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Abstract Circadian rhythms are considered a master-
stroke of natural selection, which gradually increase the
adaptability of species to the Earth’s rotation. Importantly,
the nervous system plays a key role in allowing organisms
to maintain circadian rhythmicity. Circadian rhythms affect
multiple aspects of cognitive functions (mainly via
arousal), particularly those needed for effort-intensive
cognitive tasks, which require considerable top-down
executive control. These include inhibitory control, work-
ing memory, task switching, and psychomotor vigilance.
This mini review highlights the recent advances in
cognitive functioning in the optical and multimodal
neuroimaging fields; it discusses the processing of brain
cognitive functions during the circadian rhythm phase and
the effects of the circadian rhythm on the cognitive
component of the brain and the brain circuit supporting
cognition.
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1 Introduction

For thousands of years, living organisms have evolved in
synchrony with the day–night cycle [1]. Most species,
from single-celled organisms to humans, individually have
an internal circadian clock that modulates critical function
phases, such as sleep, metabolism, hormone levels, core
body temperature, behavior, and cognitive function. The
eminent chronobiology scholar, Jeffrey Hall, and his
colleagues won the Nobel Prize in Physiology or Medicine
in 2017 in recognition of their meaningful discoveries

concerning the mechanisms that control diurnal rhythms at
the molecular level [2]. This phenomenon had been
documented several hundred years before. However,
circadian rhythms have been described for hundreds of
years. For example, in the 18th century, Jean Jacques, an
astronomer, recorded that the leaves of mimosa plants
opened during the day and closed at night [3]. Moreover,
numerous studies have inspected, classified, and recog-
nized the essence of the biological clock, elucidating that
not only physiologic functions but also the brain cognitive
functions are regulated by the inner circadian rhythm [4,5].
In particular, these studies also demonstrated that the
circadian rhythm has a significant influence on cognitive
performance, which peaks during the day and drops at
night [6]. Recently, Walker et al. [7] reported that circadian
disruption may not be the sole cause of mood disorders;
however, it may elicit or exacerbate symptoms in
individuals with a predisposition to mental disorders.
However, individual differences, such as gender, age, IQ,
and educational, and cultural background, might affect the
relationship between the circadian rhythm and cognitive
functions [8–11]. More importantly, the relationship in the
metabolic fluctuation phase between the brain and
circadian rhythms in our body systems is still unclear.
Most of the cells in the body have circadian molecular
clocks, e.g., the gut. Eating late and operating cellphones at
night, for example, are known to disrupt the circadian
rhythm [12,13]. Moreover, recent studies have shown that
the sleep quality in specific populations (e.g., surgical
nurses) is related to the CLOCK genes [14].
Recently, neuroimaging technologies, such as functional

near-infrared spectroscopy (fNIRS), and other multimodal
techniques, such as functional magnetic resonance imaging
(fMRI), diffuse optical tomography (DOT), and an
electroencephalogram (EEG), have been employed to
determine the effect of circadian rhythms on brain
cognitive functions [1,2].
fNIRS is an optical, non-invasive neuroimaging tech-

nology that can measure the changes in the concentration
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of oxyhemoglobin and deoxyhemoglobin in the brain
tissue after neuron activation [15]. This is accomplished by
irradiating the head with near-IR light (650–950 nm) and
accessing the brain tissue via the relative biological tissue
transparency. With the development and use of multi-
channel and wearable devices for cognitive experiments,
fNIRS has enabled important progress in the understanding
of the functional brain activities and higher cognitive
functions in adults and infants. The fMRI technique is a
category of imaging methods that use strong magnetic
fields developed for displaying time-varying alterations
and metabolism changes, common in the increase or
decrease in blood oxygenation during the performance of
an experimental task [16]. DOT is an imaging approach
that uses near-IR light to illuminate the structure of the soft
tissue. The most valuable and common application of this
technique is for the detection of tumors in the breast and
brain [17]. As an electrophysiological monitoring method,
the EEG is widely used to record the electrical activity of
the brain, which results from ionic currents within the
neurons of the brain. EEG is a non-invasive monitoring
method for recording the electrical activity of the brain; the
process mostly involves attaching electrodes to the scalp.
The EEG records evoked potentials (EP), which includes
the averaged EEG activity time-locked to presenting
auditory, somatosensory, or visual stimuli. Moreover, the
event-related potentials (ERPs) refer to the averaged EEG
responses that are time-locked to more complex processing
of stimuli [18].
The focus of this mini review is to summarize the recent

advances in the investigation of the relationship between
brain cognitive functions and the circadian rhythm using
neuroimaging techniques. First, the cognitive process of
attention during the circadian rhythm phase will be
introduced and highlighted. Following this, the influence
of the diurnal rhythm on cognitive functions, including
working memory, cognitive flexibility, and switching, will
be demonstrated. Most importantly, the future of research
perspectives and the neural implications of the circadian
rhythm will be stated clearly in the final section.
Two main electronic databases: PubMed and Web of

