RESEARCH ARTICLE

Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays

  • Seyedeh Leila Mortazavifar , 1 ,
  • Mohammad Reza Salehi 1 ,
  • Mojtaba Shahraki 2 ,
  • Ebrahim Abiri 1
Expand
  • 1. Department of Electrical and Electronics Engineering, Shiraz University of Technology, Modarres Blvd, 71557-13876 Shiraz, Iran
  • 2. Faculty of Electrical and Electronics Engineering, University of Sistan and Baluchestan, Daneshgah Blvd, 98613-35856 Zahedan, Iran

Received date: 14 Sep 2021

Accepted date: 24 Nov 2021

Published date: 15 Mar 2022

Copyright

2022 The Author(s) 2022

Abstract

This paper investigates how the dimensions and arrangements of stadium silicon nanowires (NWs) affect their absorption properties. Compared to other NWs, the structure proposed here has a simple geometry, while its absorption rate is comparable to that of very complex structures. It is shown that changing the cross-section of NW from circular (or rectangular) to a stadium shape leads to change in the position and the number of absorption modes of the NW. In a special case, these modes result in the maximum absorption inside NWs. Another method used in this paper to attain broadband absorption is utilization of multiple NWs which have different geometries. However, the maximum enhancement is achieved using non-close packed NW. These structures can support more cavity modes, while NW scattering leads to broadening of the absorption spectra. All the structures are optimized using particle swarm optimizations. Using these optimized structures, it is viable to enhance the absorption by solar cells without introducing more absorbent materials.

Cite this article

Seyedeh Leila Mortazavifar , Mohammad Reza Salehi , Mojtaba Shahraki , Ebrahim Abiri . Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays[J]. Frontiers of Optoelectronics, 2022 , 15(1) : 6 . DOI: 10.1007/s12200-022-00010-x

1
Samajdar, D.: Light-trapping strategy for PEDOT:PSS/c-Si nanopyramid based hybrid solar cells embedded with metallic nanoparticles. Sol. Energy 190, 278–285 (2019)

DOI

2
Richardson, B.J., Zhu, L., Yu, Q.: Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates. Nanotechnology 28(16), 165401 (2017)

DOI

3
Mahani, F.F., Mokhtari, A.: Enhancement of ITO-free organic solar cells utilizing plasmonic nanohole electrodes. In: 7th International Conference on Nanotechnology (ICN) (2017)

4
Makableh, Y.F., Al-Fandi, M., Khasawneh, M., Tavares, C.J.: Comprehensive design analysis of ZnO anti-reflection nanostructures for Si solar cells. Superlattices Microstruct. 124, 1–9 (2018)

DOI

5
Mokkapati, S., Beck, F., Catchpole, K.: Analytical approach for design of blazed dielectric gratings for light trapping in solar cells. J. Phys. D Appl. Phys. 44(5), 055103 (2011)

DOI

6
Luo, Z., Zhang, X.A., Evans, B.A., Chang, C.H.: Active periodic magnetic nanostructures with high aspect ratio and ultrahigh pillar density. ACS Appl. Mater. Interfaces 12(9), 11135–11143 (2020)

DOI

7
Garnett, E., Yang, P.: Light trapping in silicon nanowire solar cells. Nano Lett. 10(3), 1082–1087 (2010)

DOI

8
Mortazavifar, S.L., Salehi, M.R., Shahraki, M., Abiri, E.: Optimization of light absorption in ultrathin elliptical silicon nanowire arrays for solar cell applications. J. Mod. Optics 1–13 (2022)

DOI

9
Xu, Z., Huangfu, H., Li, X., Qiao, H., Guo, W., Guo, J., Wang, H.: Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells. Opt. Commun. 377, 104–109 (2016)

DOI

10
Kumar, V., Gupta, D., Kumar, R.: Optimizing photovoltaic charge generation of hybrid heterojunction core–shell silicon nanowire arrays: an FDTD analysis. ACS Omega 3(4), 4123–4128 (2018)

DOI

11
Eaton, S.W., Fu, A., Wong, A.B., Ning, C.Z., Yang, P.: Semiconductor nanowire lasers. Nat. Rev. Mater. 1(6), 16028 (2016)

