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Abstract Here we present a graphene photodetector of
which the graphene and structural system infrared
absorptions are enhanced by interface phonon polariton
(IPhP) coupling. IPhPs are supported at the SiC/AlN
interface of device structure and used to excite interband
transitions of the intrinsic graphene under gated-field
tuning. The simulation results show that at normal
incidence the absorbance of graphene or system reaches
up to 43% or closes to unity in a mid-infrared frequency
range. In addition, we found the peak-absorption fre-
quency is mainly decided by the AlN thickness, and it has a
red-shift as the thickness decreases. This structure has great
application potential in graphene infrared detection
technology.
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1 Introduction

Graphene, consisting of one monolayer of carbon atoms
arranged in a honeycomb lattice, has important application
prospects in materials science, micro-nano processing,
energy, biomedicine and drug delivery [1–6]. It is
considered to be a revolutionary material in the future
with excellent optical, electrical and mechanical properties.
Because of the special band structure of graphene, wide
spectral absorption can be achieved, but its absorbance is
only about 2.3% [7]. The low absorption issue is expected
to be overcome for the high responsivity requirement of
infrared photodetector.
Optical confinement effects of the surface plasmon

polariton (SPP) and surface phonon polariton (SPhP) can
be used to significantly enhance the light-matter interac-
tion. As an important area of nanophotonic topic, SPP is

widely used in the fields of enhanced sensing, optical
radiation, photodetection, and surface-enhanced spectro-
scopy [8–14]. First of all, the SPP technology is under
consideration for enhancing the graphene infrared absorp-
tion. However, SPP is generally excited on the surface of
noble metals like Au, Ag, and Cu, etc., and a low quality-
factor (Q-factor) is the characteristics when the SPP
resonance works at an optical frequency, which limits the
further development for SPP applications. It has been
found that polar crystals like III-V semiconductors have a
high reflectivity in the mid-infrared or far-infrared region.
For example, SiC has a reflectance close to 100% in the
wavelength range from l = 10.32 to 12.61 mm [15]. In this
spectral region, the polar crystal has a negative dielectric
constant, and SPhP modes will be supported at its
interface. Derived from optical phonons with long life-
times, the SPhP mode inherits the characteristics of high
Q-factor from phonons. Based on these unique advantages,
SPhP becomes an alternative of SPP in the mid-infrared
spectrum with a broad prospect.
Similar to SPP, the surface wave frequency must be near

the SPhP characteristic frequency to produce significant
absorption. The essence of SPhP is the atoms collective
oscillation mode which is coupled with the incident
electromagnetic wave. As the incident electromagnetic
wave interacts with the lattice vibration in the semicon-
ductor, it leads to the transition of the phonon state and the
absorption of light. It is impossible to couple the incident
light wave into SPhP directly because the propagation
wave number of SPhP is far larger than that of free space
light. Therefore, it is necessary to meet the wave vector
matching condition with the coupling device or by
introducing special structures to achieve exciting the
SPhP mode. The common excitation approaches are
prism coupling, grating coupling, and near-field excitation.
In this paper, we propose an infrared detector based on

intrinsic graphene and utilize the optical confinement effect
of interface phonon polaritons (IPhPs) to increase the
graphene absorbance.
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2 Design of the detector

We have designed a structure and explored the graphene
and structural system absorption properties by the finite-
difference time-domain (FDTD) method. The detector
consists of Au gratings on the top of SiC/AlN/graphene/
BN stacked structure as shown in Fig. 1. The SiC/AlN is
used to support IPhP. The light source is selected as the
plane wave which is incident from top to bottom, and
periodic boundary conditions are adopted in the x-axis
direction and perfect matched layer boundary conditions in
the y-axis direction. Using the metal grating on the surface,
the light meets the wave vector matching condition, and
couples to SiC/AlN to excite IPhP. In consequence, it
increases the graphene absorbance.
In this simulation, the surface conductivity of graphene

σg is derived using the well-known Kubo formula and
written as [16–20]
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Here, e is the electron charge, kB is the Boltzmann
constant, ћ is reduced Planck constant, T is Kelvin
temperature, EF is the Fermi level, ω is the angular
frequency and G is the scattering rate, � is the energy of
electrons. We take G as 16.67 ps–1 [21], and assume room
temperature T = 300 K, for all simulations.
The dielectric constant of polar crystals is written as

εk,? ¼ ε1k,? þ ε1k,?ðω2
LOk,? –ω2

TOk,?Þ
ω2
TOk,? –ω2 – iωΓk,?

, (3)

where ωTO‖,? and ωLO‖,? are the transverse and long-
itudinal optic phonon frequencies, respectively, and G‖,?
are the phonon damping constants. For SiC, we have ε1?
= 6.4, ε1‖ = 7.7, ωTO? = 797 cm–1, ωTO‖ = 782 cm–1, ωLO?
= 971 cm–1,ωLO‖ = 965 cm–1, and G‖,? = 2.8 cm–1 [22]. The
dielectric constant of SiC is shown in Fig. 2.

