REVIEW ARTICLE

Advanced functional nanofibers: strategies to improve performance and expand functions

  • Xinyu Chen 1 ,
  • Honghao Cao 1,5 ,
  • Yue He 1 ,
  • Qili Zhou 1 ,
  • Zhangcheng Li 1 ,
  • Wen Wang 1 ,
  • Yu He 1 ,
  • Guangming Tao 2,3 ,
  • Chong Hou , 1,2,4
Expand
  • 1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3. State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 4. Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
  • 5. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge 02139, USA

Received date: 30 May 2022

Accepted date: 06 Sep 2022

Copyright

2022 The Author(s) 2022

Abstract

Nanofibers have a wide range of applications in many fields such as energy generation and storage, environmental sensing and treatment, biomedical and health, thanks to their large specific surface area, excellent flexibility, and superior mechanical properties. With the expansion of application fields and the upgrade of application requirements, there is an inevitable trend of improving the performance and functions of nanofibers. Over the past few decades, numerous studies have demonstrated how nanofibers can be adapted to more complex needs through modifications of their structures, materials, and assembly. Thus, it is necessary to systematically review the field of nanofibers in which new ideas and technologies are emerging. Here we summarize the recent advanced strategies to improve the performances and expand the functions of nanofibers. We first introduce the common methods of preparing nanofibers, then summarize the advances in the field of nanofibers, especially up-to-date strategies for further enhancing their functionalities. We classify these strategies into three categories: design of nanofiber structures, tuning of nanofiber materials, and improvement of nanofibers assemblies. Finally, the optimization methods, materials, application areas, and fabrication methods are summarized, and existing challenges and future research directions are discussed. We hope this review can provide useful guidance for subsequent related work.

Cite this article

Xinyu Chen , Honghao Cao , Yue He , Qili Zhou , Zhangcheng Li , Wen Wang , Yu He , Guangming Tao , Chong Hou . Advanced functional nanofibers: strategies to improve performance and expand functions[J]. Frontiers of Optoelectronics, 2022 , 15(4) : 50 . DOI: 10.1007/s12200-022-00051-2

1
Xie, F., Wang, Y., Zhuo, L., Jia, F., Ning, D., Lu, Z.: Electrospun wrinkled porous polyimide nanofiber-based filter via thermally induced phase separation for efficient high-temperature PMs capture. ACS Appl. Mater. Interfaces 12(50), 56499–56508(2020)

DOI

2
Wu, Q., Xu, Y., Yao, Z., Liu, A., Shi, G.: Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4), 1963–1970(2010)

DOI

3
Wang, M., Li, D., Li, J., Li, S., Chen, Z., Yu, D.G., Liu, Z., Guo, J.Z.: Electrospun Janus zein–PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater. Des. 196, 109075(2020)

DOI

4
Wang, X., Drew, C., Lee, S.H., Senecal, K.J., Kumar, J., Samuelson, L.A.: Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2(11), 1273–1275(2002)

DOI

5
Nikfarjam, A., Hosseini, S., Salehifar, N.: Fabrication of a highly sensitive single aligned TiO2 and gold nanoparticle embedded TiO2 nano-fiber gas sensor. ACS Appl. Mater. Interfaces 9(18), 15662–15671(2017)

DOI

6
Yue, X., Yi, S., Wang, R., Zhang, Z., Qiu, S.: Well-controlled SrTiO3@Mo2C core-shell nanofiber photocatalyst: boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy 47, 463–473(2018)

DOI

7
Wan, K., Wang, D., Wang, F., Li, H., Xu, J., Wang, X., Yang, J.: Hierarchical In2O3@SnO2 core–shell nanofiber for high efficiency formaldehyde detection. ACS Appl. Mater. Interfaces 11(48), 45214–45225(2019)

DOI

8
Tomboc, G.M., Kim, H.: Derivation of both EDLC and pseudocapacitance characteristics based on synergistic mixture of NiCo2O4 and hollow carbon nanofiber: an efficient electrode towards high energy density supercapacitor. Electrochim. Acta 318, 392–404(2019)

DOI

9
Choi, J., Chan, S., Joo, H., Yang, H., Ko, F.K.: Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photocatalyst for water treatment. Water Res. 101, 362–369(2016)

