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Abstract Diagnosis of the Graves’ ophthalmology
remains a significant challenge. We identified between
Graves’ ophthalmology tissues and healthy controls by
using laser-induced breakdown spectroscopy (LIBS)
combined with machine learning method. In this work,
the paraffin-embedded samples of the Graves’ ophthalmol-
ogy were prepared for LIBS spectra acquisition. The
metallic elements (Na, K, Al, Ca), non-metallic element
(O) and molecular bands ((C-N), (C-O)) were selected for
diagnosing Graves’ ophthalmology. The selected spectral
lines were inputted into the supervised classification
methods including linear discriminant analysis (LDA),
support vector machine (SVM), k-nearest neighbor (kNN),
and generalized regression neural network (GRNN),
respectively. The results showed that the predicted
accuracy rates of LDA, SVM, kNN, GRNN were
76.33%, 96.28%, 96.56%, and 96.33%, respectively. The
sensitivity of four models were 75.89%, 93.78%, 96.78%,
and 96.67%, respectively. The specificity of four models
were 76.78%, 98.78%, 96.33%, and 96.00%, respectively.
This demonstrated that LIBS assisted with a nonlinear
model can be used to identify Graves’ ophthalmopathy
with a higher rate of accuracy. The kNN had the best
performance by comparing the three nonlinear models.
Therefore, LIBS combined with machine learning method
can be an effective way to discriminate Graves’ ophthal-
mology.

Keywords Graves’ ophthalmology, laser-induced break-
down spectroscopy (LIBS), linear discriminant analysis

(LDA), support vector machine (SVM), k-nearest neighbor
(kNN), generalized regression neural network (GRNN)

1 Introduction

1.1 Background introduction

Graves’ ophthalmopathy, also called thyroid-associated
ophthalmopathy (TAO), is an eyelid disease associated
with thyroid dysfunction and immune system disorder [1].
Graves’ ophthalmopathy extensively affects the soft tissue
of the eyelids, which can also lead to eyeball protrusion,
eye movement disorder, optic nerve damage, reduced
vision, and even blindness. The pathogenesis and
diagnosis of Graves’ ophthalmopathy have always been
the research hotspot. Computed tomography (CT), mag-
netic resonance imaging (MRI), ultrasound (US) and
related laboratory tests can be used for a screening check
for thyroid dysfunction. However, some patients who had
thyroid-associated ophthalmopathy did not show abnorm-
alities in the thyroid screening test [2]. Cakir reported one
case of TAO, no thyroid-related autoantibodies were
detected in the blood and thyroid function was also normal
[3]. No single clinical or laboratory examination is the gold
standard for diagnosing thyroid eye disease for now [4]. To
overcome this problem, a more stable and accurate
diagnosis method is needed.
Laser-induced breakdown spectroscopy (LIBS) is an

atomic and ionic emission spectroscopy technique [5].
LIBS has been widely used in meat species identification,
wood species classification, soil samples analysis, oil
detection, red wine classification, and material analysis and
other fields [6–13], etc. In recent ten years, many
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researchers have explored the application of LIBS in the
biomedical field. Chen et al. diagnosed human malig-
nancies such as lymphoma and multiple myeloma (MM)
using LIBS in combination with chemometric method
[14]. Ghasemi et al. used LIBS for the diagnosis of several
malignant tissue samples including breast, colon, Larynx,
and tongue [15]. Gaudiuso et al. diagnosed melanoma
using LIBS combined with linear discriminant analysis
(LDA), fisher discriminant analysis (FDA), support vector
machines (SVM) and gradient boosting [16]. Chu et al.
discriminated nasopharyngeal carcinoma serum using
LIBS combined with extreme learning machine (ELM)
and random forest (RF) [17]. To our best knowledge, no
studies have been reported about identifying Graves’
ophthalmology by using LIBS. Moreover, LIBS combined
with generalized regression neural network (GRNN)
algorithm for solving classification problems has not
been investigated.
In this study, we identified between TAO paraffin

embedding samples and healthy controls using LIBS
combined with the LDA, SVM, k-nearest neighbor (kNN),
and GRNN, respectively. We first realized the identifica-
tion of Graves’ ophthalmology by using LIBS combined
with machine learning method, and first applied the GRNN
algorithm to classify biomedical tissues combined with
LIBS. The spectral lines were used as the input of
classifications. The average accuracy rate, sensitivity,
specificity, area under the curve (AUC), and coefficient
of variation (CV) were used to evaluate the identification
performance of the model.