Science, were inspected to extract studies published in the
English language; the studies were in areas related to the
relationship between the circadian rhythm and brain
cognitive functions. Notably, there were no time limita-
tions on the publication since no meta-analysis of the
studies on the circadian rhythm and the brain cognitive
functions had been conducted. A search strategy was
established for each database with a combination of free
text and controlled MeSH keywords. Moreover, additional
psychological web-based databases and specialized jour-
nals, such as PsycINFO and Google search for gray
literature, were exploited. Furthermore, the reference lists
of the studies retrieved from the database were screened for
relevant studies. The three research steps were conducted
without time limitations. The search keywords included

“circadian rhythm”, “neuroimaging”, “brain”, “cognitive
functions”, and “cognitive task”. The selected articles are
listed in Table S1, see Electronic Supplementary Material.

2 Relationship between circadian rhythm
and brain cognitive functions

2.1 Attention

Attention refers to the function that allocates limited
cognitive processing resources to the environment [19].
Attention can also be categorized into selective alertness,
phasic alertness, tonic attention, and vigilance in accor-
dance with each function [20]. Selective attention is a
function that filters the stimulus of perceptions from the
environment, which keeps us focusing on the pertinent
information. Phasic alertness refers to the function that
prepares for a specific incoming event under the exception.
Tonic alertness reflects the general level of alertness and
the basic activation of the cognitive system of an
individual. Finally, vigilance is the ability to continue
focusing on one object for a relatively long period. Studies
in forced desynchronization and sleep deprivation have
suggested that circadian effects and time awake alterations
may impact tonic alertness [21], phasic alertness, and
selective attention [12]. Nevertheless, studies related to
sustained attention are controversial, since the circadian
rhythmicity and awake time changes can be observed in
some studies [22], but not in others [23].
The activation state of attention depends on the activity

of the cerebral cortices. Notably, tonic alertness is
influenced by the reticular activating system, which
regulates the general activation level of the entire forebrain
[24], while the frontal and the parietal cortex are
interpreted as the core components of the system
supporting phasic alertness [25]. Unlike tonic alertness
and phasic alertness, selective attention is recognized as
following a top-down pathway in the cortex, and it
correlates with the prefrontal and parietal control regions
[26–28].
Valdez et al. [29] investigated the circadian variations of

selective alertness, phasic attention, and tonic alertness,
concluding that these processes suffer a performance hit
from 4:00 AM to 7:00 AM. Another research proposed by
Pablo concluded that tonic alertness might peak in the
morning (around 10:00 AM–12:00 AM) and decrease
immediately after that [6]. Riley [30] found that the
attention span of an individual may increase to a peak
between 9:00 AM and 11:00 AM and subsequently
decrease progressively. Moreover, the peak time of
selective attention is recognized to be around midday
[6,31]. Nicholls et al. [32] explored the diurnal variations in
the visuospatial attention and the limited effect of circadian
variation. However, not all researchers support the idea that
circadian variation can be modulated by attention [33].
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There is empirical evidence suggesting that cognitive
functions are closely related to the body temperature,
which is recognized as an important indicator of the
metabolic rhythm. Primarily, the body temperature may
increase during the day and decrease in the evening [1].
The close relationship between the body core temperature
and cognitive performance has also been confirmed by
other researchers [34–36]. Additionally, researchers dis-
covered more factors that may impact the changes in the
attention function caused by the circadian rhythm, such as
chronotype (the behavioral manifestation of the underlying
circadian rhythms of myriad physical processes) [31] and
task difficulty [37].
Studies based on the manipulation of the desynchroniza-

