Frontiers of Optoelectronics >
Chromatic dispersion monitoring using semiconductor optical amplifier
Received date: 08 Aug 2013
Accepted date: 23 Sep 2013
Published date: 09 Sep 2014
Copyright
An all-optical real-time chromatic dispersion (CD) monitoring technique is proposed and demonstrated for 40 Gbit/s differential phase-shifts keying (DPSK) signal, utilizing the cross modulation effects of semiconductor optical amplifier (SOA). The optical power of the output spectral components, which is from the probe’s frequency up to the signal bandwidth, is used for CD monitoring. This technique provides a wide monitoring range with large variation scale. The impacts of the polarization mode dispersion (PMD) and the optical signal-to-noise ratio (OSNR) on the CD monitoring results are theoretically analyzed and then experimentally investigated, showing that they have slight influence on the monitoring results within a certain range. Furthermore, simulated results for quadrature phase shift keying (QPSK) signal at 80 Gbit/s are also demonstrated, indicating that this technique is suitable for advanced modulated format as well.
Zhao WU , Yu YU , Xinliang ZHANG . Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Frontiers of Optoelectronics, 2014 , 7(3) : 399 -405 . DOI: 10.1007/s12200-013-0376-0
1 |
Pan Z Q, Yu C Y, Willner A E. Optical performance monitoring for the next generation optical communication networks. Optical Fiber Technology, 2010, 16(1): 20–45
|
2 |
Chan C C, ed. Optical Performance Monitoring: Advanced Techniques for Next-Generation Photonic Networks. Burlington, MA: Academic Press, 2010
|
3 |
Li Z, Li G. Chromatic dispersion and polarization-mode dispersion monitoring for RZ-DPSK signals based on asynchronous amplitude-histogram evaluation. Journal of Lightwave Technology, 2006, 24(7): 2859–2866
|
4 |
Wu Z, Yu Y, Zhang X. Chromatic dispersion monitoring for NRZ-DPSK system using asynchronous amplitude histogram evaluation. Photonics Journal, IEEE, 2012, 4(4): 1212–1219
|
5 |
Kozicki B, Takuya O, Hidehiko T. Optical performance monitoring of phase-modulated signals using asynchronous amplitude histogram analysis. Journal of Lightwave Technology, 2008, 26(10): 1353–1361
|
6 |
Zhao J, Li Z, Liu D, Cheng L, Lu C, Tam H Y. NRZ-DPSK and RZ-DPSK signals signed chromatic dispersion monitoring using asynchronous delay-tap sampling. Journal of Lightwave Technology, 2009, 27(23): 5295–5301
|
7 |
Kozicki B, Maruta A, Kitayama K I. Experimental demonstration of optical performance monitoring for RZ-DPSK signals using delay-tap sampling method. Optics Express, 2008, 16(6): 3566–3576
|
8 |
Vo T D, Corcoran B, Schröder J, Pelusi M D, Xu D X, Densmore A, Ma R, Janz S, Moss D J, Eggleton B J. Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals. Journal of Lightwave Technology, 2011, 29(12): 1790–1796
|
9 |
Yang J Y, Zhang L, Wu X, Yilmaz O F, Zhang B, Willner A E. All-optical chromatic dispersion monitoring for phase-modulated signals utilizing cross-phase modulation in a highly nonlinear fiber. Photonics Technology Letters, IEEE, 2008, 20(19): 1642–1644
|
10 |
Vorreau P, Kilper D C, Leuthold J. Optical noise and dispersion monitoring with SOA-based optical 2R regenerator. Photonics Technology Letters, IEEE, 2005, 17(1): 244–246
|
11 |
Yang J, Yu C Y, Yang Y F, Cheng L H, Li Z H, Lu C, Lau A P T, Tam H, Wai P K A. PMD-insensitive CD monitoring based on RF clock power ratio measurement with optical notch filter. Photonics Technology Letters, IEEE, 2011, 23(21): 1576–1578
|
12 |
Zhao J, Lau A P T, Qureshi K K, Li Z H, Lu C, Tam H Y. Chromatic dispersion monitoring for DPSK systems using RF power spectrum. Journal of Lightwave Technology, 2009, 27(24): 5704–5709
|
13 |
Lize Y K, Christen L, Yang J Y, Saghari P, Nuccio S, Willner A E, Kashyap R. Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission. Photonics Technology Letters, IEEE, 2007, 19(1): 3–5
|
14 |
Tsai K T, Way W I. Chromatic-dispersion monitoring using an optical delay-and-add filter. Journal of Lightwave Technology, 2005, 23(11): 3737–3747
|
15 |
Shen T S R, Lau A P T, Yu C Y. Simultaneous and independent multi-parameter monitoring with fault localization for DSP-based coherent communication systems. Optical Express, 2010, 18(23): 23608–23619
|
16 |
Faruk M S, Mori Y, Zhang C, Igarashi K, Kikuchi K. Multi-impairment monitoring from adaptive finite-impulse-response filters in a digital coherent receiver. Optics Express, 2010, 18(26): 26929–26936
|
17 |
Qi S, Lau A P T, Lu C. Fast and robust chromatic dispersion estimation using auto-correlation of signal power waveform for DSP based-coherent systems. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2012
|
18 |
Joergensen C, Danielsen S L, Stubkjaer K E, Schilling M, Daub K, Doussiere P, Pommerau F, Hansen P B, Poulsen H N, Kloch A, Vaa M, Mikkelsen B, Lach E, Laube G, Idler W, Wunstel K. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers. IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(5): 1168–1180
|
19 |
Durhuus T, Mikkelsen B, Joergensen C, Lykke Danielsen S, Stubkjaer K E. All-optical wavelength conversion by semiconductor optical amplifiers. Journal of Lightwave Technology, 1996, 14(6): 942–954
|
20 |
Dorrer C, Maywar D N. RF spectrum analysis of optical signals using nonlinear optics. Journal of Lightwave Technology, 2004, 22(1): 266–274
|
21 |
Pelusi M, Luan F, Vo T D, Lamont M R E, Madden S J, Bulla D A, Choi D Y, Luther-Davies B, Eggleton B J. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nature Photonics, 2009, 3(3): 139–143
|
22 |
Nezam S M R M, Song Y W, Yu C, McGeehan J E, Sahin A B, Willner A E. First-order PMD monitoring for NRZ data using RF clock regeneration techniques. Journal of Lightwave Technology, 2004, 22(4): 1086–1093
|
23 |
Park K J, Lee J H, Youn C J, Chung Y C. A simultaneous monitoring technique for polarization-mode dispersion and group-velocity dispersion. In: Proceedings of Optical Fiber Communication Conference. Anaheim, CA: IEEE, 2002, 199–200
|
/
〈 | 〉 |