REVIEW ARTICLE

Fiber structures and material science in optical fiber magnetic field sensors

  • Jing Zhang , 1 ,
  • Chen Wang 1 ,
  • Yunkang Chen 1 ,
  • Yudiao Xiang 1 ,
  • Tianye Huang 1 ,
  • Perry Ping Shum 1,2 ,
  • Zhichao Wu , 1
Expand
  • 1. School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
  • 2. Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Received date: 21 May 2022

Accepted date: 12 Jun 2022

Published date: 15 Sep 2022

Copyright

2022 The Author(s) 2022

Abstract

Magnetic field sensing plays an important role in many fields of scientific research and engineering applications. Benefiting from the advantages of optical fibers, the optical fiber-based magnetic field sensors demonstrate characteristics of light weight, small size, remote controllability, reliable security, and wide dynamic ranges. This paper provides an overview of the basic principles, development, and applications of optical fiber magnetic field sensors. The sensing mechanisms of fiber grating, interferometric and evanescent field fiber are discussed in detail. Magnetic fluid materials, magneto-strictive materials, and magneto-optical materials used in optical fiber sensing systems are also introduced. The applications of optical fiber magnetic field sensors as current sensors, geomagnetic monitoring, and quasi-distributed magnetic sensors are presented. In addition, challenges and future development directions are analyzed.

Cite this article

Jing Zhang , Chen Wang , Yunkang Chen , Yudiao Xiang , Tianye Huang , Perry Ping Shum , Zhichao Wu . Fiber structures and material science in optical fiber magnetic field sensors[J]. Frontiers of Optoelectronics, 2022 , 15(3) : 34 . DOI: 10.1007/s12200-022-00037-0

1
Ripka, P., Janosek, M.: Advances in magnetic field sensors. IEE. Sens. J. 10(6), 1108–1116 (2010)

DOI

2
Tumanski, S.: Modern magnetic field sensors—a review. Organ. 10(1), 1–12 (2013)

3
Murzin, D., Mapps, D.J., Levada, K., Belyaev, V., Omelyanchik, A., Panina, L., Rodionova, V.: Ultrasensitive magnetic field sensors for biomedical applications. Sensors 20(6), 1569 (2020)

DOI

4
Melzer, M., Mönch, J.I., Makarov, D., Zabila, Y., Bermúdez, G.S.C., Karnaushenko, D., Baunack, S., Bahr, F., Yan, C., Kaltenbrunner, M., Schmidt, O.G.: Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27(7), 1274–1280 (2015)

DOI

5
Lenz, J., Edelstein, A.S.: Magnetic sensors and their applications. IEE. Sens. J. 6(3), 631–649 (2006)

DOI

6
Liu, C., Shen, T., Wu, H.B., Feng, Y., Chen, J.J.: Applications of magneto-strictive, magneto-optical, magnetic fluid materials in optical fiber current sensors and optical fiber magnetic field sensors: a review. Opt. Fiber Technol. 65, 102634 (2021)

DOI

7
Alberto, N., Domingues, M.F., Marques, C., André, P., Antunes, P.: Optical fiber magnetic field sensors based on magnetic fluid: a review. Sensors 18(12), 4325 (2018)

DOI

8
Castrellon-Uribe J. Optical fiber sensors: an overview. IntechOpen. (2012)

DOI

9
Othonos, A.: Fiber Bragg gratings. Rev. Sci. Instrum. 68(12), 4309–4341 (1997)

DOI

10
Bartelt, H.: Fiber Bragg grating sensors and sensor arrays. Adv. Sci. Technol. 55, 138–144 (2008)

DOI

11
Liu, H., Or, S.W., Tam, H.Y.: Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor. Sens. Actuators A 173(1), 122–126 (2012)

DOI

12
Wu, B. J., Yang, Y., Qiu, K.: Magneto-optic fiber Bragg gratings with application to high-resolution magnetic field sensors. In: 2008 1st Asia-Pacific Optical Fiber Sensors Conference. Chengdu: IEEE: 1–3 (2008)

DOI

13
Yang, M., Dai, J., Zhou, C., Jiang, D.: Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials. Opt. Express 17(23), 20777–20782 (2009)

DOI

14
Dai, Y., Yang, M., Xu, G., Yuan, Y.: Magnetic field sensor based on fiber Bragg grating with a spiral microgroove ablated by femtosecond laser. Opt. Express 21(14), 17386–17391 (2013)