tion of the circadian rhythm of participants while
researchers separate the subject’s inherent circadian
rhythm demonstrated that the ability to sustain attention
might weaken, followed by lowered activation of the
corresponding cortex, as well as the neural networks that
are affected by sleep deprivation. For example, the Stroop
tasks related to prefrontal cortex functions have been found
to be affected by one night of sleep deprivation [38–40].
Therefore, it was observed that tonic alertness, selective
attention, sustained attention, and vigilance are sensitive to
sleep deprivation, which might result in the impairment of
the attention function [41–43]. Moreover, sleep depriva-
tion affected the visual search task, which required the
attention function [44]. Recent neuroimaging studies using
fMRI techniques have found that the activation of the
prefrontal cortex and the parietal cortex is highly hindered
by sleep deprivation, and this has implications for
cognitive processes driven by these regions [45,46].
Furthermore, the neural network of attention is affected
by sleep deprivation. Tomasi et al. [47] observed that the

thalamic hyperactivation was inversely correlated with the
activation of the parietal cortex after sleep deprivation
during a visuospatial attention task, highlighting that the
attentional networks were potentially impaired. Moreover,
the sleep-deprived participant had lower accuracy in the
task. Chee et al. [48] explored the endogenous attention
function under sleep deprivation and suggested the
decrease in the frontal-parietal top-down control concern-
ing attention and the extrastriate visual cortex process. De
Havas et al. [49] proposed that significant selection may
decrease in the default mode network for functional
connectivity after sleep deprivation (see Fig. 1). Muto
et al. [50] examined the sustained attention task related to
42 h of sleep deprivation and found that the subcortical
areas regulated by the circadian rhythms, which are
followed by the melatonin profile and the cortical
responses, were influenced by the circadian rhythms in a
different phase.

2.2 Working memory

Working memory is an essential component of the
cognitive system that holds and stores extracted informa-
tion. It can be divided into long-term memory and short-
term memory, depending on the length of the memory to be
stored [51]. A long-term memory may be longer than one
day, while a short-term memory can vary from a few
seconds to a few hours. There is also strong evidence of the
important role of short-term memory in advanced
cognitive processes, such as reasoning, language compre-
hension, learning, and problem solving. Studies in the
cognition field affirm that the working memory is the most
appropriate name considering function because short-term
and long-term memories are distinguished by time length

Fig. 1 Effect of state on Default Mode Network functional connectivity. The extensive functional connectivity decreased after sleep
deprivation (adapted from Ref. [49]). dMPFC: dorsomedial prefrontal cortex, vMPFC: ventromedial frontal cortex, RLTC: right lateral
temporal cortex, RIPL: right inferior parietal lobe, PCC: posterior cingulate cortex, LIPL: left inferior parietal lobe, and LLTC: left lateral
temporal cortex
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[52]. From a cognitive perspective, the role of the working
memory is to hold and manipulate the information in the
mind for further processing. Regarding neural mechan-
isms, neuroimaging studies have demonstrated that tasks
involving the working memory are highly connected to the
prefrontal cortex activation [53,54]. Furthermore, studies
have shown that damage or lesion in the prefrontal cortex
may cause a decrease in the working memory performance
[55].
According to Gerstner and Yin [56], the regulation of

memory formation by the circadian rhythms and effects of
the day–time cycle is phylogenetically preserved in many
species and is also associated with the cycling levels of
melatonin, independent of the changes in the behavioral
conditions, such as wakefulness and sleepiness. A recent
study by Domagalik et al. on sustained attention and the
visuospatial working memory in circadian rhythmicity
revealed that the reduction of blue light exposure led to a
significant decrease in performance. In other words, the
reaction time was slow when the exposure to blue light was
reduced [57].
Previous studies based on the working memory declared

that the capacity of working memory tasks usually reaches
the peak at noon [23,58], which correlates with the
metabolic activity in the brain, thus promoting the changes
in the capacity of the working memory. These relevant
findings confirm the close relationship between the
working memory and temperature, which is considered
as an indicator of the metabolic activity [36]. The working
memory ability appears to improve when the temperature
reaches the peak and weaken when the temperature
decreases in the circadian rhythm fluctuation according
to the desynchrony protocol. Vedhara et al. [59] reported
the level of salivary cortisol as another important indicator
of the circadian rhythmicity and its association with the
working memory. Therefore, it is important to emphasize
that the circadian rhythm also affects the results of the
working memory measurement since it requires a relatively
long testing period [60].
Although the fluctuation of the working memory