DOI

12
Zhou, K., Zhao, Z., Pan, L., Wang, Z.: Silicon nanowire pH sensors fabricated with CMOS compatible sidewall mask technology. Sens. Actuators B Chem. 279, 111–121 (2019)

DOI

13
Nami, M., Stricklin, I.E., DaVico, K.M., Mishkat-Ul-Masabih, S., Rishinaramangalam, A.K., Brueck, S.R.J., Brener, I., Feezell, D.F.: Carrier dynamics and electro-optical characterization of high-performance GaN/InGaN core-shell nanowire light-emitting diodes. Sci. Rep. 8(1), 501 (2018)

DOI

14
Manning, H.G., da Rocha, C.G., Callaghan, C.O., Ferreira, M.S., Boland, J.J.: The electro-optical performance of silver nanowire networks. Sci. Rep. 9(1), 11550 (2019)

DOI

15
Kuznetsov, A.I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk’yanchuk, B.: Optically resonant dielectric nanostructures. Science 354(6314), aag2472 (2016)

DOI

16
Cao, L., Fan, P., Vasudev, A.P., White, J.S., Yu, Z., Cai, W., Schuller, J.A., Fan, S., Brongersma, M.L.: Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10(2), 439–445 (2010)

DOI

17
Kim, S.K., Zhang, X., Hill, D.J., Song, K.D., Park, J.S., Park, H.G., Cahoon, J.F.: Doubling absorption in nanowire solar cells with dielectric shell optical antennas. Nano Lett. 15(1), 753–758 (2015)

DOI

18
Zhang, C., Yang, Z., Shang, A., Wu, S., Zhan, Y., Li, X.: Improved optical absorption of silicon single-nanowire solar cells by offaxial core/shell design. Nano Energy 17, 233–240 (2015)

DOI

19
Mortazavifar, S.L., Salehi, M.R., Shahraki, M., Abiri, E.: Absorption improvement of a-Si/c-Si rectangular nanowire arrays in ultrathin solar cells. J. Photonics Energy 11(1), 014502 (2021)

DOI

20
Kelzenberg, M.D., Boettcher, S.W., Petykiewicz, J.A., Turner-Evans, D.B., Putnam, M.C., Warren, E.L., Spurgeon, J.M., Briggs, R.M., Lewis, N.S., Atwater, H.A.: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9(3), 239–244 (2010)

DOI

21
Lee, H.C., Na, J.Y., Moon, Y.J., Park, J.S., Ee, H.S., Park, H.G., Kim, S.K.: Three-dimensional grating nanowires for enhanced light trapping. Opt. Lett. 41(7), 1578–1581 (2016)

DOI

22
Park, J.S., Kim, K.H., Hwang, M.S., Zhang, X., Lee, J.M., Kim, J., Song, K.D., No, Y.S., Jeong, K.Y., Cahoon, J.F., Kim, S.K., Park, H.G.: Enhancement of light absorption in silicon nanowire photovoltaic devices with dielectric and metallic grating structures. Nano Lett. 17(12), 7731–7736 (2017)

DOI

23
Urakseev, M., Vazhdaev, K., Sagadeev, A.: Optoelectronic Devices with Diffraction of Light on a Phase Grating. In: 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) IEEE, 1–6 (2018)

DOI

24
Martínez, R.V., Martínez, J., Garcia, R.: Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 21(24), 245301 (2010)

DOI

25
Jebril, S.: Synthesis and characterization of vertical and horizontal nanowires for functional device fabrication. Christian-Albrechts Universität Kiel (2009)

26
Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)

DOI

27
Yang, P., Yan, R., Fardy, M.: Semiconductor nanowire: what’s next? Nano Lett. 10(5), 1529–1536 (2010)

DOI

28
Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nanoscience And Technology: A Collection of Reviews from Nature Journals, pp. 137–146, (2010)

DOI

29
Yan, R., Gargas, D., Yang, P.: Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009)

DOI

30
Hochbaum, A.I., Yang, P.: Semiconductor nanowires for energy conversion. Chem. Rev. 110(1), 527–546 (2010)

DOI

31
Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.H., Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294(5545), 1313–1317 (2001)