DOI

15
Bao, L., Dong, X., Zhang, S., Shen, C., Shum, P.P.: Magnetic field sensor based on magnetic fluid-infiltrated phase-shifted fiber Bragg grating. IEE. Sens. J. 18(10), 4008–4012 (2018)

DOI

16
Estudillo-Ayala, J. M., Mata-Chávez, R. I., Hernández-García, J. C., Rojas-Laguna, R.: Long period fiber grating produced by arc discharges. Fiber Opt. Sens. IntechOpen (2012)

17
Gao, L., Zhu, T., Deng, M., Chiang, K.S., Sun, X., Dong, X., Hou, Y.: Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection. IEEE Photonics J. 4(6), 2095–2104 (2012)

DOI

18
Chiang, C.C., Chen, Z.J.: A novel optical fiber magnetic sensor based on electroforming long-period fiber grating. J. Lightwave Technol. 32(19), 3331–3336 (2014)

DOI

19
Zhao, Y., Liu, S., Xiong, C., Wang, Y., Li, Z., Sun, Z., Li, J., Wang, Y.: Magnetic field sensor based on helical long-period fiber grating with a three-core optical fiber. Opt. Express 29(13), 20649–20656 (2021)

DOI

20
Albert, J., Shao, L.Y., Caucheteur, C.: Tilted fiber Bragg grating sensors. Laser Photonic. Rev. 7(1), 83–108 (2013)

DOI

21
Erdogan, T., Sipe, J.E.: Tilted fiber phase gratings. JOSA A 13(2), 296–313 (1996)

DOI

22
Yang, D., Du, L., Xu, Z., Jiang, Y., Xu, J., Wang, M., Bai, Y., Wang, H.: Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid. Appl. Phys. Lett. 104(6), 061903 (2014)

DOI

23
Childs, P., Candiani, A., Pissadakis, S.: Optical fiber cladding ring magnetic field sensor. IEEE Photonics Technol. Lett. 23(13), 929–931 (2011)

DOI

24
Zheng, J., Dong, X., Zu, P., Ji, J., Su, H., Shum, P.P.: Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings. Appl. Phys. Lett. 103(18), 183511 (2013)

DOI

25
Nguyen, L.V., Hwang, D., Moon, S., Moon, D.S., Chung, Y.: High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 16(15), 11369–11375 (2018)

DOI

26
Tofighi, S., Bahrampour, A., Pishbin, N., Bahrampour, A.: Interferometric fiber-optic sensors, 1st edn. CRC Press, Boca Raton (2015)

27
Li, Z., Liao, C., Song, J., Wang, Y., Zhu, F., Wang, Y., Dong, X.: Ultrasensitive magnetic field sensor based on an in-fiber Mach-Zehnder interferometer with a magnetic fluid component. Photonics Res. 4(5), 197–201 (2016)

DOI

28
de Souza, F.C.D.N., Maia, L.S.P., de Medeiros, G.M., Miranda, M.A.R., Sasaki, J.M., Guimarães, G.F.: Optical current and magnetic field sensor using Mach-Zehnder interferometer with nanoparticles. IEE. Sens. J. 18(19), 7998–8004 (2018)

DOI

29
Zhang, N., Wang, M., Wu, B., Han, M., Yin, B., Cao, J., Wang, C.: Temperature-insensitive magnetic field sensor based on an optoelectronic oscillator merging a Mach-Zehnder interferometer. IEE. Sens. J. 20(13), 7053–7059 (2020)

DOI

30
Zeng, L., Sun, X., Zhang, L., Hu, Y., Duan, J.: High sensitivity magnetic field sensor based on a Mach-Zehnder interferometer and magnetic fluid. Optik 249, 168234 (2022)

DOI

31
Rao, C.N., Gui, X., Pawar, D., Huang, Q.G., Beera, C.S., Cao, P.J., Wen, J.L., Zhu, D.L., Lu, Y.Y.: Magneto-optical fiber sensor based on Fabry-Perot interferometer with perovskite magnetic material. J. Magn. Magn. Mater. 499, 166298 (2020)

DOI

32
Yin, S., Ruffin, P.B., Francis, T.S.: Fiber optic sensors, 2nd edn. CRC Press, Boca Raton (2008)

33
Lv, R.Q., Zhao, Y., Wang, D., Wang, Q.: Magnetic fluid-filled optical fiber Fabry-Pérot sensor for magnetic field measurement. IEEE Photonics Technol. Lett. 26(3), 217–219 (2013)

