introduction

Due to the lack of native substrate, III-nitrides were grown
on heteroepitaxial templates, such as sapphire, Si and SiC.
The lattice mismatch of GaN and sapphire substrate is up
to 16%, causing a high density of misfit dislocation.
However, Ga atom tends to nucleate randomly on sapphire
at the beginning of GaN deposition, resulting in the rough
surface appearance of GaN films. In 1983, Yoshida et al.
grew high-quality GaN films with an aluminum nitride
(AlN) nucleation layer, which provides nucleation points
for GaN deposition [1]. In 1991, Nakamura activated the p-
type GaN by annealing the p-type GaN in a nitrogen
atmosphere and fabricated GaN-based light-emitting diode
(LED) for the first time [2]. In 1992, Nakamura et al.

improved the crystalline quality of GaN films with low-
temperature GaN buffer [3]. In 1995, Nakamura et al.
fabricated the InGaN-based LED with multiple quantum
wells for the first time [4]. Then, the performance of
InGaN-based LEDs was developed quickly with the
industrialization process. Early in 2014, the electro-optical
efficiency of InGaN-based LEDs was up to 303 lm/W [5].
Although great performance improvements have been

made, InGaN-based LEDs suffer from serious efficiency
droop in the huge forward current [6]. The easiest way to
enhance the light power of LEDs is to increase the forward
current, making more carriers transporting to multiple
quantum wells; more carriers promote radiative recombi-
nation. However, when the forward current was increased
to a certain value, which is different for LEDs, the light
power of LEDs gradually saturated, meaning the luminous
efficiency gradually decreased. This phenomenon is called
efficiency droop. Therefore, most LED manufacturers
must limit the working current of LEDs to avoid huge heat
caused by the efficiency droop. The mechanisms of
efficiency droop have been studied in detail [7–9]. On
one hand, the electron overflow from multiple quantum
wells to p-type layers becomes worse in huge forward
current, which results in a decline of radiative recombina-
tion. On the other hand, the efficiency droop is proved to be
related to auger recombination in huge forward current.
To solve the above problems, many attempts have been

made on InGaN-based LED structure design and GaN
crystalline quality [10]. Tian et al. proposed an InGaN-
based LED structure with gradually varied thickness of
quantum barriers, which can improve the equivalent barrier
height of electron blocking layer (EBL) [11]. Yen et al.
optimized the thickness of quantum barriers to promote the
carrier injection to multiple quantum wells [12]. Cheng and
Wu replaced the general last barrier and EBL with a GaN/
InGaN/GaN last barrier, which can impede electron
overflow, improve hole injection and weaken efficiency
droop effectively [13]. Besides device structure optimiza-
tion, crystalline quality improvement is another way to
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weaken the efficiency droop. An effective method is to
fabricate the AlN buffer with physical vapor deposition
(PVD). The PVD-AlN buffer is more uniform and
compact than the conventional low-temperature AlN
buffer deposited by metal-organic chemical vapor deposi-
tion (MOCVD), which is good for the crystalline quality of
GaN films [14]. In this study, the effects of oxygen flow
rate in the PVD-AlN buffer preparation on the crystalline
quality of GaN films and the luminous efficiency of
InGaN-based blue LEDs are studied in detail.

2 Experimental

During the deposition of AlN buffer in PVD, oxygen is
needed to change the AlN film surface polarity. Beyond
this, the film thickness and quality are affected by the
oxygen flow rate. Hence, in this study, the effects of
different oxygen flow rates are studied. Table 1 shows the
oxygen flow rate used during the deposition of AlN buffer.
In this study, four samples called G501, G502, G503,

and G504 are grown by MOCVD on PVD-AlN buffers
with different oxygen flow rates. The oxygen flow rates for
four samples are 2, 3, 4, and 5 SCCM. The device
schematic is shown in Fig. 1. After the deposition of AlN
buffer by PVD, 4.5-μm-thick n-type GaN was grown at
1050°C and 150 Torr. The electron concentration of n-GaN
is 5 � 1018 cm–3. Then, eight pairs of GaN/InGaN multiple
quantum wells were grown on the n-GaN template at

860°C and 200 Torr. The content and thickness of the
InGaN quantum well are 15% and 3 nm, respectively. The
thickness of the GaN quantum barrier is 11 nm. The
quantum well and barrier are intrinsic. Following the
multiple quantum wells is a 30-nm thick p-type AlGaN
electron blocking layer at 915°C and 100 Torr. The Al
content of EBL is 15%, and the hole concentration is 1 �
1020 cm–3. The top layer of LED is a 50-nm-thick p-type
GaN contact layer, and the hole concentration is 1 � 1019

cm–3. The growth temperature and chamber pressure of p-
type GaN are 950°C and 500 Torr, respectively. After the
growth of the wafer, 380 μm � 760 μm LED chips were
prepared by the standard chip process.