DOI

32
Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J., Mallouk, T.E.: Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77(9), 1399–1401 (2000)

DOI

33
Jin, S., Whang, D., McAlpine, M.C., Friedman, R.S., Wu, Y., Lieber, C.M.: Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4(5), 915–919 (2004)

DOI

34
Fan, Z., Ho, J.C., Jacobson, Z.A., Yerushalmi, R., Alley, R.L., Razavi, H., Javey, A.: Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8(1), 20–25 (2008)

DOI

35
Tsivion, D., Schvartzman, M., Popovitz-Biro, R., von Huth, P., Joselevich, E.: Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 333(6045), 1003–1007 (2011)

DOI

36
Brönstrup, G., Leiterer, C., Jahr, N., Gutsche, C., Lysov, A., Regolin, I., Prost, W., Tegude, F.J., Fritzsche, W., Christiansen, S.: A precise optical determination of nanoscale diameters of semiconductor nanowires. Nanotechnology 22(38), 385201 (2011)

DOI

37
Kim, S.K., Day, R.W., Cahoon, J.F., Kempa, T.J., Song, K.D., Park, H.G., Lieber, C.M.: Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 12(9), 4971–4976 (2012)

DOI

38
Yuan, X., Chen, X., Yan, X., Wei, W., Zhang, Y., Zhang, X.: Absorption-enhanced ultra-thin solar cells based on horizontally aligned p-i-n nanowire arrays. Nanomaterials (Basel, Switzerland) 10(6), 1111 (2020)

DOI

39
Yan, X., Liu, H., Sibirev, N., Zhang, X., Ren, X.: Performance enhancement of ultra-thin nanowire array solar cells by bottom reflectivity engineering. Nanomaterials (Basel, Switzerland) 10(2), 184 (2020)

DOI

40
Lee, Y.H., Ha, M., Song, I., Lee, J.H., Won, Y., Lim, S., Ko, H., Oh, J.H.: High-performance hybrid photovoltaics with efficient interfacial contacts between vertically aligned ZnO nanowire arrays and organic semiconductors. ACS Omega 4(6), 9996–10002 (2019)

DOI

41
Akhmadaliev, C., Schmidt, B., Bischoff, L.: Defect induced formation of Co Si 2 nanowires by focused ion beam synthesis. Appl. Phys. Lett. 89(22), 223129 (2006)

DOI

42
Minamisawa, R., Habicht, S., Buca, D., Carius, R., Trellenkamp, S., Bourdelle, K.K., Mantl, S.: Elastic strain and dopant activation in ion implanted strained Si nanowires. J. Appl. Phys. 108(12), 124908 (2010)

DOI

43
Ou, X., Kögler, R., Wei, X., Mücklich, A., Wang, X., Skorupa, W., Facsko, S.: Fabrication of horizontal silicon nanowire arrays on insulator by ion irradiation. AIP Adv. 1(4), 042174 (2011)

DOI

44
Liu, C., Di Falco, A., Molinari, D., Khan, Y., Ooi, B.S., Krauss, T.F., Fratalocchi, A.: Enhanced energy storage in chaotic optical resonators. Nat. Photonics 7(6), 473–478 (2013)

DOI

45
Vodolazskaya, I.V., Eserkepov, A.V., Akhunzhanov, R.K., Tarasevich, Y.Y.: Effect of tunneling on the electrical conductivity of nanowire-based films: computer simulation within a core–shell model. J. Appl. Phys. 126(24), 244903 (2019)

DOI

46
Park, H.G., Qian, F., Barrelet, C.J., Li, Y.: Microstadium single-nanowire laser. Appl. Phys. Lett. 91(25), 251115 (2007)

DOI

47
Kim, J.H., Bum Kang, S., Yu, H.H., Kim, J., Ryu, J., Lee, J.W., Jin Choi, K., Kim, C.M., Yi, C.H.: Augmentation of absorption channels induced by wave-chaos effects in free-standing nanowire arrays. Opt. Express 28(16), 23569–23583 (2020)

DOI

48
Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–167 (2008)