DOI

34
Xia, J., Wang, F., Luo, H., Wang, Q., Xiong, S.: A magnetic field sensor based on a magnetic fluid-filled FP-FBG structure. Sensors. 16(5), 620 (2016)

DOI

35
Zhang, D., Wei, H., Hu, H., Krishnaswamy, S.: Highly sensitive magnetic field microsensor based on direct laser writing of fiber-tip optofluidic Fabry-Pérot cavity. APL Photonics. 5(7), 076112 (2020)

DOI

36
Zheng, Y., Chen, L.H., Yang, J., Raghunandhan, R., Dong, X., So, P.L., Chan, C.C.: Fiber optic Fabry-Perot optofluidic sensor with a focused ion beam ablated microslot for fast refractive index and magnetic field measurement. IEEE J. Sel. Top. Quantum Electron. 23(2), 322–326 (2017)

DOI

37
Wang, X., Zhao, Y., Lv, R., Zheng, H., Cai, L.: Magnetic field measurement method based on the magneto-volume effect of hollow core fiber filled with magnetic fluid. IEEE Trans. Instrum. Meas. 70, 1–8 (2021)

DOI

38
Culshaw, B.: The optical fiber Sagnac interferometer: an overview of its principles and applications. Meas. Sci. Technol. 17(1), R1 (2005)

DOI

39
Zu, P., Chan, C.C., Lew, W.S., Jin, Y., Zhang, Y., Liew, H.F., Chen, L.H., Wong, W.C., Dong, X.: Magneto-optical fiber sensor based on magnetic fluid. Opt. Lett. 37(3), 398–400 (2012)

DOI

40
Zu, P., Chan, C.C., Koh, G.W., Lew, W.S., Jin, Y., Liew, H.F., Wong, W.C., Dong, X.: Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer. Sens. Actuators B Chem. 191, 19–23 (2014)

DOI

41
Zhao, Y., Wu, D., Lv, R.Q., Li, J.: Magnetic field measurement based on the Sagnac interferometer with a ferrofluid-filled high-birefringence photonic crystal fiber. IEEE Trans. Instrum. Meas. 65(6), 1503–1507 (2016)

DOI

42
Kashyap, R., Nayar, B.K.: An all single-mode fiber Michelson interferometer sensor. J. Lightwave Technol. 1(4), 619–624 (1983)

DOI

43
Deng, M., Sun, X., Han, M., Li, D.: Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid. Appl. Opt. 52(4), 734–741 (2013)

DOI

44
Chen, F., Jiang, Y.: Fiber optic magnetic field sensor based on the TbDyFe rod. Meas. Sci. Technol. 25(8), 085106 (2014)

DOI

45
Pu, S., Mao, L., Yao, T., Gu, J., Lahoubi, M., Zeng, X.: Microfiber coupling structures for magnetic field sensing with enhanced sensitivity. IEE. Sens. J. 17(18), 5857–5861 (2017)

DOI

46
Feng, X., Jiang, Y., Zhang, H.: Fiber-optic Michelson magnetic field sensor based on a mechanical amplifier structure. Appl. Opt. 60(33), 10359–10364 (2021)

DOI

47
Harun, S.W., Lim, K.S., Tio, C.K., Dimyati, K., Ahmad, H.: Theoretical analysis and fabrication of tapered fiber. Optik 124(6), 538–543 (2013)

DOI

48
Zhao, Y., Wu, D., Lv, R.Q.: Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid. IEEE Photonics Technol. Lett. 27(1), 26–29 (2014)

DOI

49
Rodríguez-Schwendtner, E., Díaz-Herrera, N., Navarrete, M.C., Gonzalez-Cano, A., Esteban, O.: Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields. Sens. Actuators A 264, 58–62 (2017)

DOI

50
Herrera-Piad, L.A., Haus, J.W., Jauregui-Vazquez, D., Sierra-Hernandez, J.M., Estudillo-Ayala, J.M., Lopez-Dieguez, Y., Rojas-Laguna, R.: Magnetic field sensing based on bi-tapered optical fibers using spectral phase analysis. Sensors 17(10), 2393 (2017)

DOI

51
Zhang, J., Qiao, X., Wang, R., Chen, F., Bao, W.: Highly sensitivity fiber-optic vector magnetometer based on two-mode fiber and magnetic fluid. IEE. Sens. J. 19(7), 2576–2580 (2018)

DOI

52
Zhang, Y., Ning, Y., Zhang, M., Guo, H., Zhang, Y., Liu, Z., Ji, X., Zhang, J., Yang, X., Yuan, L.: Spider silk-based fiber magnetic field sensor. J. Lightwave Technol. 39(20), 6631–6636 (2021)