DOI

10
Wang, J., Gudiksen, M.S., Duan, X., Cui, Y., Lieber, C.M.: Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 80(293), 1455–1457(2001)

DOI

11
Chakrabarty, A., Raffy, G., Maity, M., Gartzia-Rivero, L., Marre, S., Aymonier, C., Maitra, U., Del Guerzo, A.: Nanofiber-directed anisotropic self-assembly of CdSe-CdS quantum rods for linearly polarized light emission evidenced by quantum rod orientation microscopy. Small 14(37), e1802311(2018)

DOI

12
Nanofibers, B., Simbrunner, C., Quochi, F., Hernandez-sosa, G., Oehzelt, M., Resel, R., Arndt, M., Saba, M., Mura, A., Bongiovanni, G., Sitter, H.: Organic–organic heteroepitaxy of red-, green-, and blue-emitting nanofiber. ACS Nano 2010(4), 6244–6250(2010)

DOI

13
Yin, K., Zhang, L., Lai, C., Zhong, L., Smith, S., Fong, H., Zhu, Z.: Photoluminescence anisotropy of uni-axially aligned electrospun conjugated polymer nanofibers of MEH-PPV and P3HT. J. Mater. Chem. 21(2), 444–448(2011)

DOI

14
Liao, X., Kahle, F.J., Liu, B., Bässler, H., Zhang, X., Köhler, A., Greiner, A.: Polarized blue photoluminescence of mesoscopically ordered electrospun non-conjugated polyacrylonitrile nanofibers. Mater. Horiz. 7(6), 1605–1612(2020)

DOI

15
Wang, Q., Schniepp, H.C.: Strength of recluse spider’s silk originates from nanofibrils. ACS Macro Lett. 7(11), 1364–1370(2018)

DOI

16
Yang, X., Li, L., Yang, D., Nie, J., Ma, G.: Electrospun core–shell fibrous 2D Scaffold with biocompatible poly(glycerol sebacate) and poly-l-lactic acid for wound healing. Adv. Fiber Mater. 2(2), 105–117(2020)

DOI

17
Cui, T., Yu, J., Li, Q., Wang, C.F., Chen, S., Li, W., Wang, G.: Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning. Adv. Mater. 32(32), e2000982(2020)

DOI

18
Fei, L., Hu, Y., Li, X., Song, R., Sun, L., Huang, H., Gu, H., Chan, H.L.W., Wang, Y.: Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices. ACS Appl. Mater. Interfaces 7(6), 3665–3670(2015)

DOI

19
An, A.K., Guo, J., Lee, E.J., Jeong, S., Zhao, Y., Wang, Z., Leiknes, T.O.: PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J. Membr. Sci. 525, 57–67(2017)

DOI

20
Ning, Y., Zhang, Z., Teng, F., Fang, X.: Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small 14(13), e1703754(2018)

DOI

21
Wang, Q., Jian, M., Wang, C., Zhang, Y.: Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 27(9), 1605657(2017)

DOI

22
Zhang, R., Liu, C., Hsu, P.C., Zhang, C., Liu, N., Zhang, J., Lee, H.R., Lu, Y., Qiu, Y., Chu, S., Cui, Y.: Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 16(6), 3642–3649(2016)

DOI

23
Qin, R., Shao, G., Hou, J., Zheng, Z., Zhai, T., Li, H.: One-pot synthesis of Li3VO4@C nanofibers by electrospinning with enhanced electrochemical performance for lithium-ion batteries. Sci. Bull. (Beijing) 62(15), 1081–1088(2017)

DOI

24
Kaufman, J.J., Tao, G., Shabahang, S., Deng, D.S., Fink, Y., Abouraddy, A.F.: Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires. Nano Lett. 11(11), 4768–4773(2011)

DOI

25
Yaman, M., Khudiyev, T., Ozgur, E., Kanik, M., Aktas, O., Ozgur, E.O., Deniz, H., Korkut, E., Bayindir, M.: Arrays of indefinitely long uniform nanowires and nanotubes. Nat. Mater. 10(7), 494–501(2011)