DOI

49
Rojo, M.M., Calero, O.C., Lopeandia, A.F., Rodriguez-Viejo, J., Martín-Gonzalez, M.: Review on measurement techniques of transport properties of nanowires. Nanoscale 5(23), 11526–11544 (2013)

DOI

50
Yao, J., Yan, H., Lieber, C.M.: A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8(5), 329–335 (2013)

DOI

51
Yerushalmi, R., Jacobson, Z.A., Ho, J.C., Fan, Z., Javey, A.: Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett. 91(20), 203104 (2007)

DOI

52
Yu, G., Cao, A., Lieber, C.M.: Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2(6), 372–377 (2007)

DOI

53
Li, C., Fobelets, K., Liu, C., Xue, C., Cheng, B., Wang, Q.: Agassisted lateral etching of Si nanowires and its application to nanowire transfer. Appl. Phys. Lett. 103(18), 183102 (2013)

DOI

54
Zhang, D., Cheng, G., Wang, J., Zhang, C., Liu, Z., Zuo, Y., Zheng, J., Xue, C., Li, C., Cheng, B., Wang, Q.: Horizontal transfer of aligned Si nanowire arrays and their photoconductive performance. Nanoscale Res. Lett. 9(1), 661 (2014)

DOI

55
Peng, K., Yan, Y., Gao, S., Zhu, J.: Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv. Func. Mater. 13(2), 127–132 (2003)

DOI

56
Ghoshal, T., Senthamaraikannan, R., Shaw, M.T., Holmes, J.D., Morris, M.A.: Fabrication of ordered, large scale, horizontally-aligned si nanowire arrays based on an in situ hard mask block copolymer approach. Adv. Mater. 26(8), 1207–1216 (2014)

DOI

57
Bunimovich, L.: On ergodic properties of some billiards. Funct. Anal. Appl. 8, 254–255 (1974)

DOI

58
Wojtkowski, M.: Principles for the design of billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys. 105(3), 391–414 (1986)

DOI

59
Donnay, V.J.: Using integrability to produce chaos: billiards with positive entropy. Commun. Math. Phys. 141(2), 225–257 (1991)

DOI

60
Markarian, R., Kamphorst, S.O., de Carvalho S.P.: Chaotic properties of the elliptical stadium. arxiv preprint arxiv: chao-dyn/9501004 (1995)

61
Del Magno, G., Markarian, R.: Bernoulli elliptical stadia. Commun. Math. Phys. 233(2), 211–230 (2003)

DOI

62
Lopac, V., Mrkonjić, I., Pavin, N., Radić, D.: Chaotic dynamics of the elliptical stadium billiard in the full parameter space. Physica D 217(1), 88–101 (2006)

DOI

63
Lopac, V., Mrkonjić, I., Radić, D.: Chaotic dynamics and orbit stability in the parabolic oval billiard. Phys. Rev. E 66(3 3 Pt 2A), 036202 (2002)

DOI

64
Stein, J., Stöckmann, H., Stoffregen, U.: Microwave studies of billiard Green functions and propagators. Phys. Rev. Lett. 75(1), 53–56 (1995)

DOI

65
Stöckmann, H.J.: Quantum Chaos: an Introduction. American Association of Physics Teachers (2000)

DOI

66
Sturmberg, B.C., Dossou, K.B., Botten, L.C., Asatryan, A.A., Poulton, C.G., McPhedran, R.C., de Sterke, C.M.: Optimizing photovoltaic charge generation of nanowire arrays: a simple semianalytic approach. ACS Photonics 1(8), 683–689 (2014)

DOI

67
Gupta, A.K., Raman, A., Kumar, N.: Cylindrical nanowire-TFET with Core-Shell Channel architecture: design and investigation. Silicon 12, 1–8 (2019)

DOI

68
Kempa, T.J., Cahoon, J.F., Kim, S.K., Day, R.W., Bell, D.C., Park, H.G., Lieber, C.M.: Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012)

DOI

69
Brönstrup, G., Jahr, N., Leiterer, C., Csáki, A., Fritzsche, W., Christiansen, S.: Optical properties of individual silicon nanowires for photonic devices. ACS Nano 4(12), 7113–7122 (2010)