DOI

53
Tam, J. M., Szunerits, S., Walt, D. R.: Optical fibers for nanodevices. Encyclopedia of nanoscience and nanotechnology. America: American Scientific Publishers. 8(177): 167–177 (2004)

54
Dai, J., Yang, M., Li, X., Liu, H., Tong, X.: Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating. Opt. Fiber Technol. 17(3), 210–213 (2011)

DOI

55
Wang, H., Pu, S., Wang, N., Dong, S., Huang, J.: Magnetic field sensing based on single-mode-multimode-single-mode fiber structures using magnetic fluids as cladding. Opt. Lett. 38(19), 3765–3768 (2013)

DOI

56
Wang, Q., Liu, X., Zhao, Y., Lv, R., Hu, H., Li, J.: Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid. Opt. Commun. 356, 628–633 (2015)

DOI

57
Ying, Y., Xu, K., Sun, L.L., Zhang, R., Guo, X.F., Si, G.Y.: D-shaped fiber magnetic-field sensor based on fine-tuning magnetic fluid grating period. IEEE Trans. Electron Dev. 64(4), 1735–1741 (2017)

DOI

58
Liu, H., Li, H., Wang, Q., Wang, M., Ding, Y., Zhu, C., Cheng, D.: Temperature-compensated magnetic field sensor based on surface plasmon resonance and directional resonance coupling in a D-shaped photonic crystal fiber. Optik 158, 1402–1409 (2018)

DOI

59
Gupta, B.D., Dodeja, H., Tomar, A.K.: Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Opt. Quant. Electron. 28(11), 1629–1639 (1996)

DOI

60
Zhang, R., Liu, T., Han, Q., Chen, Y., Li, L.: U-bent single-mode-multimode-single-mode fiber optic magnetic field sensor based on magnetic fluid. Appl. Phys. Express 7(7), 072501 (2014)

DOI

61
Zhu, L., Lin, Q., Yao, K., Zhao, N., Yang, P., Jiang, Z.: Fiber vector magnetometer based on balloon-like fiber structure and magnetic fluid. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)

DOI

62
Grant, I.S., Phillips, W.R.: Electromagnetism, 2nd edn. Wiley, New York (2013)

63
Zheng, H., Shao, H.P., Lin, T., Zhao, Z.F., Guo, Z.M.: Preparation and characterization of silicone-oil-based γ-Fe2O3 magnetic fluid. Rare Met. 37(9), 803–807 (2018)

DOI

64
Chen, B., Fan, Y.G., Zhou, S.P.: Study on preparation of oil-based Fe3O4 nano magnetic fluid. Adv. Mater. Res. 148, 808–811 (2011)

DOI

65
Huang, W., Wu, J., Guo, W., Li, R., Cui, L.: Study on the magnetic stability of iron-nitride magnetic fluid. J. Alloy. Compd. 443(1–2), 195–198 (2007)

DOI

66
Martinez, L., Cecelja, F., Rakowski, R.: A novel magneto-optic ferrofluid material for sensor applications. Sens. Actuators A 123, 438–443 (2005)

DOI

67
Yang, S.Y., Chieh, J.J., Horng, H.E., Hong, C.Y., Yang, H.C.: Origin and applications of magnetically tunable refractive index of magnetic fluid films. Appl. Phys. Lett. 84(25), 5204–5206 (2004)

DOI

68
Zhou, X., Li, X., Li, S., An, G.W., Cheng, T.: Magnetic field sensing based on SPR optical fiber sensor interacting with magnetic fluid. IEEE Trans. Instrum. Meas. 68(1), 234–239 (2018)

DOI

69
Cennamo, N., Arcadio, F., Marletta, V., Baglio, S., Zeni, L., Andò, B.: A magnetic field sensor based on spr-pof platforms and ferrofluids. IEEE Trans. Instrum. Meas. 70, 1–10 (2020)

DOI

70
Ou, Y., Chen, J., Chen, W., Zhu, Y., Xiao, W., Xiao, M., Cheng, C.: Multipoint magnetic field measurement based on magnetic fluid and FSI-FLRD. IEE. Sens. J. 21(16), 18249–18255 (2021)

DOI

71
Mochizuki, M., Furukawa, N., Nagaosa, N.: Erratum: Spin Model of Magnetostrictions in Multiferroic Mn Perovskites [Phys. Rev. Lett. 105, 037205 (2010)]. Phys. Rev. Lett. 106(11), 119901 (2011)