DOI

26
Deng, D.S., Orf, N.D., Abouraddy, A.F., Stolyarov, A.M., Joannopoulos, J.D., Stone, H.A., Fink, Y.: In-fiber semiconductor filament arrays. Nano Lett. 8(12), 4265–4269(2008)

DOI

27
Zuo, F., Tan, D.H., Wang, Z., Jeung, S., Macosko, C.W., Bates, F.S.: Nanofibers from melt blown fiber-in-fiber polymer blends. ACS Macro Lett. 2(4), 301–305(2013)

DOI

28
Hassan, M.A., Yeom, B.Y., Wilkie, A., Pourdeyhimi, B., Khan, S.A.: Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci. 427, 336–344(2013)

DOI

29
Ellison, C.J., Phatak, A., Giles, D.W., Macosko, C.W., Bates, F.S.: Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48, 3306–3316(2007)

DOI

30
Yang, Z., Peng, H., Wang, W., Liu, T.: Crystallization behavior of poly(ϵ-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116, 2658–2667(2010)

DOI

31
Wang, D., Sun, G., Chiou, B.S.: A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromol. Mater. Eng. 292(4), 407–414(2007)

DOI

32
Nakata, K., Fujii, K., Ohkoshi, Y., et al.: Poly(ethylene terephthalate) nanofibers made by sea-island-type conjugated melt spinning and laser-heated flow drawing. Macromol Rapid Commun. 28(6), 792–795(2007)

DOI

33
Cheng, K.C.K., Bedolla-Pantoja, M.A., Kim, Y.K., Gregory, J.V., Xie, F., De France, A., Hussal, C., Sun, K., Abbott, N.L., Lahann, J.: Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science 80(362), 804–808(2018)

DOI

34
Virji, S., Huang, J., Kaner, R.B., Weiller, B.H.: Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett. 4(3), 491–496(2004)

DOI

35
Wang, Y., Xu, S., Cheng, H., Liu, W., Chen, F., Liu, X., Liu, J., Chen, S., Hu, C.: Oriented growth of polyaniline nanofiber arrays onto the glass and flexible substrates using a facile method. Appl. Surf. Sci. 428, 315–321(2018)

DOI

36
Huang, J., Kaner, R.B.: A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 126(3), 851–855(2004)

DOI

37
Harfenist, S.A., Cambron, S.D., Nelson, E.W., Berry, S.M., Isham, A.W., Crain, M.M., Walsh, K.M., Keynton, R.S., Cohn, R.W.: Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers. Nano Lett. 4(10), 1931–1937(2004)

DOI

38
Gu, F., Zhang, L., Yin, X., Tong, L.: Polymer single-nanowire optical sensors. Nanoscale Res Lett 4, 94(2009)

DOI

39
Wang, C., Kim, J., Kim, M., Lim, H., Zhang, M., You, J., Yun, J.H., Bando, Y., Li, J., Yamauchi, Y.: Nanoarchitectured metal– organic framework-derived hollow carbon nanofiber filters for advanced oxidation processes. J. Mater. Chem. A Mater. Energy Sustain 7(22), 13743–13750(2019)

DOI

40
Hwang, I., Guan, Z., Cao, C., Tang, W., Chui, C.O., Li, X.: Nanoparticles suppress fluid instabilities in the thermal drawing of ultralong nanowires. Nat. Commun. 11(1), 5932(2020)

DOI

41
Li, D., Wang, Y., Xia, Y.: Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 3(8), 1167–1171(2003)

DOI

42
Marek, P., Senecal, K., Nida, D., Magnone, J., Senecal, A.: Application of a biotin functionalized QD assay for determining available binding sites on electrospun nanofiber membrane. J. Nanobiotechnol 9(1), 48(2011)

DOI

43
Lin, M.F., Xiong, J., Wang, J., Parida, K., Lee, P.S.: Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 44, 248–255(2018)

DOI

44
Wu, J., Wang, N., Zhao, Y., Jiang, L.: Electrospinning of multi-level structured functional micro-/nanofibers and their applications. J. Mater. Chem. A Mater. Energy Sustain. 1(25), 7290–7305(2013)