DOI

70
Cao, L., Park, J.S., Fan, P., Clemens, B., Brongersma, M.L.: Resonant germanium nanoantenna photodetectors. Nano Lett. 10(4), 1229–1233 (2010)

DOI

71
Kempa, T.J., Day, R.W., Kim, S.K., Park, H.G., Lieber, C.M.: Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 6(3), 719–733 (2013)

DOI

72
Kempa, T.J., Tian, B., Kim, D.R., Hu, J., Zheng, X., Lieber, C.M.: Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8(10), 3456–3460 (2008)

DOI

73
Sze, S.M., Li, Y., Ng, K.K.: Physics of Semiconductor Devices. John Wiley & Sons (2021)

74
Mohammed, K.H.: Fabrication of horizontal silicon nanowires using a thin aluminum film as a catalyst. University of Arkansas (2011)

75
Rothman, A., Forsht, T., Danieli, Y., Popovitz-Biro, R., Rechav, K., Houben, L., Joselevich, E.: Guided growth of horizontal ZnS nanowires on flat and faceted sapphire surfaces. J. Phys. Chem. C 122(23), 12413–12420 (2018)

DOI

76
Reut, G., Oksenberg, E., Popovitz-Biro, R., Rechav, K., Joselevich, E.: Guided growth of horizontal p-type ZnTe nanowires. J. Phys. Chem. C 120(30), 17087–17100 (2016)

DOI

77
Wu, S., Yi, X., Tian, S., Zhang, S., Liu, Z., Wang, L., Wang, J., Li, J.: Understanding homoepitaxial growth of horizontal kinked GaN nanowires. Nanotechnology 32(9), 095606 (2021)

DOI

78
Fan, P., Huang, K.C., Cao, L., Brongersma, M.L.: Redesigning photodetector electrodes as an optical antenna. Nano Lett. 13(2), 392–396 (2013)

DOI

79
Tang, J., Huo, Z., Brittman, S., Gao, H., Yang, P.: Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6(9), 568–572 (2011)

DOI

80
Tian, B., et al.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007)

DOI

81
Zhang, X., Pinion, C.W., Christesen, J.D., Flynn, C.J., Celano, T.A., Cahoon, J.F.: Horizontal silicon nanowires with radial p–n junctions: a platform for unconventional solar cells. J. Phys. Chem. Lett. 4(12), 2002–2009 (2013)

DOI

82
Song, K.D., Kempa, T.J., Park, H.G., Kim, S.K.: Laterally assembled nanowires for ultrathin broadband solar absorbers. Opt. Express 22(103, Suppl 3), A992–A1000 (2014)

DOI

83
Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press (1998)

84
Wang, P., Menon, R.: Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states. Opt. Express 22(101, Suppl 1), A99–A110 (2014)

DOI

85
Wang, B., Stevens, E., Leu, P.W.: Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells. Opt. Express 22(102 Suppl 2), A386–A395 (2014)

DOI

86
Pomplun, J., Burger, S., Zschiedrich, L., Schmidt, F.: Adaptive finite element method for simulation of optical nano structures. Physica Status Solidi (b) 244(10), 3419–3434 (2007)

DOI

87
Yu, P., Yao, Y., Wu, J., Niu, X., Rogach, A.L., Wang, Z.: Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells. Sci. Rep. 7(1), 7696 (2017)

DOI

88
Chang, R.K., Campillo, A.J.: Optical Processes in Microcavities. World Scientific (1996)

DOI

89
Berry, M.V.: Regularity and chaos in classical mechanics, illustrated by three deformations of a circular ‘billiard.’ Eur. J. Phys. 2(2), 91–102 (1981)

DOI

90
Söderström, K., Haug, F.J., Escarre, J., Cubero, O., Ballif, C.: Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler. Appl. Phys. Lett. 96(21), 213508 (2010)

DOI

91
Kim, S.K., Song, K.D., Kempa, T.J., Day, R.W., Lieber, C.M., Park, H.G.: Design of nanowire optical cavities as efficient photon absorbers. ACS Nano 8(4), 3707–3714 (2014)

DOI

Outlines

/