1.2 Algorithm introduction

LDA is a classic linear supervised learning method, and it
was first proposed by Fisher in 1936 on the second
classification problem, also known as Fisher linear
discriminant [18]. It is still one of the most widely adopted
and extremely effective methods in the application of
dimension reduction and pattern classification [19,20].
Compared with the neural network method, LDA does not
need to adjust parameters, so there is no need such as
learning parameters, optimization weights, and selection of
neuron activation functions. And it is not sensitive to
normalization or randomization of patterns, and this is
more prominent among the various algorithms based on
gradient descent.
SVM is a generalized linear classifier that classifies data

in a supervised manner, it can be nonlinearly classified by
using the kernel method, which is one of the common
kernel learning methods [21]. SVM classification is only
related to several support vectors and has strong stability
and a high degree of robustness. The SVM was used for
classification and regression analysis problems such as text
recognition, face image recognition, plant species identi-
fication and tumor detection in machine learning and soft
computing tasks [22,23].

kNN algorithm is one of the supervised learning
methods [24]. When classifying test samples, the training
samples set is first scanned, k samples that are most similar
to the test samples set are found, and test samples are
determined according to the category of k samples. The
algorithm is not sensitive to abnormal data, simple and
easy to implement. It is widely used in gender prediction,
text recognition, tumor detection, and so on [25,26].
GRNN is a kind of radial basis function neural network.

The network structure of GRNN has input layer, pattern
layer, summation layer, and output layer [27]. It is widely
used in engine performance evaluation, worsted yarn
quality, and target tracking fields [28–30]. GRNN model
has strong nonlinear capability and high degree of fault
tolerance and robustness. As long as the training set is
determined, the corresponding network structure and the
connection weight between neurons are also determined
accordingly. The training process of GRNN is also the
process of optimizing smooth parameter s, the parameter
Spread is used to express the smooth parameter s [31].

2 Experimental

2.1 Experimental setup

The experiment instruments are composed of a Q-switched
Nd:YAG laser, a Czerny-Turner spectrometer, and an
intensified charge-coupled device (ICCD) camera mainly.
The Q-switched Nd:YAG laser emitted laser beam which
focused on the surface of sample by a focal lens and
produced the plasma. The plasma emission spectra were
collected through the spectrometer and ICCD camera. The
parameters about the instruments are as follows: the Q-
switched Nd:YAG laser (wavelength: 532 nm; pulse
energy: 3 mJ; repetition rate: 10 Hz; French, Quantel.,
Brilliant B), the Czerny-Turner spectrometer (grating:
1200 lines/mm, sparkling wavelength: 700 nm, resolution:
0.07 nm, acquisition bandwidth: 46 nm, UK, Andor Tech.,
Shamrock 500i) and ICCD camera (UK, Andor Tech.,
iStar 320T). The gate delay and the gate width of the ICCD
camera were set to be 1 and 9 ms, respectively. The number
of laser shots and the number of replicates were 5 and 10,
respectively. The experiment instruments are shown in
Fig. 1.

2.2 Sample pre-treatment

Experimental samples were collected from graves’
ophthalmopathy patients and healthy controls at the Cancer
Center, Union Hospital, Tongji Medical College. In total, 6
paraffin-embedded samples were donated by 3 healthy
controls and 3 TAO patients. The TAO patients were
diagnosed previously. It is necessary to pretreat the
biological tissue samples for the analysis by LIBS. The
pre-treatment steps are described below:
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1) Paraffin embedding. The collected tissue was saved at
-80°C first and was sent to Biossci biotechnology
company Ltd (Hubei, China) to make paraffin embedding.
Paraffin-embedded samples are shown in Fig. 2.
Figures 2(c)–2(e) were healthy controls, and the rest was
Graves’ ophthalmology samples.
2) Slice. Paraffin-embedded tissue was sliced with a

paraffin slicer. Each sample was sliced to 10 pieces, and
every piece was 40 mm thick. Then they were placed on a
glass slide, dried and stored.
The laser beam scanned a round area on the sample

surface and a single spectrum was obtained by accumulat-
ing all pulses in the round area. We collected only one
spectrum from one piece and 10 spectra from each sample.
A total of 60 spectra were analyzed.

3 Results and discussion

3.1 Analytical line selection

The LIBS spectra from the TAO samples and healthy
samples are shown in Fig. 3. We determined the elements
corresponding to the observed spectral lines by comparing
the National Institute of Standards and Technology (NIST)
spectral database [32]. The observed elements included
metallic elements (Na, K, Al, Ca), non-metallic element
(O) and molecular bands ((C-N), (C-O)). The 14 spectra
from one non-metallic element, two molecular bands, and
four metallic elements were chosen. These 14 spectra are
listed in Table 1.

Fig. 1 Schematic diagram of the experimental setup

Fig. 2 Paraffin-embedded samples. (a) TAO sample; (b) TAO sample; (c) healthy sample; (d) healthy sample; (e) healthy sample;
(f) TAO sample

Fig. 3 LIBS spectra of two kinds of samples at different bands. (a) 380–410 nm; (b) 570–780 nm
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3.2 Identification of TAO samples with the linear model

We collected ten spectra from each paraffin embedding
sample. In total, 60 spectra from 3 healthy controls and 3
TAO patients are used. For each paraffin embedding
sample, seven spectra were selected randomly as a training
set, and the other three spectra were selected as test set.
There are 42 spectra constitute to training set, and 18
spectra constitute to test set totally. The operation of
random selection spectra, model training and testing were
repeated 100 times. The average accuracy, precision,
sensitivity, specificity, and CV were used to evaluate the
model [33]. The identification results of the LDA model
are shown in Table 2. The identification accuracy of the
LDA model was 76.33%. The sensitivity, specificity, and
precision were 75.89%, 76.78%, and 76.57%, respectively.
The CV of the model was 0.0010.
The results showed that the LDA is not suitable for the

identification of TAO samples. This is because LDA is a
simple linear classifier that does not satisfy the classifica-
tion of these data.

