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Abstract In this paper, we proposed a quality of
transmission (QoT) prediction technique for the quality
of service (QoS) link setup based on machine learning
classifiers, with synthetic data generated using the
transmission equations instead of the Gaussian noise
(GN) model. The proposed technique uses some link and
signal characteristics as input features. The bit error rate
(BER) of the signals was compared with the forward error
correction threshold BER, and the comparison results were
employed as labels. The transmission equations approach
is a better alternative to the GN model (or other similar
margin-based models) in the absence of real data (i.e., at
the deployment stage of a network) or the case that real
data are scarce (i.e., for enriching the dataset/reducing
probing lightpaths); furthermore, the three classifiers
trained using the data of the transmission equations are
more reliable and practical than those trained using the data
of the GN model. Meanwhile, we noted that the priority of
the three classifiers should be support vector machine
(SVM)>K nearest neighbor (KNN)> logistic regression
(LR) as shown in the results obtained by the transmission
equations, instead of SVM>LR>KNN as in the results
of the GN model.

Keywords optical networks, quality of transmission
(QoT), quality of service (QoS), link establishment,
physical performances, bit error rate (BER), machine
learning

1 Introduction

Traditional optical network performance studies focus on
calculating network layer parameters, such as the network
throughput and blocking probability, which are only based
on the available capacity and traffic load of the network
[1]. However, in real network scenarios, particularly in the
case of transparent optical networks, the hindrance to the
lightpath is no longer only determined by the network layer
factors; the physical layer factors, such as the quality of
transmission (QoT), also play a role [2–6]. Therefore, QoT
must be predicted before deploying new lightpaths in
transparent optical networks. Generally, QoT is associated
with several physical layer parameters, such as the optical
signal-to-noise ratio (OSNR), bit error rate (BER), and Q
factor. These physical layer parameters reflect the
performance of the optical signal. They can be quantita-
tively measured to verify if the QoT meets a predetermined
requirement, and they are affected by several design
indexes, such as the modulation format, bit rate, channel
launch power, and physical links in the network. The
optimization of these abundant parameters is not straight-
forward; consequently, system engineers often find it
difficult to handle all possible lightpath deployment
combinations manually.
Thus far, QoT prediction techniques have been divided

into two major categories [7]. The first category comprises
traditional techniques without machine learning. This
category also includes two approaches: the accurate
analysis model (e.g., transmission equations) for estimat-
ing the physical layer impairments and providing accurate
results [8–10] and the approximation formula (e.g.,
Gaussian noise (GN) model) that is computationally fast
but not highly accurate [11]. The approximation formula
often introduces high margins, leading to underutilized
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network resources. The second category is based on
machine learning classifiers, which have many advantages
over traditional techniques. Machine learning classifiers
are promising predictors that meet high precision and real-
time requirements. Furthermore, they can automatically
predict the QoT of unestablished lightpaths [12–18].
However, due to the inaccurate estimation of the nonlinear
noise in the GN model, the classifiers obtained from the
training data are unreliable. Considering this disadvantage
of the GN model, we employed the wavelength division
multiplexing (WDM) transmission equations to obtain the
synthetic data for further training and testing to ensure
more reliable results.
This paper presents a prediction technique based on

machine learning classifiers, with the synthetic data
generated using WDM transmission equations. This
technique uses some link and signal characteristics as
input features and selects the comparison results of signal
BER and the forward error correction (FEC) threshold
BER as the output labels. According to the FEC
recommended by ITU-T G.975.1, the FEC threshold
BER equals 4 � 10–3 and is denoted by T. We used three
different dataset cases for the training and testing. The
training dataset of case I comprises random instances
extracted from the synthetic data generated by the
transmission equations. The training dataset of case II is
composed of instances randomly extracted from the
synthetic data generated by the GN model. The training
dataset of case III comprises 50% of the randomly
extracted instances of the training datasets of cases I and
II. The test datasets of the three cases are identical,
consisting of the remaining instances in the synthetic data
generated by the transmission equations. Subsequently, the
performances of the three frequently used classifiers,
including K nearest neighbor (KNN), logistic regression

(LR), and support vector machine (SVM), were evaluated
and compared using the three dataset cases.

