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Abstract Alcohol, total sugar, total acid, and total phenol
contents are the main indicators of wine quality detection.
This study aims to establish simultaneous analysis models
for the four indicators through near-infrared (NIR) spectro-
scopy with wavelength optimization. A Norris derivative
filter (NDF) platform with multiparameter optimization
was established for spectral pretreatment. The optimal
parameters (i.e., derivative order, number of smoothing
points, and number of differential gaps) were (2, 9, 3) for
alcohol, (1, 19, 5) for total sugar, (1, 17, 11) for total acid,
and (1, 1, 1) for total phenol. The equidistant combination-
partial least squares (EC-PLS) was used for large-scale
wavelength screening. The wavelength step-by-step phase-
out PLS (WSP-PLS) and exhaustive methods were used
for secondary optimization. The final optimization models
for the four indicators included 7, 10, 15, and 13
wavelengths located in the overtone or combination
regions, respectively. In an independent validation, the
root mean square errors, correlation coefficient for
prediction (i.e., SEP and RP), and ratio of performance-
to-deviation (RPD) were 0.41 v/v, 0.947, and 3.2 for
alcohol; 1.48 g/L, 0.992, and 6.8 for total sugar; 0.68 g/L,
0.981, and 5.1 for total acid; and 0.181 g/L, 0.948, and 2.9
for total phenol. The results indicate high correlation, low
error, and good overall prediction performance. Conse-
quently, the established reagent-free NIR analytical models
are important in the rapid and real-time quality detection of
the wine fermentation process and finished products. The
proposed wavelength models provide a valuable reference
for designing small dedicated instruments.

Keywords wine, quality indicators, near-infrared (NIR)
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1 Introduction

Wine is an alcoholic beverage with mild alcohol content,
diversified taste, and high popularity among consumers.
The appropriate amount of wine is good for one’s health
and can reduce the risk of coronary heart disease and
atherosclerosis [1]. Vinification includes the selection of
raw grapes, juice extraction, and alcohol fermentation [2].
Alcohol and sugar contents are the most basic indicators

of wine used to characterize its unique taste and odor. As a
substrate, sugar is gradually consumed under the action of
Saccharomyces cerevisiae during the fermentation process.
As a product, alcohol is gradually increased [3]. Finished
wine usually requires the control of the alcohol and sugar
contents to keep the concentrations stable within a certain
range. In addition, acid is derived from tartaric and malic
acid in grapes and succinic, lactic, and acetic acid produced
during fermentation. Moderate acid can promote appetite,
help digestion, and benefit human health. The polyphenols
in red wine can eliminate free radicals in the human body;
hence, health effects (e.g., antioxidation and lowering of
blood lipids) are observed. The astringency and the ruby
color of red wine are closely related to polyphenols. The
total phenol is the total amount of polyphenols.
Therefore, the alcohol, total sugar, total acid, and total

phenol contents are the main indicators for monitoring the
wine fermentation process and detecting the product
quality. Distillation, neutralization, and colorimetric reac-
tions are traditional chemical analysis methods for the
abovementioned indicators [4–6]. These methods require
sample preparation and are highly specialized and time
consuming. In addition, different indicators require
different measurement methods and reagents. Thus, they
are unsuitable for the rapid and real-time quality detection
of the wine fermentation process and finished wine.
Near-infrared (NIR) spectroscopy is based on the

nonresonant molecular vibration associated with transitions
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from the ground state to the high-energy level. It primarily
reflects the overtone absorption and vibration combinations
of hydrogen-containing (X-H) functional groups. NIR
spectroscopy can directly measure multiple indicators in a
sample and features a fast, real-time, and online measure-
ment [7]. NIR spectroscopy has also been effectively used
in numerous fields, such as the agricultural [8–11], food
[12–15], environmental [16,17], and biomedical fields [18–
24].
NIR spectroscopy combined with partial least squares