capacity during the day and at night is not always the
same under different situations, the individual differences
between the participant groups and the difference in the
tasks applied have a significant influence on the changes in
the working memory capacity. First, we must identify two
different groups related to the circadian rhythm: “morn-
ingness” and “eveningness,” according to the different
activity peaks during the day. Second, the different ages of
the group possibly contributed to the impact of the
circadian rhythm on the working memory.
Studies have shown that children reach their peak of

cognitive functions in the morning, while adults achieve
their best performance in a similar task at night [61]. Rowe
et al. [62] suggested that the age differences in the visual
working memory span are determined by the time of the
test and the interference of other factors. Furthermore,

studies have shown that the working memory load is
related to the fluctuation of the working memory capacity
during the day. Folkard [63] found that the performance of
an easy working memory load task is correlated with the
temperature change; however, this phenomenon disappears
if the working memory load increases considerably. Many
factors can exert influence, including the decision process
[64], which may determine the change in the curve of
circadian rhythmicity. Nevertheless, we certainly must
consider the metabolic activity as the fundamental base of
the circadian rhythm. Interestingly, a variable number of
studies have found ambiguous results for the changes in
cognitive functions during the day and at night. Further,
these results did not lead to an accurate conclusion under a
different group of participants or with different tasks. The
application of precise technologies that can reflect the
cortex activity and the collaborative cortex may be an
advantageous approach for inspecting those previous
cases. The activity of the prefrontal cortex is considered
a reflection of the working memory process, and it could be
combined with traditional protocol in future studies.
Neuroimaging studies related to the circadian rhythm

and the working memory are considered as the relatively
common studies associated with sleep deprivation and
circadian rhythm desynchronization. For instance, the
healthy participants were asked to follow a sleep-
deprivation protocol, which was manipulated by the
researcher. Chee and Choo [65] found that the anterior
medial frontal and posterior cingulate regions in young
healthy subjects are deactivated after sleep deprivation (see
Fig. 2). Moreover, the left frontal lobe is activated when
the working memory is exhausted after sleep deprivation.
The results of the sleep deprivation study involving young
healthy subjects were similar to those of previous studies,
displaying that the activation of the left anterior cingulate
cortex was suppressed. Concurrently, the activation of the
left and right middle occipital gyrus is strengthened during
a working memory task after sleep deprivation. The
interaction effect between the working memory load and
sleep deprivation has been also observed in the left inferior
frontal and right middle frontal gyrus, as well as the right
insula [66]. Mu et al. [67] found that both groups, i.e., the
sleep-deprivation group and the resting group, exhibited
significantly reduced whole brain activation, compared
with the baseline. Chee et al. [68] affirmed that not only the
superior parietal regions but also the left thalamus
experience a reduction in task-related activation after
sleep deprivation during a working memory task. Lim’s
findings [69] also indicated that the bilateral parietal
regions experience deactivation after sleep deprivation.
Despite the fMRI studies, Honma et al. [70] conducted an
experiment using fNIRS and concluded that the activity of
the right prefrontal cortex indicates an attempt to resist
sleepiness during a working memory task in a sleep-
deprivation situation.
In recent studies related to circadian rhythm disorders,
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patients diagnosed with mental impairments were recruited
to have their cortical activation analyzed by neuroimaging
methods. McKenna and Eyler, after reviewing the
literature on bipolar disorder and its deficits in the
prefrontal cortex, found that sleep and circadian rhythms
may be involved in this system, potentially suggesting that
the ability of the working memory was impaired [71]. The
findings of Thomas et al. [72] suggest that the working
memory might be affected by obstructive sleep-disordered
breathing, and the reason for the weakening of the working
memory competency is related to the loss of function in the
dorsolateral prefrontal cortex. McKenna et al. [73]
examined the association between the circadian rhythm
and euthymic bipolar disorder desynchrony using fMRI
approaches. The results indicated that the circadian rhythm
variable was significantly associated with the degree of
deficit in the dorsolateral prefrontal cortex and supramar-
ginal gyri. Drummond et al. [74] explored the working
memory ability in patients with primary insomnia and
compared them with those of a healthy control group.
Subsequently, it was confirmed that the task-related
working memory regions were deactivated in the primary
insomnia patients, and the effect of the modulation of the
right dorsolateral prefrontal cortex activation was reduced
as the task difficulty increased.