DOI

45
Frenot, A., Chronakis, I.S.: Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8(1), 64–75(2003)

DOI

46
Wen, X., Xiong, J., Lei, S., Wang, L., Qin, X.: Diameter refinement of electrospun nanofibers: from mechanism. Strategies to applications. Adv. Fiber Mater. (2022)

DOI

47
Deng, Y., Lu, T., Cui, J., Keshari, S., Xiong, R., Huang, C.: Biobased electrospun nanofiber as building blocks for a novel ecofriendly air filtration membrane: a review. Separ. Purif. Tech. 277, 119623(2021)

DOI

48
Cao, X., Deng, J., Pan, K.: Electrospinning Janus type CoOx/C nanofibers as electrocatalysts for oxygen reduction reaction. Adv. Fiber Mater. 2(2), 85–92(2020)

DOI

49
Chen, J., Pakdel, E., Xie, W., Sun, L., Xu, M., Liu, Q., Wang, D.: High-performance natural melanin/poly(vinyl alcohol-co-ethylene) nanofibers/PA6 fiber for twisted and coiled fiber-based actuator. Adv. Fiber Mater. 2(2), 64–73(2020)

DOI

50
Arshad, S.N., Naraghi, M., Chasiotis, I.: Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49(5), 1710–1719(2011)

DOI

51
Wang, L., Wu, Y., Guo, B., Ma, P.X.: Nanofiber yarn/hydrogel core-shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9(9), 9167–9179(2015)

DOI

52
Yan, W., Richard, I., Kurtuldu, G., James, N.D., Schiavone, G., Squair, J.W., Nguyen-Dang, T., Das Gupta, T., Qu, Y., Cao, J.D., Ignatans, R., Lacour, S.P., Tileli, V., Courtine, G., Löffler, J.F., Sorin, F.: Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat. Nanotechnol. 15(10), 875–882(2020)

DOI

53
Hu, X., Zhang, X., Shen, X., Li, H.: Plasma-induced synthesis of CuO nanofibers and ZnO nanoflowers in water. Plasma Chem Plasma Process 34, 1129–1139(2014)

DOI

54
Huang, J., Kaner, R.B.: Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew. Chem. 116(43), 5941–5945(2004)

DOI

55
Loscertales, I.G., Barrero, A., Márquez, M., Spretz, R., Velarde-Ortiz, R., Larsen, G.: Electrically forced coaxial nanojets for one-step hollow nanofiber design. J. Am. Chem. Soc. 126(17), 5376–5377(2004)

DOI

56
Hasegawa, T., Mikuni, T.: Higher-order structural analysis of Nylon-66 nanofibers prepared by carbon dioxide laser supersonic drawing and exhibiting near-equilibrium melting temperature. J. Appl. Polym. Sci. 131, 40361(2014)

DOI

57
Behrens, A.M., Casey, B.J., Sikorski, M.J., Wu, K.L., Tutak, W., Sandler, A.D., Ko, P.: In situ deposition of PLGA nano fibers via solution blow spinning. ACS Macro Lett. 3(3), 249(2014)

DOI

58
Ren, L., Ozisik, R., Kotha, S.P.: Rapid and efficient fabrication of multilevel structured silica micro-/nanofibers by centrifugal jet spinning. J. Colloid Interface Sci. 425, 136–142(2014)

DOI

59
Rolandi, M., Rolandi, R.: Self-assembled chitin nanofibers and applications. Adv. Colloid Interface Sci. 207, 216–222(2014)

DOI

60
Song, J., Zhang, B., Lu, Z., Xin, Z., Liu, T., Wei, W., Zia, Q., Pan, K., Gong, R.H., Bian, L., Li, Y., Li, J.: Hierarchical porous poly (l-lactic acid) nano fi brous membrane for ultra fi ne particulate aerosol filtration. ACS Appl. Mater. Interfaces (2019)

DOI

61
Im, J.S., Park, S.J., Kim, T.J., Kim, Y.H., Lee, Y.S.: The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J. Colloid Interface Sci. 318(1), 42–49(2008)

DOI

62
Ji, L., Rao, M., Aloni, S., Wang, L., Cairns, E.J., Zhang, Y.: Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 4(12), 5053–5059(2011)