(PLS) regression has been applied to the rapid quantitative
analysis of wine quality indicators. Several preliminary
works involve the indicators of alcohol, total sugar, total
acid, and total phenol in wine [5,25–27]. Reference [25]
shows a relevant comparison and jointly used NIR and mid
infrared (MIR) spectroscopy combined with the PLS
method to perform a quantitative analysis of the seven
indicators of alcoholic degree, volumic mass, total acidity,
glycerol, total polyphenol index, lactic acid, and total
sulfur dioxide in the finished wine. Reference [5] also used
NIR and MIR spectroscopy combined with the PLS
method to quantitatively analyze the sugar content,
ethanol, glycerol, and phenolic compounds of the
fermentation sample of wine. Meanwhile, Ref. [26] used
NIR spectroscopy combined with principal component
analysis (PCA) and PLS methods to perform a cluster
analysis of red wine from different grape varieties.
Reference [27] used UV–Vis–NIR spectroscopy combined
with principal component regression (PCR) and PLS
methods to determine seven different phenolic compounds
in red wine. These works investigated the feasibility of
NIR spectroscopy to rapidly measure the quality indicators
of finished wine or wine fermentation samples. However,
studies on the methods of spectral modeling and prediction
accuracy, especially proper spectral preprocessing and
wavelength model optimization methods, must be further
performed. The integrated application research of related
chemometric methods will help improve the detection
effect of NIR spectroscopy in the field of wine processing.
The wavelength selection of the NIR analysis model can
avoid noise interference, extract useful information,
improve analysis accuracy, and provide a required
reference for designing dedicated instruments.
In this study, the calibration–prediction models for the

rapid and simultaneous quantitative analysis of alcohol,
total sugar, total acid, and total phenol in wine are
established with the NIR spectra. In addition, several novel
chemometric methods are integrated to apply further
modeling optimization. Samples of various commercial
and homemade wines with wide ranges of total sugar and
acid were adopted to improve the results’ representative-
ness.
First, the famous Norris derivative filter (NDF) [28,29],

which is an algorithm group with various parameters, is
used to pretreat the wine spectra and improve the spectral

signal-to-noise ratio. The appropriate Norris parameters
cannot be preset on based on experience, but are selected in
accordance with the modeling effect [24,30]. A large-scale
parameter optimization platform for the NDF algorithm
combined with PLS is established herein based on the
modeling effect. The optimal NDF parameters for the NIR
analysis of the four wine quality indicators are then
determined.
Wavelength model optimization is another core chemo-

metric method that plays a crucial role in the NIR spectral
analysis application. The recently proposed equidistant
combination PLS (EC-PLS) method [11,20] considers the
advantages of continuous and discrete wavelength models.
The initial wavelength, wavelength number, and wave-
length gap number were adopted as the cyclic parameters
for the quasicontinuous wavelength combination selection.
EC-PLS optimized not only the wavelength position and
number, but also the wavelength gaps. In addition, it has
been applied in various objects [11,20,21,31–33]. The EC-
PLS model set properly includes that of the famous
moving-window PLS (MW-PLS) [19,20,22,34]. There-
fore, it is a strict extension from an algorithm point of view.
Here, EC-PLS was also used to establish the wavelength
model for the NIR analysis of the four indicators.
NIR spectroscopy involves data for hundreds or

thousands of wavelengths. At present, the scientific
computing power cannot exhaustively optimize any
wavelength combination. Thus, the wavelength combina-
tion obtained by any strategy must be subjected to a
secondary optimization. Redundant wavelengths are
difficult to avoid in the equidistant wavelength combina-
tion; thus, the wavelength step-by-step phase-out PLS
(WSP-PLS) was proposed to correct the EC-PLS models
[24,35]. The WSP-PLS and exhaustive methods were used
herein as the secondary optimization for correcting the EC-
PLS models of the four indicators.