2.3 Cognitive conflicts and inhibition

Cognitive conflict refers to the function that manages
contradiction and restrains irrelevant information from the
working memory, and it is indispensable for the cognitive
system of humans. A pragmatic example is the Stroop task,
where the name of a random color (e.g., purple) is printed
against an inconsistent different color (e.g., the word
“PURPLE” colored in red). It would be undoubtedly more
difficult to distinguish, rather than if it were written in the

same color (e.g., the word “PURPLE” colored in purple)
[75].
The equivalent brain regions of these cognitive func-

tions have been shown to have a deep relationship with the
fluctuation of the circadian rhythm. A current study on
high-order cognitive functions demonstrated that the
inhibition ability decreases in the early evening, compared
to the constant routine protocol [76]. The inhibition ability
may reach the peak in the afternoon, while the lowest point
is observed in the early morning, according to the
Sustained Attention to Response Test [77]. Furthermore,
the study concludes that the aspect related to the active
control appears to be more sensitive to the circadian
rhythm than the automatic aspects of cognitive functions.
Nevertheless, this study could not separate the effect of the
homeostatic pressure from the increase in the waking time.
Harrison et al. [78] applied a forced desynchronization
protocol to divide the circadian rhythm and the homeo-
static pressure. All the subjects were instructed to have 28
h per “day” in this experiment. Consequently, the results
showed the significant effect of the waking period without
the circadian effect on the performance of the inhibition
task. Bratzke et al. [79] evaluated the impact of sleep
deprivation and the circadian effect on the inhibition ability
using the Stroop and Simon task. Although the interference
effect remained unaffected across 40 h under the wakeful-
ness status, the study proposed that the circadian rhythm
might not be affected by the inhibition ability. Finally,
Sagaspe et al. [39] did not find meaningful discrepancies in
the effect of day and night changes on the inhibition ability
utilizing a Stroop task.
The frontal cortex is considered as the corresponding

brain region for cognitive conflicts and inhibition [78].
Lately, Schmidt et al. [80] assessed the influence of the
circadian rhythm and the chronotype on the conflict
processing ability, including the corresponding cerebral
activity in a constant routine protocol. The hemodynamic
responses of the evening chronotype precipitates remain
constant or increase in the subjective morning. In contrast,
the morning chorotype reduces in the morning categories
under the same situation. The relationship between sleep
pressure and the circadian process is confounded, and their
impact on the cognitive process is not easily distinguished.
This is because the relationship between them is complex,
and they may affect each other. Consequently, new
protocols, tools, and techniques to study the current topics
are undeniably required to achieve accurate results.

2.4 Cognitive flexibility and switching

Cognitive flexibility is the mental ability to adjust or adapt
to the changes in environmental requirements [81]. In
neuroimaging studies, the ability of cognitive flexibility
and switching is commonly associated with the prefrontal
cortex [82].
There are only a few studies related to the influence of

Fig. 2 Reduced task-related deactivation in the anterior medial
frontal and posterior cingulate regions after sleep deprivation.
Region of interest from which the extent of deactivation was
determined. Reproduced from Ref. [65]
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the circadian rhythms on cognitive flexibility. In one of
these studies [83], the time-of-day protocol and the
constant routine protocol were used to measure the ability
of task switching [83–85]. As a result, it was verified that
the participants performed poorly in the cognitive
flexibility task in the morning. Bratzke et al. [79] led an
investigation into the effects of circadian rhythm and sleep
loss on the switching task efficiency. This study revealed
that the switching task competence is influenced by sleep
stress and circadian rhythms. Ramírez et al. [86] suggested
that flexibility is modulated by sustained attention, which
may be affected by the circadian rhythms. Recently, the
cognitive flexibility of shift workers who had to work at
night showed a reduction in the earlier circadian phase. It is
important to accentuate that cognitive inhibition and
flexibility are essential for problem solving and creativity.

2.5 Cognitive association and creativity

For Mednick [87], creative thinking is “a form of
associating elements into new combinations that either
meet specific requirements or are, in some way, useful. The
more mutually remote the elements of the new combina-
tion, the more creative the process or solution.” Thus, the
association ability is the fundamental base of creativity. A
neuroimaging research using a word-pair associate task
demonstrated that the hippocampal activity (see Fig. 3)
mediates the circadian rhythms and associative memory
process [88]. However, the studies on creativity indicated
that creativity itself does not relate to the circadian
tendency of the association ability. May [89] examined
the association processes, where each participant was
instructed to find an answer word (SPACE) linked to given
three associated cue words (e.g., SHIP OUTER CRAWL),
and the results showed that the patterns of impaired versus
preserved performance over the day are consistent with an
inhibitory-deficit account of synchrony effects, which
would be disrupted at the best time for the essential

cognitive functions. This previous study, as well as other
investigations, such as the one conducted by Wieth and
Zacks [90], confirmed that the participants would solve the
problem of insight efficiently when testing at a non-
optimal time.
Overall, following the studies listed above, it is possible

to establish that even advanced cognitive functions
combine effects and their differential roles in cognitive
processes, including fundamental cognitive components,
such as attention and working memory, and this could have
different effects on the circadian rhythm of advanced
cognitive functions.