DOI

72
Del Moral, A., Algarabel, P.A., Arnaudas, J.I., Benito, L., Ciria, M., De la Fuente, C., Garcia-Landa, B., Ibarra, M.R., Marquina, C., Morellón, L., De Teresa, J.M.: Magnetostriction effects. J. Magn. Magn. Mater. 242, 788–796 (2002)

DOI

73
Tiercelin, N., Preobrazhensky, V., Pernod, P., Ostaschenko, A.: Enhanced magnetoelectric effect in nanostructured magnetostrictive thin film resonant actuator with field induced spin reorientation transition. Appl. Phys. Lett. 92(6), 062904 (2008)

DOI

74
Shi, C., Chen, J., Wu, G., Li, X., Zhou, J., Ou, F.: Stable dynamic detection scheme for magnetostrictive fiber-optic interferometric sensors. Opt. Express 14(12), 5098–5102 (2006)

DOI

75
Chen, F., Jiang, Y., Gao, H., Jiang, L.: A high-finesse fiber optic Fabry–Perot interferometer based magnetic-field sensor. Opt. Lasers Eng. 71, 62–65 (2015)

DOI

76
Filograno, M.L., Pisco, M., Catalano, A., Forte, E., Aiello, M., Soricelli, A., Davino, D., Visone, C., Cutolo, A., Cusano, A.: Triaxial fiber optic magnetic field sensor for MRI applications. Eur. Workshop Opt. Fiber Sens. 9916, 106–109 (2016)

DOI

77
De Angulo, L.R., Abell, J.S., Harris, I.R.: Magnetostrictive properties of polymer bonded Terfenol-D. J. Magn. Magn. Mater. 157, 508–509 (1996)

DOI

78
Imaizumi, D., Hayakawa, T., Nogami, M.: Faraday rotation effects of Mn2+-modified Tb2O3-B2O3 glass in pulsed magnetic field. J. Lightwave Technol. 20(4), 740 (2002)

DOI

79
Sun, L., Jiang, S., Zuegel, J.D., Marciante, J.R.: Effective Verdet constant in a terbium-doped-core phosphate fiber. Opt. Lett. 34(11), 1699–1701 (2009)

DOI

80
Huang, M., Xu, Z.C.: Wavelength and temperature characteristics of BiYbIG film/YIG crystal composite structure for magneto-optical applications. Appl. Phys. A 81(1), 193–196 (2005)

DOI

81
Chen, Z., Wang, X., Wang, J., Hang, Y.: Highly transparent terbium gallium garnet crystal fabricated by the floating zone method for visible–infrared optical isolators. Opt. Mater. 46, 12–15 (2015)

DOI

82
Snetkov, I.L., Yasuhara, R., Starobor, A.V., Mironov, E.A., Palashov, O.V.: Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals. IEEE J. Quantum Electron. 51(7), 1–7 (2015)

DOI

83
Jiang, J., Wu, Z., Sheng, J., Zhang, J., Song, M., Ryu, K., Li, Z., Hong, Z., Jin, Z.: A new approach to measure magnetic field of high-temperature superconducting coil based on magneto-optical Faraday Effect. IEEE Trans. Appl. Supercond. 31(1), 1–5 (2020)

DOI

84
Babaev, O. G. O., SMatyunin, S. A., SVirchenko, M. K.: Modeling of the magneto-optical channel of a fiber-optic displacement sensor. In: 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok: IEEE, 1–6 (2018)

DOI

85
Ni, X. J., Huang, M.: Faraday effect optical current/magnetic field sensors based on cerium-substituted yttrium iron garnet single crystal. In: 2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu: IEEE: 1–4 (2010)

DOI

86
Shreeve, B., Selfridge, R., Schultz, S., Gaeta, C., Forber, R.: Magnetic field sensing using D-fiber coupled Bi: RIG slab.21st International Conference on Optical Fiber Sensors. International Society for Optics and Photonics. 7753: 77534S (2011)

DOI

87
DaSilva, A.A.D., Alves, H.P., Marcolino, F.C., DoNascimento, J.F., Martins-Filho, J.F.: Computational modeling of optical fiber-based magnetic field sensors using the Faraday and Kerr magnetooptic effects. IEEE Trans. Magn. 56(9), 1–9 (2020)

DOI

88
Zubia, J., Casado, L., Aldabaldetreku, G., Montero, A., Zubia, E., Durana, G.: Design and development of a low-cost optical current sensor. Sensors. 13(10), 13584–13595 (2013)