2 Operating principle

2.1 Classifier description

Figure 1 describes that the proposed classifiers considered
the following factors: number of spans, length of span,
modulation format, bit rate, and channel launch power,
denoted by a, b, c, d, and e, respectively. The predicted
label of the classifiers denoted by f is a Boolean logic
variable that equals 1 only when the signal BER is less than
T; otherwise, it equals 0. We believe that there is a
sophisticated function between the five input features and
the output label. Based on this, we decided to use some
common machine learning classifiers to fit this relationship
as accurately as possible. The considered classifiers
include KNN, LR, and SVM.When the difference between
the predicted output and the label given in the training set
reaches the stopping condition, the training phase is
considered over. Therefore, we expected the trained
machine learning classifiers to have excellent general-
ization performance, which means that they can be
generalized to predict instances that are not employed
during the training phase.

2.1.1 K nearest neighbors

KNN [19] is an essential and straightforward classification
and regression method. A training dataset is expressed as
follows:

D ¼ fðx1,y1Þ,ðx2,y2Þ,:::,ðxN ,yN Þg, (1)

Fig. 1 Classifier structure
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where xi 2 X � Rn is the feature vector for instances, yi 2
Y ¼ fc1,c2,:::,ckg is the class label, and i ¼ 1,2,:::,N is the
number of the samples. According to the given distance
measure (commonly used distance metrics are Euclidean
distances) [19], the k points closest to x are found in
training dataset D, and the neighborhood of x covering the
k points is denoted by NkðxÞ. In NkðxÞ, the class label, y of
x, is determined by the classification decision rules (e.g.,
majority voting), as follows:

y ¼ argmax
cj

X
xi 2NkðxÞ

Iðyi ¼ cjÞ,

i ¼ 1,2,:::,N ,    j ¼ 1,2,:::,K: (2)

In Eq. (2), I is the indicator function. I ¼ 1 when
yi ¼ cj; otherwise, I ¼ 0.

2.1.2 Logistic regression

The following conditional probability distribution is called
the LR model [19].

PðY ¼ 0jxÞ ¼ 1

1þ ew%xþb ,

PðY ¼ 1jxÞ ¼ 1 –PðY ¼ 0jxÞ ¼ ew%xþb

1þ ew%xþb : (3)

Here, x 2 Rn is the input vector, and Y 2 f0,1g is the
output. w 2 Rn is called the weight vector, and b 2 R, the
bias. Occasionally, for convenience, the weight vector and
the input vector are expanded as follows:

w ¼
�
wð1Þ,wð2Þ,:::,wðnÞ,b

�T
,

x ¼
�
xð1Þ,xð2Þ,:::,xðnÞ,1

�T
: (4)

At this point, the LR model becomes

PðY ¼ 0jxÞ ¼ 1

1þ ew%x
,

PðY ¼ 1jxÞ ¼ ew%x

1þ ew%x
: (5)

For a given training dataset, D ¼ fðx1,y1Þ,ðx2,y2Þ,:::,
ðxN ,yN Þg, where xi 2 Rn and yi 2 f0,1g, we can use the
maximum likelihood estimation method [19] to estimate
the model parameter (w) and subsequently obtain the LR
model.