3 Results and discussion

With the change of the grating period p, the simulation
results are shown in Fig. 3. The absorbance varies
significantly with the change of the grating period while
the location l of the absorption peak is unaltered. The
grating provides an extra wave vector. It meets the wave
vector matching as we set the grating period p = 10 mm,
which leads to the strongest vibration. Meanwhile, the
phonon is excited at the interface between SiC and AlN,
and the energy of the phonon is coupled into the graphene,
which improves the absorption of graphene. Figure 4 is an
electric field distribution diagram of a grating period p = 10
mm and a light wavelength l = 10.57 mm. The most filed
are distributed in AlN and SiC, which is a feature of
phonon [23].
Absorption of graphene is written as [24]

AG ¼ 2π

l0jE0j2S
εîG∭V

jEGj2dV : (4)

Equation (4) indicates that the absorbance of graphene is
proportional to imaginary part of dielectric constant.
Then, we explore the influence on graphene absorption

with different AlN thickness. The metal grating is chose as
p = 10 mm, dAu = 100 nm, and w = 5.72 mm. The thickness
of AlN changes to dAlN = 100, 80, 60, 40, 20 nm, while the
other parameters keep unchanged. As shown in Fig. 5, the
absorbance of system reaches close to 100% at l = 10.57
mm. In Fig. 6, the peak absorbance of graphene for the
different AlN thickness are 28.3%, 30.8%, 34.0%, 37.5%,
and 43.6%, respectively. As the thickness of AlN

Fig. 1 Schematic of device structure. The thickness of SiC layer, graphene layer and BN layer are dSiC = 350 mm, dG = 2 nm, dBN = 13
nm, respectively. dAlN, which represents the thickness of AlN, is a variable. The Au grating has a period of p = 10 mm, a width of w = 5.72
mm, and a thickness of dAu = 100 nm
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decreases, the absorbance of graphene increases. It is due
to that as the thickness of AlN increases, the path of IPhP
in AlN increases, which means more energy loss, and the
energy that eventually couples into the graphene decreases.
While the AlN becomes thinner, the propagation path of
IPhP getting shorter, and the energy consumed by the AlN
decreases; in consequence, the energy coupled into the
graphene increases, resulting in an increase of the graphene
absorption. In addition, we found that as the thickness of
AlN decreases, the absorption peak shifts toward the long
wavelength direction. This is due to that for multilayer
dielectric film, the characteristic frequency of IPhP is not
only related to the materials, but also to the thickness of
each dielectric layer [25]. As the thickness of AlN
decreases, it has an impact on the characteristic frequency

Fig. 2 Dielectric constant of SiC in the x direction, i.e.,
perpendicular to the lattice C-axis (the parallel-directional values
are not plotted here). The real part (in black dot) of dielectric
constant is negative while the imaginary part (in red triangle) is
positive

Fig. 3 Effect of different grating period p on the absorbance of
graphene. The main absorption peak is located at l = 10.57 mm.
The inset shows that the peak location remains unchanged at l =
10.57 mm

Fig. 4 Electric field distribution at l = 10.57 mm. The fields are
mainly confined within AlN and SiC

Fig. 5 Absorbance of the structural system with different AlN
thicknesses dAlN. The inset shows the absorption peak has a red
shift as the dAlN decreases

Fig. 6 Graphene absorbance with different AlN thicknesses
dAlN. The inset shows that the absorption peaks locate at l =
10.562, 10.568, 10.574, 10.580, and 10.596 mm are red-shifted
with the decrease of AlN thickness

Zhenyao CHEN et al. Interface phonon polariton coupling to enhance graphene absorption 447



of the interface phonon, which causes the resonance
absorption peak red-shifted.

4 Conclusion

In summary, we presented the design of graphene
photodetector based on IPhPs in mid-infrared region.
With the extra wave vector provided by the grating, the
light is coupled into the SiC/AlN interface to excite the
IPhPs. Then, the optical confinement effects of IPhPs
increase the graphene absorbance. As for the main
absorption peak (l = 10.57 mm), the grating period (p)
has no impact on the location, while the graphene
absorbance is affected seriously. We found that the
absorbance and absorption peak position of graphene
change with the thickness of AlN (dAlN), the graphene
absorbance reaches 43.6% at the wavelength of l = 10.57
mm, meanwhile the system absorbance reaches 100%.
Both graphene and the system’s absorption peak have a red
shift as the dAlN decreases. The remarkable enhancement in
graphene absorption suggests that the IPhP structure is
potentially helpful for designing high-performance gra-
phene photodetectors.
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