DOI

63
Liu, Q., Wang, Y., Dai, L., Yao, J.: Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 28(15), 3000–3006(2016)

DOI

64
Lee, C.G., Javed, H., Zhang, D., Kim, J.H., Westerhoff, P., Li, Q., Alvarez, P.J.J.: Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ. Sci. Technol. 52(7), 4285–4293(2018)

DOI

65
Ma, W., Li, Y., Zhang, M., Gao, S., Cui, J., Huang, C., Fu, G.: Biomimetic durable multifunctional self-cleaning nano fibrous membrane with outstanding oil/water separation, photodegradation of organic contaminants, and antibacterial performances. ACS Appl. Mater. Interfaces. 12(31), 34999–35010(2020)

DOI

66
Zhu, L.F., Zheng, Y., Fan, J., Yao, Y., Ahmad, Z., Chang, M.W.: A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur. J. Pharm. Sci. 137, 105002(2019)

DOI

67
Zhu, Y., Song, L., Song, N., Li, M., Wang, C., Lu, X.: Bifunctional and efficient CoS2-C@MoS2 core–shell nanofiber electrocatalyst for water splitting. ACS Sustain. Chem. Eng. 7(3), 2899–2905(2019)

DOI

68
Wu, X., Han, Z., Zheng, X., Yao, S., Yang, X., Zhai, T.: Core–shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31, 410–417(2017)

DOI

69
Wang, K., Liu, X.K., Chen, X.H., Yu, D.G., Yang, Y.Y., Liu, P.: Electrospun hydrophilic Janus nanocomposites for the rapid onset of therapeutic action of helicid. ACS Appl. Mater. Interfaces 10(3), 2859–2867(2018)

DOI

70
Hwang, S.H., Kim, Y.K., Hong, S.H., Lim, S.K.: Cu/CuO@ ZnO hollow nanofiber gas sensor: effect of hollow nanofiber structure and P-N junction on operating temperature and sensitivity. Sensors (Basel) 19(14), 1–11(2019)

DOI

71
Zheng, G., Yang, Y., Cha, J.J., Hong, S.S., Cui, Y.: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11(10), 4462–4467(2011)

DOI

72
Kong, X., Zheng, Y., Wang, Y., Liang, S., Cao, G., Pan, A.: Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries. Sci. Bull. (Beijing) 64(4), 261–269(2019)

DOI

73
Sun, F., Qi, H., Xie, Y., Ma, Q., He, W., Xu, D., Wang, G., Yu, W., Wang, T., Dong, X.: Flexible self-supporting bifunctional [TiO2/C]//[Bi2WO6/C] carbon-based Janus nanofiber heterojunction photocatalysts for efficient hydrogen evolution and degradation of organic pollutant. J. Alloys Compd. 830, 154673(2020)

DOI

74
Yang, J., Wang, K., Yu, D.G., Yang, Y., Bligh, S.W.A., Williams, G.R.: Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C 111, 110805(2020)

DOI

75
Gao, Y., Xiao, Z., Kong, D., Iqbal, R., Yang, Q.H., Zhi, L.: N, P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis. Nano Energy 64, 103879(2019)

DOI

76
Zhu, R., Chen, F., Wang, J., Song, Y., Cheng, J., Mao, M., Ma, H., Lu, J., Cheng, Y.: Multi-channel V-doped CoP hollow nanofibers as high-performance hydrogen evolution reaction electrocatalysts. Nanoscale 12(16), 9144–9151(2020). (PMID:32296800)

DOI

77
Liu, J., Yuan, H., Qiao, J., Feng, J., Xu, C., Wang, Z., Sun, W., Sun, K.: Hierarchical hollow nanofiber networks for high-performance hybrid direct carbon fuel cells. J. Mater. Chem. A Mater. Energy Sustain. 5(33), 17216–17220(2017)

DOI

78
Li, S., Yin, J., Xu, L.: Batch fabrication and characterization of ZnO/PLGA/PCL nanofiber membranes for antibacterial materials. Fibers Polym. 23(5), 1225–1234(2022)