2.1.3 Support vector machine

SVM [19] is a machine learning algorithm based on
statistical learning theory. It uses the principle of structural

risk minimization instead of empirical risk minimization to
solve the problem of small sample learning. It also
employs the idea of kernel function to transform the
problem of nonlinear space into linear space, which
reduces the complexity of the algorithm. Due to its
complete theoretical basis and good learning performance,
SVM is uniquely suitable for solving finite samples,
nonlinearity, and high-dimensional pattern recognition
problems. It has received significant attention in the field
of machine learning and has been successfully applied in
many fields.
For linearly separable problems, given a dataset, D,

where xi 2 Rn and yi 2 f0,1g, αi is the Lagrange multi-
plier. The steps below are followed:
Constructing and solving constrained optimization

problems:

min
α

1

2

XN
i¼1

XN
j¼1

αiαjyiyjðxi$xjÞ –
XN
i¼1

αi,

s:t:
XN
i¼1

αiyi ¼ 0,

αi³0, i ¼ 1,2,:::,N : (6)

Finding the optimal solution, α* ¼ ðα*1,α*2,:::,α*N ÞT.
Thereafter, calculating

w* ¼
XN
i¼1

α*i yixi: (7)

Selecting a positive component of α*, i.e., α*j , after

which b*, which is the displacement term, is obtained, as
follows:

b* ¼ yj –
XN
i¼1

α*i yiðxi$xjÞ: (8)

The separating hyperplane and classification decision
functions are obtained as follows:

w*$xþ b* ¼ 0, f ðxÞ ¼ signðw*$xþ b*Þ, (9)

where signð$Þ denotes the symbolic function.
For nonlinearly separable problems, we selected the

appropriate kernel function Kðx,zÞ and parameter C, to
construct and solve the corresponding optimization
problem, and obtain the optimal solution, α* ¼
ðα*1,α*2,:::,α*N ÞT. Thereafter, we obtain the corresponding
b*. Thus, the classification decision function can be
constructed at this time:

f ðxÞ ¼ sign
XN
i¼1

α*i yiKðx$xiÞ þ b*
" #

: (10)
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2.2 Data generation

2.2.1 Data generation using the Gaussian noise model

First, we used candidate lightpaths to calculate the
nonlinear OSNR from the ratio of the channel launch
power (PTX) to the sum of linear (PASE) and nonlinear
noises (PNLI), as expressed in Eq. (11).

OSNR ¼ PTX

PASE þ PNLI
: (11)

Here, PASE denotes the power introduced by the amplified
spontaneous emission (ASE), as expressed in Eq. (12),
where NS represents the number of span, F is the noise
figure, G is the amplifier gain, h is Planck’s constant, υ0 is
the channel central frequency, and BN is the noise
bandwidth.

PASE ¼ NS � F � ðG – 1Þ � h� υ0 � BN: (12)

PNLI is the power introduced by nonlinear interference,
obtained using the GN model and the Matlab code given in
Ref. [20].
The ratio of the energy per bit to the noise power spectral

density (Eb=N0) is obtained using Eq. (13), as follows:

Eb=N0 ¼ OSNR – 10� log10ðlog2MÞ

– 10� log10ðDrate=2� log2M=Bref Þ, (13)

where M is the number of states per symbol, Drate of the
signal, and Bref is the channel bandwidth. Thus, we can
calculate the BER as a function of Eb=N0 using Eq. (14);
we obtain a = 0.5 and d = log2M , and a = 3/8 and d = 10
for phase shift keying (PSK) and 16 quadrature amplitude
modulation (16QAM), respectively, where a and d are
constant coefficients related to the modulation formats.

BER ¼ a� erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb=N0

d

r !
: (14)

After the above steps, we can use the BER comparison
with T to obtain the label of each candidate lightpath. The
label equals 1 when the BER< T; otherwise, it equals 0.

2.2.2 Data generation using transmission equations

Numerical simulation is essential for the research and
design of WDM systems. The nonlinear Schrödinger
equation (NLSE) is written as a set of coupled differential
equations [8–10]. Here, cross-phase modulation (XPM) is
considered in terms of coupling, and those that correspond
to the four-wave mixing (FWM)are omitted. Therefore, the
transmission equation for the complex amplitude Ai of the
ith channel can be expressed as