DOI

89
Jia, Q., Han, Q., Liang, Z., Cheng, Z., Hu, H., Wang, S., Ren, K., Jiang, J., Liu, T.: Temperature compensation of optical fiber current sensors with a static bias. IEE. Sens. J. 22(1), 352–356 (2021)

DOI

90
Katsukawa, H., Ishikawa, H., Okajima, H., Cease, T.W.: Development of an optical current transducer with a bulk type Faraday sensor for metering. IEEE Trans. Power Delivery 11(2), 702–707 (1996)

DOI

91
Malewski, R.: High-voltage current transformers with optical signal transmission. Opt. Eng. 20(1), 200154 (1981)

DOI

92
Papp, A., Harms, H.: Magnetooptical current transformer. 1: principles. Appl. Opt. 19(22), 3729–3734 (1980)

DOI

93
Han, J., Hu, H., Wang, H., Zhang, B., Song, X., Ding, Z., Zhang, X., Liu, T.: Temperature-compensated magnetostrictive current sensor based on the configuration of dual fiber Bragg gratings. J. Lightwave Technol. 35(22), 4910–4915 (2017)

DOI

94
Qi, Y., Wang, M., Jiang, F., Zhang, X., Cong, B., Liu, Y.: Novel fiber optic current transformer with new phase modulation method. Photonic Sens. 10(3), 275–282 (2020)

DOI

95
Gao, H., Wang, G., Gao, W., Li, S.: A chiral photonic crystal fiber sensing coil for decreasing the polarization error in a fiber optic current sensor. Opt. Commun. 469, 125755 (2020)

DOI

96
Bucholtz, F., Villarruel, C.A., Davis, A.R., Kirkendall, C.K., Dagenais, D.M., McVicker, J.A., Knudsen, T.: Multichannel fiber-optic magnetometer system for undersea measurements. J. Lightwave Technol. 13(7), 1385–1395 (1995)

DOI

97
Coghill, P., Bassett, I., Barrow, R., Rohatgi, S., Vance, R.: Field trial of an electrically passive optical-fiber magnetometer. Appl. Opt. 34(31), 7258–7262 (1995)

DOI

98
Zhang, X.L., Zhou, X.J., Hu, Y.M., Ni, M., Yu, Y.M.: All polarization- maintaining fiber earth magnetic field sensor. Zhongguo Jiguang Chin. J. Laser. 32(11), 1515–1518 (2005)

99
Zhao, Q., Zhou, K., Wu, Z., Yang, C., Feng, Z., Cheng, H., Xu, S.: Near quantum-noise limited and absolute frequency stabilized 1083 nm single-frequency fiber laser. Opt. Lett. 43(1), 42–45 (2018)

DOI

100
Li, J., Deng, Y., Wang, X., Lu, H., Liu, Y.: Miniature wide-range three-axis vector atomic magnetometer. IEE. Sens. J. 21(21), 23943–23948 (2021)

DOI

101
Barrias, A., Casas, J.R., Villalba, S.: A review of distributed optical fiber sensors for civil engineering applications. Sensors. 16(5), 748 (2016)

DOI

102
Zhao, Z., Tang, M., Lu, C.: Distributed multicore fiber sensors. Opto-Electron. Adv. 3(2), 02190024 (2020)

103
Li, M., Zhou, J., Xiang, Z., Lv, F.: Giant magnetostrictive magnetic fields sensor based on dual fiber Bragg gratings. In: 2005 IEEE Networking. Tucson: IEEE: 490–495 (2005)

104
Palmieri, L., Galtarossa, A.: Distributed polarization-sensitive reflectometry in nonreciprocal single-mode optical fibers. J. Lightwave Technol. 29(21), 3178–3184 (2011)

DOI

105
Palmieri, L.: Distributed polarimetric measurements for optical fiber sensing. Opt. Fiber Technol. 19(6), 720–728 (2013)

DOI

106
Masoudi, A., Newson, T.P.: Distributed optical fiber dynamic magnetic field sensor based on magnetostriction. Appl. Opt. 53(13), 2833–2838 (2014)

DOI

107
Ou, Y., Chen, J., Chen, W., Cheng, C., Zhu, Y., Xiao, W., Lv, H.: A quasi-distributed fiber magnetic field sensor based on frequency-shifted interferometry fiber cavity ringdown technique. Opt. Laser Technol. 146, 107607 (2022)

DOI

Outlines

/