3 General discussion

In this review, we summarized many studies concerning
the relationship between the circadian rhythm and
cognitive functions. These studies were divided into
subcategories, such as attention, working memory, and
higher-order functions, according to the order of cognitive
processing. Generally, the circadian rhythm influences the
cognitive functions; however, the results of previous
studies are still inconsistent. From a neuroimaging
perspective, the corresponding regions are related to the
diurnal activity of cognitive performance. Additionally, the
brain network connection is modulated by the circadian
rhythm.
There are different activity curves on the cognitive

functions including attention, working memory, and the
higher-order cognitive functions, since the peaks related to
the performance of different cognitive functions are
distributed differently throughout the day. This suggests
that attention and working memory have slightly similar
regulations. According to the previous studies listed above,
the participants had their best performance in attention and
working memory in the afternoon, while the worst
performance was observed in the early morning. Further,

Fig. 3 Mediation model demonstrates that the relationship between circadian activity rhythm consistency and associative recognition
accuracy was mediated by hippocampal activity. Standardized beta values are included on the model paths in black. The gray value on the
path represents the standardized beta value before the hippocampal activity was included in the model. The scatterplots show paths A and
B, which illustrate the relationships between hippocampal activity, circadian activity rhythm consistency, and associative recognition
accuracy. *p< 0.05, **p< 0.01. Adapted from Ref. [88]
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the higher-order cognitive functions are not consistent with
regulation, such as inhibition and creativity. On the
contrary, with the attention and the working memory, the
ability of inhibition and creativity might be stronger in the
subjective morning rather than in the subjective afternoon.
Therefore, this phenomenon might be explained by the
inhibition-based model [91]. Inhibitory processes, in the
case of the filter of the working memory, act by restraining
the input of the irrelevant information and inhibiting
excessive responses that might waste the cognitive
resources according to this model. Therefore, the critical
clues for the higher-order functions equivalent to inhibi-
tion, creativity, or problem solving need more integration
since it appears to be unrelated to current tasks. It is also
because the basic and advanced cognitive tasks may be
affected by the circadian rhythm. This hypothesis may
explain why there are no effects or weak effects in some
studies concerned with the effects of circadian rhythms on
the higher-order functions. Thus, some clues for solving
advanced cognitive function tasks will be suppressed by
the currently active working memory. Just as Aristotle
discovered the method of weighing the crown when taking
a bath or discovered the benzene ring while Kekune was
taking a nap, the circadian rhythm performance of
advanced cognitive tasks and basic cognitive tasks do
not always maintain the same trend.
Another possible hypothesis suggests that higher-order

cognitive functions are more sensitive to individual
differences, such as chorotype and aging, due to the
involvement of more neural networks. In recent years,
more studies on higher-order cognitive functions have
reflected the collaborative working system among the brain
regions [88]. Consequently, the higher-order cognitive
functions may be sensitive to individual differences due to
the interaction effect and accumulative effect among the
basic functions. To verify this hypothesis, more neuroima-
ging studies need to be conducted in the future.
In summary, the previous studies based on the relation-

ship between the circadian rhythm and cognitive functions
have proven that the circadian rhythm affects the cognitive
functions. However, substantial bases are lacking, imply-
ing that more studies are required to evaluate the neural
network connection using neuroimaging technologies
(e.g., fMRI, EEG, PET, and fNIRS), which will revitalize
the field [92,93]. Many neuroimaging researches are
focused on sleep deprivation or the comparison between
healthy populations and patients; this suggests that the
sleep-deprivation protocol plays an essential role in the
process of discovering the effect of the circadian rhythm on
cognitive functions. However, a few researches have
focused on the constant routine protocol in a healthy
control population. For that reason, studies in this area
should receive more attention in the future.
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