DOI

79
Zhang, M., Yang, J., Kang, Z., Wu, X., Tang, L., Qiang, Z., Zhang, D., Pan, X.: Removal of micron-scale microplastic particles from different waters with efficient tool of surface-functionalized microbubbles. J. Hazard. Mater. 404(Pt A), 124095(2021)

DOI

80
Shao, Z., Chen, Y., Jiang, J., Xiao, Y., Kang, G., Wang, X., Li, W., Zheng, G.: Multistage-split ultrafine fluffy nanofibrous membrane for high-efficiency antibacterial air filtration. ACS Appl. Mater. Interfaces 14(16), 18989–19001(2022)

DOI

81
Zupančič, Š, Sinha-Ray, S., Sinha-Ray, S., Kristl, J., Yarin, A.L.: Long-term sustained ciprofloxacin release from PMMA and hydrophilic polymer blended nanofibers. Mol. Pharm. 13(1), 295–305(2016)

DOI

82
Yao, Q., Cosme, J.G.L., Xu, T., Miszuk, J.M., Picciani, P.H.S., Fong, H., Sun, H.: Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 115, 115–127(2017)

DOI

83
Lobo, A.O., Afewerki, S., de Paula, M.M.M., Ghannadian, P., Marciano, F.R., Zhang, Y.S., Webster, T.J., Khademhosseini, A.: Electrospun nanofiber blend with improved mechanical and biological performance. Int. J. Nanomed 13, 7891–7903(2018)

DOI

84
Sun, H.W., Zhang, H., Zhen, Q., Wang, S.F., Hu, J.J., Cui, J.Q., Qian, X.M.: Large-scale preparation of polylactic acid/polyethylene glycol micro/nanofiber fabrics with aligned fibers via a post-drafting melt blown process. J. Polym. Res. 29(8), 1–10(2022)

DOI

85
Panomsuwan, G., Saito, N., Ishizaki, T.: Nitrogen-doped carbon nanoparticle-carbon nanofiber composite as an efficient metal-free cathode catalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8(11), 6962–6971(2016)

DOI

86
Al-Hammadi, S.A., Al-Amer, A.M., Saleh, T.A.: Alumina-carbon nanofiber composite as a support for MoCo catalysts in hydrodesulfurization reactions. Chem. Eng. J. 345, 242–251(2018)

DOI

87
Xu, T., Zheng, F., Chen, Z., Ding, Y., Liang, Z., Liu, Y., Zhu, Z., Fong, H.: Halloysite nanotubes sponges with skeletons made of electrospun nanofibers as innovative dye adsorbent and catalyst support. Chem. Eng. J. 360, 280–288(2019)

DOI

88
Choi, S.J., Kim, S.J., Cho, H.J., Jang, J.S., Lin, Y.M., Tuller, H.L., Rutledge, G.C., Kim, I.D.: WO3 nanofiber-based biomarker detectors enabled by protein-encapsulated catalyst self-assembled on polystyrene colloid templates. Small 12(7), 911–920(2016)

DOI

89
Wang, K., Li, J., Li, W., Wei, W., Zhang, H., Wang, L.: Highly active Co-based catalyst in nanofiber matrix as advanced sensing layer for high selectivity of flexible sensing device. Adv. Mater. Technol. 4, 1–8(2018)

DOI

90
Wang, Y., Górecki, R.P., Stamate, E., Norrman, K., Aili, D., Zuo, M., Guo, W., Hélix-Nielsen, C., Zhang, W.: Preparation of superhydrophilic polyphenylsulfone nanofiber membranes for water treatment. RSC Adv. 9(1), 278–286(2019)

DOI

91
Cheng, H., Xiao, D., Tang, Y., Wang, B., Feng, X., Lu, M., Vancso, G.J., Sui, X.: Sponges with Janus character from nanocellulose: preparation and applications in the treatment of hemorrhagic wounds. Adv. Healthc. Mater. 9(17), e1901796(2020)

DOI

92
Chen, W.S., Hsieh, P.H., Yang, W.N., Fan-Jen, P.Z., Yang, M.L., Yeh, J.M., Wei, Y., Chin, T.Y., Chen-Yang, Y.W.: Chemically modified electrospun silica nanofibers for promoting growth and differentiation of neural stem cells. J. Mater. Chem. B Mater. Biol. Med. 2(9), 1205–1215(2014)