∂Ai

∂z
þ α

2
Ai þ β1i

∂Ai

∂t
–
j

2
β2i

∂2Ai

∂t2
–
1

6
β3i

∂3Ai

∂t3

¼ – jγi jAij2 þ 2
X
k

k≠i

jAk j2
0
B@

1
CAAi: (15)

Here, α and β1i denote the fiber loss and constant group
delay, respectively. β2i, β3i, and γi represent the fiber
dispersion and nonlinearity, respectively.
The solution of the nonlinear operator causes self-phase

modulation (SPM) and XPM, resulting in phase modula-
tion; Aiðt,zþ Δz=2Þ is the complex amplitude of channel i
after the first linear half-step of the symmetric split-step
Fourier method (SSFM) and before the nonlinearity. Ai#ðt
,zþ Δz=2Þ is the input complex amplitude for the next
linear half-step after considering the nonlinearity. Here, Δz
denotes one split-step of length.

Aíi t,zþ Δz
2

� �

¼ Ai t,zþ Δz
2

� �

�exp – jgiΔz   �����Ai t,zþ Δz
2

� �  �����20
@

0
@

þ2
X
k

k≠i

  �����Ak t,zþ Δz

2

� �  �����2  1CA 1CA
¼ Ai t,zþ Δz

2

� �

�exp – j fi,SPMðt,zÞ þ
X
k

k≠i

fik,XPMðt,zÞ

0
B@

1
CA

0
B@

1
CA: (16)

According to Ref. [8], the XPM-induced phase modula-
tion can be expressed in the frequency domain, as follows:

fik,XPMðf ,zÞ

¼ 2gi

1 – exp
�
– ðα – j2πfdikÞΔz

�
α – j2πfdik

�exp ðα – j2πfdikÞ
Δz
2

� �
F   ����Ak t,zþ Δz

2

� �  ����2( )
, (17)
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where dik is the walk off between channels i and k, and F
denotes the Fourier transform. Equation (17) expresses the
average of all relative positions within one split-step. Thus,
this method enables a relatively large step size, which
reduces the computation time. Meanwhile, we neglected
the conversion of the induced phase modulation to the
intensity modulation, and we used Eq. (12) to simulate the
ASE noise introduced by Erbium-doped fiber amplifiers
(EDFAs). Based on the above preparations, the complex
amplitude of the receiving signal can be simulated by
solving the NLSE using the SSFM under various
lightpaths, and the corresponding BER can be obtained
after electrical compensation and final decision. The label
equals 1 when BER< T; otherwise, it equals 0.

3 Simulation setup and result analysis

Considering the difficulty associated with obtaining real
field monitoring data, we used synthetic data to train and
test the proposed machine learning-based classifiers. For

building a knowledge base (KB) consisting of the synthetic
data, it is necessary to calculate the BERs corresponding to
the varying different input features. As mentioned above,
compared with the approximate formula method using the
GN model, the method of obtaining BERs by solving the
WDM transmission equations with the SSFM can provide
relatively accurate results. Moreover, although the compu-
tational complexity is high, the generation of synthetic data
can be regarded as the preliminary preparation stage of the
classifier training, and the time spent is not considered in
the performance index of the classifiers in future predic-
tions. Therefore, we used a relatively time-consuming
solution to obtain the BERs by solving the WDM
transmission equations using SSFM. Meanwhile, to verify
the performance improvement using the synthetic data
generated by the transmission equations, we generated
synthetic data using the GN model for comparison.
Therefore, KB comprises two parts: part I is generated
by the transmission equations and part II by the GN model.
For KB part I, generated by the transmission equations,