2 Materials and methods

2.1 Samples

A total of 52 bottles of finished red wines covering 21
commercial brands were purchased, and 49 bottles of
homemade red wines were collected. After placing the
bottles at room temperature for a sufficient amount of time,
a small amount of wine (i.e., approximately 2 mL) was
taken from each bottle as a sample for the spectral
measurement. Accordingly, 101 wine samples were
obtained. The spectrum of the double distilled water was
also measured for a spectral comparison. The appropriate
amount of wine sample was taken from each bottle as a
sample for the measurements of alcohol, total sugar, total
acid, and total phenol through standard chemical analysis
methods.
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2.2 Analysis of reference values for four wine quality
indicators

The alcohol content of each wine sample was analyzed in
accordance with the standard method (alcohol meter
method, GB/T 15038-2006) [4]. The method removed
nonvolatile substances in each wine sample by distillation,
measured the alcohol volume percentage value of the
distillate with the alcohol meter, and corrected the
temperature to obtain the sample’s alcohol content.
The total sugar content was determined with 3,5-

dinitrosalicylic acid (DNS) colorimetry [6]. Each wine
sample was hydrolyzed with hydrochloric acid at a
constant temperature and neutralized with a NaOH
solution. The color reaction was performed using a DNS
reagent. Absorbance was measured by an ultraviolet
spectrophotometer. Subsequently, the result was used to
calculate the total sugar content by comparing it with the
standard curve of the glucose solution.
The total acid concentration was analyzed in accordance

with the standard method (indicator method, GB/T 15038-
2006) [4], where phenolphthalein was used as an indicator.
Acid–base titration was performed with the NaOH
standard solution. The total acid content can be calculated
according to the consumption amount of the NaOH
solution.
The total phenol concentration was determined through

the Folin–Ciocalteau method [5,25,26]. The color reaction
was performed by adding the Folin–Ciocalteau reagent to
each wine sample under alkaline conditions. The absor-
bance was measured with an ultraviolet spectrophotometer.
The results were used to calculate the total phenolic
content by comparing it with the standard curve of pure
gallic acid.
All of the abovementioned measurements were per-

formed in triplicate and averaged. The average measured
values were used as the reference for the modeling and
validation of the NIR spectroscopic analysis. Table 1
presents the statistical analysis of the actual values of
alcohol, total sugar, total acid, and total phenol of the 101
samples.

2.3 Near-infrared spectra acquisition

The instrument used herein was an XDS Rapid ContentTM

Liquid Grating Spectrometer (FOSS, Denmark) with 1 mm
cuvette. The spectra were acquired over 780–2498 nm with
2 nm wavelength gap and covered the whole NIR region.
Si and PbS detectors were used to detect the 780–1100 and
1100–2498 nm wavebands, respectively. Every sample
was measured thrice. The average spectra were then used.
The spectral measurement was conducted at (25�1)°C and
(46�1)% relative humidity.

2.4 Calibration–prediction–validation based on multiple
sample partitioning

Given the randomness of a sample, the sample partitioning
differences may result in a parameter fluctuation. The
modeling samples were randomly divided for multiple
times into calibration–prediction sets. In addition, the PLS
model for each division was established. The parameters
were then optimized based on the comprehensive model-
ing effect of all divisions to ensure model stability and
objectivity.
First, 101 samples were randomly divided into the

modeling (71 samples) and validation (30 samples) sets.
The modeling set was further divided for 20 times into the
calibration (41 samples) and prediction (30 samples) sets.
The root mean square error and the correlation

coefficient for prediction for each division i were
calculated and denoted as SEPi and RP,i, respectively,
where i = 1, 2,…, 20. The mean values (SEPAve and RP,Ave)
and the standard deviations (SEPSD and RP,SD) of all the
divisions were further calculated. The comprehensive
indicator SEP+= SEPAve+ SEPSD for the prediction accu-
racy and stability was used to determine the modeling
parameters.
Finally, the selected models were validated using

independent validation samples not used in the modeling.
The corresponding SEP, RP, and ratio of the performance-

to-deviation (RPD, where RPD ¼ SD

SEP
) were further

determined. A high RPD value represented a good overall
predicted performance. The SDs of the actual alcohol, total
sugar, total acid, and total phenol values for the 30
validation samples were 1.3 v/v, 10.1, 3.5, and 0.53 g/L,
respectively. Figure 1 shows the schematic of the
calibration–prediction–validation process with sample
multi-partitioning and evaluation indicators.