DOI

93
Saeed, K., Haider, S., Oh, T.J., Park, S.Y.: Preparation of amidoxime- modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J. Membr. Sci. 322(2), 400–405(2008)

DOI

94
Yazdi, M.G., Ivanic, M., Mohamed, A., Uheida, A.: Surface modified composite nanofibers for the removal of indigo carmine dye from polluted water. RSC Adv. 8(43), 24588–24598(2018)

DOI

95
Morillo Martín, D., Faccini, M., García, M.A., Amantia, D.: Highly efficient removal of heavy metal ions from polluted water using ion-selective polyacrylonitrile nanofibers. J. Environ. Chem. Eng. 6(1), 236–245(2018)

DOI

96
Zhao, R., Li, X., Sun, B., Shen, M., Tan, X., Ding, Y., Jiang, Z., Wang, C.: Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem. Eng. J. 268, 290–299(2015)

DOI

97
Meng, C., Xiao, Y., Wang, P., Zhang, L., Liu, Y., Tong, L.: Quantum-dot-doped polymer nanofibers for optical sensing. Adv. Mater. 23(33), 3770–3774(2011)

DOI

98
Ma, W., Jiang, Z., Lu, T., Xiong, R., Huang, C.: Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil / water separation and pressure sensing. Chem. Eng. J. 430, 132989(2022)

DOI

99
Deng, Y., Lu, T., Cui, J., Ma, W., Qu, Q., Zhang, X., Zhang, Y., Zhu, M., Xiong, R., Huang, C.: Morphology engineering processed nanofibrous membranes with secondary structure for high-performance air filtration. Separ. Purif. Tech. 294, 121093(2022)

DOI

100
Ma, W., Zhang, M., Liu, Z., Kang, M., Huang, C., Fu, G.: Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation. J. Membr. Sci. 570–571, 303–313(2019)

DOI

101
Zhu, J., Sun, H., Xu, Y., Liu, T., Hou, T., Liu, L., Li, Y., Lin, T., Xin, Y.: Preparation of PVDF/TiO2 nanofibers with enhanced piezoelectric properties for geophone applications. Smart Mater. Struct. 28(8), 085006(2019)

DOI

102
Cao, X., Zhu, Y., Shi, T., Lei, J., Tang, X., Zhang, D.: Electrospinning preparation of La-doped SnO2 hollow nanofibers: an improvement of their gas sensing properties. J. Nanosci. Nanotechnol. 18(10), 6965–6970(2018)

DOI

103
Shi, C., Zhu, Y., Xu, Q., Tao, X., Kong, C.: A study of ordered La-doped SnO2 nanofibers in light of their length and gas sensitivity. Phys. E. 124, 114294(2020)

DOI

104
Yao, Z., Xia, M., Xiong, Z., Wu, Y., Cheng, P., Cheng, Q., Xu, J., Wang, D., Liu, K.: A hierarchical structure of flower-like zinc oxide and poly(vinyl alcohol-co-ethylene) nanofiber hybrid membranes for high-performance air filters. ACS Omega 7(3), 3030–3036(2022)

DOI

105
Katta, P., Alessandro, M., Ramsier, R.D., Chase, G.G.: Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett. 4(11), 2215–2218(2004)

DOI

106
Fennessey, S.F., Farris, R.J.: Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer (Guildf.) 45(12), 4217–4225(2004)

DOI

107
Lunni, D., Cianchetti, M., Filippeschi, C., Sinibaldi, E., Mazzolai, B.: Plant-inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv. Mater. Interfaces 7(4), 1–8(2020)

DOI

108
Li, D., Wang, Y., Xia, Y.: Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16(4), 361–366(2004)

DOI

109
Liu, J., Chen, G., Gao, H., Zhang, L., Ma, S., Liang, J., Fong, H.: Structure and thermo-chemical properties of continuous bundles of aligned and stretched electrospun polyacrylonitrile precursor nanofibers collected in a flowing water bath. Carbon 50(3), 1262–1270(2012)