3 Results and discussion

The crystalline quality of all samples is measured by high-
resolution X-ray powder diffraction (XRD), and the results
are shown in Table 2. The (002) full width at half
maximum (FWHM) of XRD for four samples is gradually
increased, whereas the (102) FWHM is gradually
decreased. The (002) FWHM of XRD for four AlN buffers
is also shown in Table 2. To shed light on the change in
crystalline quality of four AlN buffers, transmission
electron microscopy (TEM) photos of four samples are
shown in Fig. 2. The TEM photos illustrate that, the
increased oxygen flow rate makes PVD-AlN buffer
thinner. The increased thickness of PVD-AlN buffer
promotes crystalline quality improvement, as shown in
the XRD results. The XRD data demonstrates that the
crystalline quality of GaN templates is gradually improved
with an increase in oxygen flow rate from 2 to 5 SCCM.
Generally, the thinner the PVD-AlN buffer thickness, the
thicker was the GaN coalescence layer at the beginning of
growth. Further coalescence can promote dislocation
annihilation during the growth of the GaN template. The
thickness of PVD-AlN buffer is gradually reduced with an
increase of oxygen flow rate, improving crystalline quality.
The stress state of four samples is measured using XRD
(105) reciprocal space mapping (RSM). Figure 3 illustrates
that the multiple quantum wells of all samples are
completely strained.
To exhibit the interface between the PVD-AlN buffer

and the GaN template, energy dispersive spectrometry
(EDS) mapping was conducted near the PVD-AlN buffer,

Table 1 Oxygen flow rate during AlN buffer deposition for different

samples

sample device power/kW gas oxygen flow rate/SCCM

G501 5 N2, Ar, O2 2

G502 5 N2, Ar, O2 3

G503 5 N2, Ar, O2 4

G504 5 N2, Ar, O2 5

Fig. 1 Device schematic of LED on PVD-AlN buffer

Table 2 XRD rocking curve FWHM of samples G501, G502, G503,

and G504

sample AlN(002)/arcsec GaN(002)/arcsec GaN(102)/arcsec

G501 9.9 119.5 185.9

G502 10.2 127.9 175.5

G503 16.3 128.3 173.8

G504 22.8 130.6 166.5
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as shown in Fig. 4. The area between the yellow dotted line
is the PVD-AlN buffer. We demonstrated that the interface
between the AlN and GaN is clear. No O is in the PVD-

AlN buffer, meaning that oxygen is just a way to provide
an oxygen-enriched environment, not a source. The surface
morphologies of the four samples are measured using
atomic force microscopy (AFM), as shown in Fig. 5. The
root mean square (RMS) of G501, G502, G503, and G504
is 0.368, 0.232, 0.185, and 0.158 nm, respectively.
The external quantum efficiency (EQE) and light output

power of all packaged chips are measured by integrating
the sphere test system, which has been averaged and
shown in Fig. 6(a). We demonstrated that the EQE of
sample G502 is highest in the four samples, which is 66%,
whereas the lowest EQE is 62% for sample G501. The
EQEs of G502 and G503 is nearly the same, whereas the
EQE of G504 is lower than that of G502 and G503.
However, the crystalline quality of G504 is better than that
of G502 and G503 from the XRD measurement in Table 2,
meaning that the crystalline quality improvement is not the
key point for the increase in EQE. In addition, the
efficiency droop for the four samples was 5.5%, 2.8%,
2.6%, and 3.1%, which is defined as the difference value
between the max EQE and EQE at the 50-mA forward
current. The optimization of oxygen flow rate in the
preparation of PVD-AlN buffer is related to the efficiency
droop is shown. In Fig. 6(b), the light power at different
current is shown for the four samples. For sample G503,

Fig. 2 TEM results of samples G501, G502, G503, and G504

Fig. 3 XRD (105) reciprocal space mapping of samples G501, G502, G503, and G504

Fig. 4 EDS mapping for the sample G504
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the light power is 46.87 mW at 40 mA. The current–
voltage (I–V) characteristics for four samples are shown in
Fig. 6(c). At the 40-mA forward current, the voltages for

the four samples are gradually decreased from 3.2 V for
G501 to 3 V for G504. The electroluminescence (EL)
spectra of the four samples are shown in Fig. 6(d).
To shed light on the improvement of EQE, cathodolu-

minescence (CL) spectroscopy for four samples was
measured and the results are shown in Fig. 7. It is
exhibited that the densities of surface defects of the four
samples are 2.75 � 108, 1.65 � 108, 1.59 � 108, and 1.09
� 108 cm–2, respectively. Generally, the surface defects in
the CL test are considered as the V-pits in blue LED, which
play a vital role in the device performance. The
morphology of V-pits is measured using TEM, as shown
in Fig. 8. V-pits are like an aperture near the multiple
quantum wells, forming an enrichment area, which can
promote hole injection to the quantum wells near the n-
type layer and improve the luminous efficiency. The
luminous efficiency will improve with an increase in the
density of V-pits. Alternatively, V-pits will result in the loss
of light areas, causing the light power to decrease [15–20].
According to the density of V-pits, assuming the V-pit is
approximately 200-nm long, the losses of light areas for
G501, G502, G503, and G504 are 8.5%, 5%, 5%, and 3%.
Hence, the injection promotion and light area loss both

Fig. 5 AFM measurement for G501, G502, G503, and G504

Fig. 6 (a) External quantum efficiency (EQE), (b) light power, (c) I–V characteristics, and (d) EL spectra for samples G501, G502,
G503, and G504
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give rise to the highest EQE for G503. In addition, the light
area loss may cause an increase in actual current ampere
density, which will further aggravate the efficiency droop.
In conclusion, the oxygen flow rate of PVD-AlN buffer
deposition could change the density of V-pits, which will
further influence the luminous efficiency and efficiency
droop.

4 Conclusions

The effects of oxygen flow rate on the sputtering of AlN
films on sapphire and the device performance of blue

LEDs are studied in detail. The mechanism of EQE
improvement is related to the change of V-pits density in
multiple quantum wells, which is related to the hole
injection promotion and light area loss. The EQE of 66%
and operating voltage of 3 V are measured at a forward
current of 40 mA with the optimal oxygen flow rate of 4
SCCM.
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