2.5 Norris derivative filter

The NDF algorithm included two steps, namely moving
average smoothing and differential derivation, which used
the parameter derivative order (d), number of smoothing
points (s), and number of differential gaps (g). The NDF is
an algorithm group with various parameters and modes for
spectral preprocessing [24,30].
Each set of NDF spectra was used to build a PLS model,

Table 1 Statistical analysis of the actual alcohol, total sugar, total acid,
and total phenol values of all wine samples
indicator min max mean SD

alcohol/(v$v–1) 10.4 15.5 12.4 1.2

total sugar/(g$L–1) 1.0 55.9 7.0 10.5

total acid/(g$L–1) 4.1 16.4 7.6 3.9

total phenol/(g$L–1) 0.47 3.15 1.72 0.59

Note: SD, standard deviation.
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called the Norris-PLS model. The global optimization
selection for the NDF modes was performed according to
the predicted effect (SEP+) of the PLS model. The number
of PLS latent variables (LV) was set as LV 2 f1,    2,   :::,
15g. Parameters d, s, and g were set as d ¼ 0, 1, 2, s 2
f1, 3,   :::,    31g, and g 2 f1,    2,   :::,   30g, respectively. A
total of 976 NDF modes were obtained on the basis of all
parameter combinations of (d, s, and g). The optimal
Norris parameters are then selected as follows in
accordance to the predicted effect:

SEPþ* ¼ min
d 2f0,  1,  2g
s2 f1,  3,:::,  31g
g 2f1,  2,:::,  30g

SEPþðd,  s,  gÞ: (1)

s and g are important Norris parameters. s was the only
variable parameter available when d = 0. The prediction
effect is denoted as SEP+ (0, s). Two variable parameters (s
and g) were used when d = 1, 2. The prediction effects of
the local optimal models for all single parameters are as
follows:

SEPþðsÞ ¼ min
g 2f1,  2,:::,  30g
d 2f0,  1,  2g

SEPþðd,  s,  gÞ,  s ¼ 1,  3,:::,  31, (2)

SEPþðgÞ ¼ min
s2f1,  3,:::,  31g
d 2 f1,  2g

SEPþðd,  s,  gÞ,  g ¼ 1,  2,:::,  30: (3)

2.6 Equidistant combination-partial least squares method

The EC-PLS method used all equidistant wavelength
models in a specific wavelength range to establish PLS
models, which adopted the initial wavelength (I), number
of wavelengths (N), number of wavelength gaps (G), and
LVas the cyclic parameters. Please see Refs. [31] and [32]
for a detailed description. The global optimal parameters
were selected as follows in accordance with the predicted
effect (SEP+):

SEPþ* ¼ min
I ,  N , G,  LV

SEPþðI ,  N , G,  LVÞ: (4)

The choice of the wavelength model may be limited by
practical conditions. Therefore, in addition to the global
optimal wavelength model, the local optimal model
corresponding to each single parameter also has a practical
value. The corresponding local optimal model for every
fixed single parameter I (N or G) was selected according to
the following equations:

SEPþðIÞ ¼ min
N ,G,LV

SEPþðI ,  N , G,  LVÞ, (5)

SEPþðNÞ ¼ min
I ,G,LV

SEPþðI ,  N , G,  LVÞ, (6)

SEPþðGÞ ¼ min
I ,N ,LV

SEPþðI ,  N , G,  LVÞ: (7)

The spectral region of 400–2498 nm was used for EC-
PLS screening. Parameters I, N, G, and LV were set as
I 2 f780,   782,:::,    2498g, N 2 f1,   2,:::,    200g, G 2 f1,
2,:::,   20g, and LV 2 f1,    2,:::,    15g, respectively.