3.3 Identification of TAO samples with the nonlinear model

In the SVM model, the radial basis function (RBF) kernel
function and grid search for parameter optimization were
used. The parameter optimization results were shown in
Fig. 4. The results showed that the best log2g and log2c
were 6 and -1, respectively. The average accuracy rate of
SVM model was 96.28%. The identification results of the
SVM model are shown in Table 3. The sensitivity,
specificity, and precision of the SVM model were
93.78%, 98.78%, and 98.71%, respectively. The CV of
the SVM model was 0.0499.
kNN model only has one parameter k that can be

adjusted, and the parameter optimization result of k is
shown in Fig. 5. When the k-value was 3, the kNN model
had the best accuracy rate 96.56% and the lowest CV
0.0373. This means the model is efficient and stable. The
identification results of the kNN model are shown in
Table 4. The sensitivity, specificity, and precision of the
kNN model were 96.78%, 96.33%, and 96.35%, respec-
tively.
The parameter optimization result of the Spread-value

about GRNN is shown in Fig. 6. The Spread-value was
from 0.01 to 0.20 and interval increased by 0.01. When the
Spread-values were 0.01, 0.02, 0.03, and 0.04, the best
accuracy rate was 96.33%, respectively, while the CV was
0.0378, respectively. The Spread-value reflects the approx-

Table 1 Analytical lines used as input variables for the classifier

element wavelength/nm

molecular bands C-N 385.09, 385.47, 386.19, 387.14
388.34

C-O 389.31

O 383.03, 383.59

metallic elements Na 588.99, 589.59

K 766.49, 769.90

Al 394.40, 396.15

Ca 393.37, 396.85

Table 2 Confusion matrix of the LDA model

predicted class
true class

TAO normal

TAO 683 209

normal 217 691

Fig. 4 Parameter optimization process of the SVM model

Table 3 Confusion matrix of the SVM model

predicted class
true class

TAO normal

TAO 844 11

normal 56 889

Fig. 5 Parameter optimization process of the kNN model
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imation ability of the neutral network to the sample data.
The larger Spread-value, the smoother approximation
process can be acquired. To avoid overfitting, we chose
0.04 as the best Spread-value. The identification results of
the GRNN model are shown in Table 5. The sensitivity,
specificity, and precision of the GRNN model were
96.67%, 96.00%, and 96.03%, respectively.
Then we compared the three nonlinear models using

receiver operating characteristic (ROC) curve, and area
under the curve (AUC) to evaluate the quality of the
models. The ROC curves of the three models are shown in
Fig. 7. The AUC of the SVM, kNN, and GRNN models
were 0.9791, 0.9695, and 0.9665, respectively. The AUC,
sensitivity, and specificity of the three models are listed in
Table 6.

4 Conclusions

In summary, a new approach of diagnosing Graves’
ophthalmology was proposed based on LIBS combined
with machine learning method. One linear model (LDA)

and three nonlinear models (SVM, kNN, GRNN) were
compared in this article. The results showed that the
average accuracy rate of LDA was only 76.33%, the
average accuracy rate of SVM, kNN and GRNN were
96.28%, 96.56%, and 96.33%, respectively, so the kNN
model had the best average accuracy rate. The sensitivity
of the three nonlinear models were 93.78%, 96.78%, and
96.67%, respectively and the specificity of the three
nonlinear models were 98.78%, 96.33%, and 96.00%,
respectively. The kNN model had the best sensitivity, but
its specificity was slightly worse than the SVM model’s.
Sensitivity means the percentage of positive samples
detected, whereas specificity means the percentage of
negative samples detected. For the detection of biomedical
samples, we pay more attention to the detection rate of
positive samples. Therefore, we can conclude that kNN is
slightly better than SVM. Moreover, the various evaluation
indicators of the kNNmodel were slightly better than those
of the GRNN model. Among the four models, the kNN
model had the best performance. Therefore, LIBS
combined with machine learning method can be an
effective way to distinguish Graves’ ophthalmology.

Table 4 Confusion matrix of the kNN model

predicted class
true class

TAO normal

TAO 871 33

normal 29 867

Fig. 6 Parameter optimization process of the GRNN model

Table 5 Confusion matrix of the GRNN model

predicted class
true class

TAO normal

TAO 870 36

normal 30 864

Fig. 7 ROC curves obtained with three nonlinear identification
model

Table 6 Indicators of the nonlinear identification models

AUC sensitivity specificity

SVM kNN GRNN SVM kNN GRNN SVM kNN GRNN

test set 0.9791 0.9695 0.9665 0.9378 0.9678 0.9667 0.9878 0.9633 0.9600

training set 1 0.9699 1 1 1 1 1 0.9671 1
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