DOI

110
Lee, J., Choi, J., Cho, A.E., Kumar, S., Jang, S.S., Kim, Y.H.: Origin and control of polyacrylonitrile alignments on carbon nanotubes and graphene nanoribbons. Adv. Funct. Mater. 28(15), 1–7(2018)

DOI

111
Ma, S., Liu, J., Liu, Q., Liang, J., Zhao, Y., Fong, H.: Investigation of structural conversion and size effect from stretched bundle of electrospun polyacrylonitrile copolymer nanofibers during oxidative stabilization. Mater Des. 95, 387–397(2016)

DOI

112
Kim, D.W., Kim, C.H., Yang, C.M., Ahn, S., Kim, Y.H., Hong, S.K., Kim, K.S., Hwang, J.Y., Choi, G.B., Kim, Y.A., Yang, K.S.: Deriving structural perfection in the structure of polyacrylonitrile based electrospun carbon nanofiber. Carbon 147, 612–615(2019)

DOI

113
Zhang, B., Kang, F., Tarascon, J.M., Kim, J.K.: Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 76, 319–380(2016)

DOI

114
Li, W.T., Zhang, X.D., Guo, X.: Electrospun Ni-doped SnO2 nanofiber array for selective sensing of NO2. Sens. Actuators B Chem. 244, 509–521(2017)

DOI

115
Cai, J., Chawla, S., Naraghi, M.: Microstructural evolution and mechanics of hot-drawn CNT-reinforced polymeric nanofibers. Carbon 109, 813–822(2016)

DOI

116
Song, Y.N., Lei, M.Q., Deng, L.F., Lei, J., Li, Z.M.: Hybrid metamaterial textiles for passive personal cooling indoors and outdoors. ACS Appl. Polym. Mater. 2(11), 4379–4386(2020)

DOI

117
Kong, L., Fu, X., Fan, X., Wang, Y., Qi, S., Wu, D., Tian, G., Zhong, W.H.: A Janus nanofiber-based separator for trapping polysulfides and facilitating ion-transport in lithium-sulfur batteries. Nanoscale 11(39), 18090–18098(2019)

DOI

118
Ahmed Babar, A., Zhao, X., Wang, X., Yu, J., Ding, B.: One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport. J. Colloid Interface Sci. 577, 207–216(2020)

DOI

119
Wang, Z., Ma, Q., Dong, X., Li, D., Xi, X., Yu, W., Wang, J., Liu, G.: Novel electrospun dual-layered composite nanofibrous membrane endowed with electricity-magnetism bifunctionality at one layer and photoluminescence at the other layer. ACS Appl. Mater. Interfaces 8(39), 26226–26234(2016)

DOI

120
Oh, Y.S., Jung, G.Y., Kim, J.H., Kim, J.H., Kim, S.H., Kwak, S.K., Lee, S.Y.: Janus-faced, dual-conductive/chemically active battery separator membranes. Adv. Funct. Mater. 26(39), 7074–7083(2016)

DOI

121
Liang, C., He, J., Zhang, Y., Zhang, W., Liu, C., Ma, X., Liu, Y., Gu, J.: MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 224, 109445(2022)

DOI

122
Rodríguez-Fabià, S., Chinga-Carrasco, G.: Effects of a poly(hydroxyalkanoate) elastomer and kraft pulp fibres on biocomposite properties and three-dimensional (3D) printability of filaments for fused deposition modelling. J. Bioresour. Bioprod. 7(3), 161–172(2022)

DOI

123
Wei, D.W., Wei, H., Gauthier, A.C., Song, J., Jin, Y., Xiao, H.: Superhydrophobic modification of cellulose and cotton textiles: methodologies and applications. J. Bioresour. Bioprod. 5(1), 1–15(2020)

DOI

124
Kelly, T.L., Gao, T., Sailor, M.J.: Carbon and carbon/silicon composites templated in rugate filters for the adsorption and detection of organic vapors. Adv. Mater. 23(15), 1776–1781(2011)

DOI

125
Zhang, J., Yan, Z., Ouyang, J., Yang, H., Chen, D.: Highly dispersed sepiolite-based organic modified nanofibers for enhanced adsorption of Congo red. Appl. Clay Sci. 157, 76–85(2018)

DOI

Outlines

/