2.7 Secondary wavelength optimization

The WSP-PLS method can be used to correct any
continuous or discrete wavelength model with N wave-
lengths through the following steps: first, wavelengths
were subjected to a backward elimination, that is, the
lowest prediction error was obtained each time a
wavelength was eliminated and until only one wavelength
remained; and second, the optimal model was selected
through the WSP model. Please see Refs. [24,33,35] for a
detailed description.
Notably, if the exhaustive method is used to optimize

any one wavelength combination with N wavelengths,
the 2N – 1 PLS models must be calculated. On the contrary,
the WSP-PLS algorithm only required N(N+ 1)/2 opera-
tions. At a large N, the exhaustive method cannot be
implemented given its heavy calculation load. However,
the amount of WSP-PLS calculation is still moderate
and can be implemented quickly. Here, the WSP-PLS and
exhaustive methods were used for the secondary optimiza-

Fig. 1 Calibration–prediction–validation process with sample multi-partitioning
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tion when N£17 for the EC-PLS model (2N – 1£131071).
When N> 17, the WSP-PLS method was first used for the
secondary optimization, and the exhaustive method was
then used for further optimization.
The computer algorithms for all the above-mentioned

methods were designed using MATLAB version 7.6
software.

3 Results and discussion

3.1 Optimization of Norris parameters

Figure 2(a) depicts the NIR spectra of the 101 wine
samples over the whole scanning region (780–2498 nm).
Figure 2(b) also illustrates the average spectrum of all the
wine samples and the double distilled water spectrum for a
comparison. The baseline drift and tilt were observed near
the two water absorption peaks (i.e., 1400–1500 and 1850–
2050 nm) of the NIR overtone region. In addition, the wine
and water spectra in waveband 2200–2350 nm of the NIR
combination region showed differences.
The analyses of the alcohol, total sugar, total acid, and

total phenol contents of the wine samples were indepen-
dently modeled. First, the full PLS models were estab-
lished based on the whole NIR region (780–2498 nm, N =
860). Table 2 summarizes the optimal parameters (e.g.,
LV) and the prediction effects (i.e., SEPAve, RP,Ave, SEPSD,

RP,SD, and SEP+) for the four indicators. The SEP+ values
of the four indicators were 0.57 v/v, 2.46, 2.41, and 0.253
g/L, respectively.
The spectra were then preprocessed using the NDF

method, and the corresponding 976 Norris-PLS models
were established. Figures 3–6 show the prediction effects
(SEP+(s) and SEP+(g)) of the local optimal models for
each s and g for the four wine indicators. A significant
difference in the modeling effects, which corresponded to
different Norris-PLS models, was observed. The Norris
parameters cannot be selected on the basis of experience
and must be optimized.
The results also imply that the global optimal parameters

were d = 2, s = 9, and g = 3 for alcohol; d = 1, s = 19, and g
= 5 for total sugar; d = 1, s = 17, and g = 11 for total acid;
and d = 1, s = 1, and g = 1 for total phenol. The
corresponding SEP+ were 0.47 v/v, 2.22, 1.43, and 0.238
g/L, respectively. Table 3 summarizes the optimal para-
meters (d, s, g, and LV) and the prediction effects. In
comparison with the results in Table 2, SEP+ of alcohol,
total sugar, total acid, and total phenol decreased by 17.5%,
9.8%, 40.7%, and 5.9%, respectively. The optimal Norris-
PLS models were significantly better than the full PLS
models without pretreatment. Therefore, the wine spec-
trum pretreatment was necessary and can improve the
prediction effect of the spectra.
Notably, the Norris parameters selected according to the

modeling effects were not the same for different indicators.