Fig. 2(a) shows the simulation system structure used in the

Fig. 2 (a) Simulation setup. (b) Workflow of the classification process. MUX: multiplexer, IQ modulator: in-phase quadrature
modulator, SSMF: standard single-mode fiber, EDFA: Erbium-doped fiber amplifier, DSP: digital signal processing
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process of generating the synthetic data. It comprises five
transmitters, an optical link with N optical fiber spans and
amplifiers, a digital coherent receiver integrated with an
electric domain compensation function, and a BER
calculator. The amplifier accurately compensates for the
fiber loss but also adds noise. Without the loss of
generality, the center channel is assumed to be a probe
channel, and its performance and the XPM effect are
studied, whereas the other four channels are interference
channels. The fiber parameters include the group velocity
dispersion coefficient, fiber loss, and nonlinear parameters.
The receiving end performs the demodulation and the
electric domain compensation to determine the BERs of
the probe channel. Each instance comprises the total
lightpath length ranging from 50 to 5000 km; span lengths
of 50, 80, and 100 km; the number of spans ranging from 1
to 50; channel launch power varying from –10 to 4 dBm
with a 2 dBm interval; and three modulation formats,
quadrature phase shift keying (QPSK), 16QAM, and
64QAM. We set the EDFA noise to 5 dB. The channel
spacing was set to 50 GHz. The noise bandwidth was
32 GHz, and the symbol rate used was 32 GBaud.
According to the principles introduced in Section 2.2.2, the
resulting partial KB contains BER observations of 3600
different lightpaths and corresponding labels. Among
them, there are 1118 instances of BER< T and 2482
instances of BER> T.
For KB part II, generated by the GN model, each

instance comprises the total lightpath length ranging from
50 to 5000 km; span lengths of 50, 80, and 100 km; the
number of spans ranging from 1 to 50; and channel launch
power ranging from –10 to 4 dBm. The power interval is
2 dBm, and there are three modulation formats, QPSK,
16QAM, and 64QAM. We set the noise of the EDFAs to
5 dB. The channel spacing is set to 50 GHz. The noise
bandwidth is 32 GHz, and the symbol rate is 32 GBaud.
First, the GN model is used to roughly estimate the
nonlinear noise, and the OSNR is calculated by combining

the nonlinear noise with the ASE noise. Thereafter, the
corresponding BER is obtained by the mapping relation-
ship between OSNR and BER. According to the principles
introduced in Section 2.2.1, the dataset based on the GN
model has a total of 3600 instances, where the numbers of
BER< T and BER> T instances are 1269 and 2331,
respectively.
Figure 3 shows that the KB was divided into three cases.

According to the division method described below, these
three cases all have 2520 instances for training and 1080
instances for testing. For case I, the training dataset was
entirely generated by 2520 instances randomly extracted
from KB part I, and the test dataset comprises the
remaining 1080 instances. For case II, the training dataset
was obtained by 2520 instances randomly extracted from
KB part II, and the test dataset remains unchanged from
case I. For case III, we randomly extracted 50% of the
training dataset of case II and 50% of the training dataset of
case I and merged them to form a new training dataset,
whereas the test dataset remains the same as case I and case
II. Note that the test dataset is the same dataset generated
by the transmission equations in the three cases. This is
because these data are sufficiently similar to the real field
data to accurately measure the performance of the trained
classifiers.
We used the various machine learning classifiers

mentioned earlier to classify the lightpaths; thereafter, we
compared their performances and selected the best
machine learning classifier, as shown in Fig. 2(b). We
employed the trained optimal parametric classifiers to
predict the BERs of the lightpaths in the test dataset. If the
BER of a lightpath is below T, it is a Boolean logic variable
equal to 1; otherwise, it is equal to 0, which is the label
predicted by the classifier. Here, a label equal to 1 means
that it is a “good QoT”, and a label equal to 0 implies that it
is a “poor QoT”.
The confusion matrixes in Fig. 4 show the classification

results achieved by the classifiers considered in this work

Fig. 3 Three KB cases
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for the three different cases. The columns of the matrixes
describe the actual classes of the test instances, whereas the
rows are the predicted classes by each classifier. Two
metrics were generally used to evaluate the classifiers: the
classification accuracy and the false positive rate. The false
positive (anticipated instances of “good QoT”, when the
actual class is “poor QoT”) rate can be used to further
refine the prediction performance of each classifier.
Figures 4(a)–4(c) show the corresponding confusion
matrix for the three cases, respectively. Table 1 depicts
that after comparing the results of the three cases, we found
that when the dataset is composed of case I, the three