Fig. 2 NIR spectra of wine and water samples. (a) Spectra of all wine samples. (b) Average spectrum of all wine samples and water
spectrum

Table 2 Parameters and prediction effects of the full PLS models for the four wine indicators

indicator LV SEPAve SEPSD RP,Ave RP,SD SEP+

alcohol/(v$v–1) 7 0.50 0.07 0.904 0.036 0.57

total sugar/(g$L–1) 8 2.17 0.29 0.981 0.006 2.46

total acid/(g$L–1) 5 2.09 0.32 0.876 0.038 2.41

total phenol/(g$L–1) 3 0.231 0.022 0.933 0.015 0.253
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Fig. 4 SEP+ of the local optimal Norris-PLS model (total sugar) for each parameter. (a) Number of smoothing points. (b) Number of
differential gaps

Fig. 5 SEP+ of the local optimal Norris-PLS model (total acid) for each parameter. (a) Number of smoothing points. (b) Number of
differential gaps

Fig. 3 SEP+ of the local optimal Norris-PLS model (alcohol) for each parameter. (a) Number of smoothing points. (b) Number of
differential gaps
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Figure 7 illustrates the Norris derivative spectra of all wine
samples based on the optimal Norris parameters of the four
indicators.

3.2 Optimal equidistant combination-partial least squares
models

Further wavelength model optimization was performed
using the abovementioned EC-PLS method based on the
NDF spectra. The optimal EC-PLS models for the four
indicators were selected. The obtained optimal parameters
of I, N, G, and LV were 2158 nm, 11, 1, and 5 for alcohol;
1642 nm, 15, 5, and 12 for total sugar; 1618 nm, 19, 6, and
12 for total acid; and 1530 nm, 24, 4, and 7 for total phenol.
The corresponding SEP+ was further reduced to 0.40 v/v,
1.68, 0.53, and 0.175 g/L, respectively. Table 4 sum-
marizes the optimal parameters and prediction effects. In
comparison with the Norris-PLS model of the whole NIR
region (780–2498 nm, N = 860), the SEP+ values of the
four indicators significantly decreased by 14.9%, 24.3%,
62.9%, and 26.5%, respectively. Moreover, the number of
adopted wavelengths (N) greatly decreased to 11, 15, 19,
and 24, respectively. The results show that the wavelength
models were considerably simplified.
Figure 8 depicts the prediction effects (SEP+(I)) of the

local optimal models for all I for the four indicators.
Different modeling effects were observed for the different
wavelength positions.

3.3 Secondary optimization models

The WSP-PLS method was used to remove unavoidably
redundant wavelengths in the optimal EC-PLS model and
further improve the spectral prediction effect. Table 5
summarizes the optimal parameters (N, LV) and the
prediction effects for the obtained optimal EC-WSP-PLS
models of the four indicators.
In comparison with those of the optimal EC-PLS

models, SEP+ of the optimal EC-WSP-PLS models
improved for the four indicators. Moreover, the adopted
N for alcohol, total sugar, total acid, and total phenol
greatly decreased to 7, 10, 15, and 17, respectively.
Therefore, the redundant wavelengths must be eliminated
through the WSP-PLS method.
The corresponding wavelength combinations for alco-

hol, total sugar, total acid, and total phenol were 2158,
2160, 2162, 2168, 2170, 2174, and 2178 nm of the
combination region; 1642, 1652, 1672, 1682, 1712, 1732,
1742, 1762, 1772, and 1782 nm of the overtone region;
1618, 1642, 1654, 1690, 1702, 1714, 1738, 1750, 1762,
1774, 1786, 1798, 1810, 1822, and 1834 nm of the
overtone region; and 1538, 1546, 1562, 1578, 1594, 1602,
1626, 1642, 1650, 1658, 1666, 1674, 1682, 1690, 1698,
1706, and 1714 nm of the overtone region, respectively.
The N values of the optimal EC-PLS models for alcohol

and total sugar were 11 and 15 (N< 17), respectively.
Section 2.7 showed that the WSP-PLS and exhaustive

Table 3 Parameters and prediction effects of the optimal Norris-PLS models for the four wine indicators

indicator d s g LV SEPAve SEPSD RP,Ave RP,SD SEP+

alcohol/(v$v–1) 2 9 3 3 0.43 0.04 0.931 0.017 0.47

total sugar/(g$L–1) 1 19 5 6 1.99 0.23 0.984 0.004 2.22

total acid/(g$L–1) 1 17 11 15 1.23 0.20 0.960 0.012 1.43

total phenol/(g$L–1) 1 1 1 2 0.216 0.022 0.941 0.016 0.238

Fig. 6 SEP+ of the local optimal Norris-PLS model (total phenol) for each parameter. (a) Number of smoothing points. (b) Number of
differential gaps
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methods were used to further optimize the selected optimal
EC-PLS models. For the two indicators, the results showed
that the optimal models of the WSP-PLS method were
exactly similar to those of the exhaustive method.
The N values of the optimal EC-PLS model for total acid

and total phenol were 19 and 24 (N> 17), respectively.
According to Section 2.7, the WSP-PLS method was first
used to optimize the selected optimal EC-PLS models. The
exhaustive method was then used to further optimize the
selected optimal WSP-PLS models. The results for the
total acid indicated that the optimal WSP-PLS model was
also exactly similar to the optimal model of the exhaustive
method. For the total phenol, the effect of the optimal
model of the exhaustive method improved slightly
compared to the optimal WSP-PLS model. Parameters N
and LV for the optimal model of the exhaustive method
were 13 and 7, respectively. Moreover, SEPAve, SEPSD,
RP,Ave, RP,SD, and SEP+ were 0.153, 0.013, 0.971, 0.006,

and 0.166, respectively. The corresponding wavelength
combination (N = 13) was 1538, 1546, 1562, 1594, 1602,
1626, 1650, 1674, 1682, 1690, 1698, 1706, and 1714 nm.
In summary, the final optimization models for alcohol,

total sugar, and total acid were the optimal WSP-PLS
models, while that for total phenol was the optimal model
of the exhaustive method. The results of the four data sets
showed that the WSP-PLS method as a secondary
optimization method almost approached the global opti-
mization effect. Moreover, its calculation load was much
lower than that of the exhaustive method and can be
quickly implemented at the existing calculation level.

3.4 Independent validation

The 30 validation samples excluded from the modeling
were used to evaluate the final optimization model for
alcohol, total sugar, total acid, and total phenol. The PLS

Fig. 7 NDF spectra of all wine samples based on the optimal Norris parameters. (a) d = 2, s = 9, and g = 3 for alcohol. (b) d = 1, s = 19,
and g = 5 for total sugar. (c) d = 1, s = 17, and g = 11 for total acid. (d) d = 1, s = 1, and g = 1 for total phenol

Table 4 Parameters and prediction effects of the optimal EC-PLS models for the four wine indicators

indicator I/nm N G LV SEPAve SEPSD RP,Ave RP,SD SEP+

alcohol/(v$v–1) 2158 11 1 5 0.38 0.02 0.950 0.008 0.40

total sugar/(g$L–1) 1642 15 5 12 1.46 0.22 0.992 0.003 1.68

total acid/(g$L–1) 1618 19 6 12 0.48 0.05 0.994 0.001 0.53

total phenol/(g$L–1) 1530 24 4 7 0.157 0.018 0.969 0.008 0.175
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regression coefficients were determined using the spectra
and actual values of all modeling samples based on the
model parameters (i.e., wavelengths and LV). The
predicted values of the four indicators were then calculated
using the obtained regression coefficients and the spectra
of the validation samples. Table 6 summarizes the
evaluation values for the validation (i.e., SEP, RP, and
RPD). The RPD values representing the overall predicted
performance were 3.2, 6.8, 5.1, and 2.9, respectively.
Figure 9 presents the numerical relationships between

the predicted and actual values of the validation samples
for the four indicators. The results showed that the
correlations between the spectral predicted and actual
values were high, and the errors were low. The overall
predicted performance of the RPD values was also high.