classifiers, KNN, LR, and SVM, achieve the highest
classification accuracies, i.e., 97.87%, 89.63%, and
99.17%, respectively. However, when the dataset com-
prises case II, the classification accuracies of the three
classifiers are the lowest, i.e., 83.24%, 84.44%, and
88.24%, respectively. When the dataset is composed of
case III, the classification accuracies of the three classifiers
are between those of the previous two, i.e., 97.13%,
85.37%, and 99.35%, respectively. By observing the
relationship between the false positive rate and the
classification accuracy in the three cases, it is easy to
find that the false positive rate is negatively correlated to

Table 1 Performance of the classifiers

classifier type
case I case II case III

KNN LR SVM KNN LR SVM KNN LR SVM

accuracy/% 97.87 89.63 99.17 83.24 84.44 88.24 97.13 85.37 99.35

error rate/% 2.13 10.37 0.83 16.76 15.56 11.76 2.87 14.63 0.65

false positives rate/% 1.02 4.63 0.37 9.26 8.33 5.00 1.02 6.39 0.37

Fig. 4 Confusion matrix for (a) case I, (b) case II, and (c) case III
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the classification accuracy. This indicates that the higher
the accuracy of the classifier, the lower the false positive
rate of the classifier. It is evident that the classifier with the
highest classification accuracy also has the lowest false
positive rate, accounting for its best overall performance.
The above comparison results indicate that the classifiers

corresponding to case I exhibit the best performance when
tested using the test data that are sufficiently similar to real
field data. We believed that this is mainly because the
training dataset of case I are composed entirely of accurate
synthetic data generated by the transmission equations, and
the trained classifiers are the most reliable and practical. In
case II, the performance is poor when tested using the same
data. We believed this is because the training dataset is
composed entirely of inaccurate synthetic data generated
by the GN model, and the trained classifiers are unreliable.
The accuracies of cases I and II also indicate the extent of
the GN model deviation from the more realistic transmis-
sion equations. This is further verified by case III. In case
III, because the training dataset is a mixture of the data
generated by both the GN model and the transmission
equations, the performance of the trained classifiers was
between those of the previous two. Comparing the results
obtained in cases I and II, we found that SVM is the best
classifier in both cases, although KNN exhibits a different
trend. In case I, the classification accuracy of KNN is
slightly lower than that of SVM but considerably higher
than that of LR. In case II, KNN is not as accurate as LR.
The transmission equations approach constitute a better
alternative to the GN model (or other similar margin-based
models) in the absence of real data (i.e., at the deployment
stage of a network) or the case that real data are scarce (i.e.,
for enriching the dataset/reducing probing lightpaths). We
believed the priority of the three classifiers should be
SVM>KNN>LR, as shown in case I, rather than
SVM>LR>KNN, shown in case II.

4 Conclusions

In this paper, we presented three supervised learning
classifiers for predicting the QoT of unestablished light-
paths. By comparing the performance of the three different
classifiers: KNN, LR, and SVM, in three different dataset
cases, we found that when the training dataset comprises
the data generated by the transmission equations, the
classification accuracies of KNN, LR, and SVM are
97.87%, 89.63%, and 99.17%, respectively. However,
when the training dataset comprises the data generated by
the GN model, the classification accuracies are 83.24%,
84.44%, and 88.24%, respectively. Considering that the
transmission equations approach constitute a better alter-
native to the GN model (or other similar margin-based
models) in the absence of real data (i.e., at the deployment
stage of a network) or the case that real data are scarce (i.e.,
for enriching the dataset/reducing probing lightpaths), the

three classifiers trained using the data generated by the
transmission equations are more reliable and practical than
those trained by the data generated by the GN model.
Moreover, we noticed that the priority of the three
classifiers should be SVM>KNN> LR, instead of
SVM>LR>KNN. In future works, the optimization
methods for reducing the KB size would be investigated to
propose other novel classifiers with better performance.
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