NIR spectroscopy usually contains hundreds to thou-
sands of wavelength variables, and its spectral bands
overlap flatly and have a poor absorption interpretation.
Optimizing the wavelength model according to the
prediction effect is more realistic because of the inter-
ference of other unknown components and noise. The
obtained wavelength model still had a certain correlation
with the NIR absorption band of the functional group. In
fact, the obtained wavelength models (N = 10, 15, 13) for
total sugar, total acid, and total phenol were all located in
the NIR overtone region and were basically consistent with
the NIR overtone region (1660–1800 nm) of the C–H
functional group mentioned in the literature ([36], pp. 263).
Moreover, the selected optimal wavelengths (N = 7) for
alcohol were located in the NIR combination region. The

Fig. 8 SEP+ values of the local optimal models corresponding to each initial wavelength for (a) alcohol, (b) total sugar, (c) total acid,
and (d) total phenol

Table 5 Parameters and prediction effects of the optimal EC-WSP-PLS models for the four wine indicators

indicator N LV SEPAve SEPSD RP,Ave RP,SD SEP+

alcohol/(v$v–1) 7 5 0.37 0.02 0.951 0.007 0.39

total sugar/(g$L–1) 10 10 1.39 0.21 0.992 0.002 1.60

total acid/(g$L–1) 15 12 0.47 0.04 0.994 0.001 0.51

total phenol/(g$L–1) 17 7 0.153 0.014 0.972 0.006 0.167
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wavelengths were contained in the combined absorption
band (1800–2200 nm) of the O–H, C–H, and C–O
functional groups mentioned in the literature ([36], pp.
268). The literature also indicated that the combined
absorption band (1800–2200 nm) can be used to quantify
the alcohol in water ([36], pp. 269). Hence, the selected
optimal wavelengths and the absorption band in Ref. [36]
were also consistent.
The experiment results confirmed the feasibility of the

simultaneous detection of the four indicators (i.e., alcohol,

total sugar, total acid, and total phenol) in wine through
reagent-free NIR spectroscopy combined with wavelength
optimization.

4 Conclusions

In this study, the simultaneous analysis of the four quality
indicators in wine performed through reagent-free NIR
spectroscopy is important in the rapid and real-time quality

Table 6 Validation effects of the final optimization models for the four wine indicators

indicator N LV SEP RP RPD

alcohol/(v$v–1) 7 5 0.41 0.947 3.2

total sugar/(g$L–1) 10 10 1.48 0.992 6.8

total acid/(g$L–1) 15 12 0.68 0.981 5.1

total phenol/(g$L–1) 13 7 0.181 0.948 2.9

Fig. 9 Numerical relationship between the predicted and actual values of the validation samples for (a) alcohol, (b) total sugar, (c) total
acid, and (d) total phenol
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detection of the wine fermentation process and the finished
wine.
The novel integrated chemometrics approaches were the

core of the technologies used herein. The multiparameter-
NDF optimization platform was established and used to
select the most suitable spectral preprocessing modes for
the four wine indicators. The EC-PLS adopted three cyclic
parameters for the large-scale screening of the wavelength
models of equidistant combination. The WSP-PLS and
exhaustive methods, which are secondary optimization
methods, were used to correct the obtained equidistant
wavelength models to further enhance the modeling effects
and simplify the wavelength models. Four simplified
wavelength models (N = 7, 10, 15, and 13) located in the
NIR overtone or combination regions were obtained to
analyze the four indicators. The independent validation
results indicate that each model achieved a high correlation
and a low error between the spectral predicted and actual
values. The overall predicted performance RPD values
were also high. Moreover, this modeling process was
based on the multiple divisions of the calibration–
prediction samples. Thus, the results obtained were stable
and reliable.
Notably, prediction effects close to global optimization

were achieved through the integrated optimization process
based on the EC-PLS, WSP-PLS, and exhaustive methods.
The wavelength optimization strategy can be applied to
other analysis objects. The proposed wavelength models
provide a valuable reference for designing small dedicated
instruments.
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