RESEARCH ARTICLE

Investigating the influential post-disaster factors in determining the optimal location of shelters: A case study, Sarpol-e Zahab, Kermanshah province, Iran

  • Ali Moghri ,
  • Ahmadreza Khalili
Expand
  • Department of Art and Architecture, Islamic Azad University, Tehran, Iran

Received date: 21 Nov 2021

Revised date: 28 Jan 2022

Accepted date: 17 Feb 2022

Published date: 31 Oct 2022

Copyright

2022 2022 Higher Education Press Limited Company. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abstract

A proper location is one of the most influential factors in shelter performance. Although considerable research focuses on finding a suitable site for temporary shelters, only a few address the effect of post-disaster circumstances on discovering the optimal location. This study primarily aims to investigate the influential factors in determining a suitable place for temporary shelters after a crisis. Therefore, an algorithm is proposed. This algorithm is achieved by analyzing and computing the post-crisis urban route and facility accessibility based on photogrammetric photographs taken by an unmanned aerial vehicle/satellite.

Cite this article

Ali Moghri , Ahmadreza Khalili . Investigating the influential post-disaster factors in determining the optimal location of shelters: A case study, Sarpol-e Zahab, Kermanshah province, Iran[J]. Frontiers of Architectural Research, 2022 , 11(5) : 846 -864 . DOI: 10.1016/j.foar.2022.02.005

1
AbdElHamid, A., Zong, P., 2015. A novel software simulator model based on active hybrid architecture. Int. J. Aero. Eng. 2015, 1–19.

DOI

2
Acaps, 2017. Briefing note: Iran - Kermanshah earthquake [WWW document].

3
Alaeddine, H., Serrhini, K., Maizia, M., Néron, E., 2015. A spatiotemporal optimization model for the evacuation of the population exposed to flood hazard. Nat. Hazards Earth Syst. Sci. 15, 687–701.

DOI

4
Alaeddine, H., Serrhini, K., Maizia, M., Néron, E., 2019. Establishing an evacuation network: a path ranking approach. J. Comput. Sci. 15, 1710–1720.

DOI

5
Bai, Y., Gao, C., Singh, S., Koch, M., Adriano, B., Mas, E., Koshimura, S., 2018. A framework of rapid regional tsunami damage recognition from post-event terraSAR-X imagery using deep neural networks. Geosci. Rem. Sens. Lett. IEEE 15, 43–47.

DOI

6
Barzinpour, F., Esmaeili, V., 2013. A multi-objective relief chain location distribution model for urban disaster management. Int. J. Adv. Manuf. Technol. 70 (5), 1291–1302.

DOI

7
Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, T., S, Bangash, H.A., 2014. Ground-based and UAV-Based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 69, 163–178.

DOI

8
Bendea, H., Boccardo, P., Dequal, S., Tonolo, F.G., Marenchino, D., Piras, M., 2008. Low cost UAV for post-disaster assessment. The international archives of the photogrammetry. Remote Sens. Spatial Inform. Sci. 37, 1373–1379.

9
Boonmee, C., Arimura, M., Asada, T., 2017. Facility location optimization model for emergency humanitarian logistics. Int. J. Disaster Risk Reduc. 24, 485–498.

DOI

10
Cai, G., Chen, B.M., Lee, T.H., Dong, M., 2008. Design and implementation of a hardware-in-the-loop simulation system for small-scale UAV helicopters. In: Proceedings of the IEEE International Conference on Automation and Logistics, ICAL, pp. 29–34.

11
Carrivick, J.L., Smith, M.W., Quincey, D.J., 2016. Structure from Motion in the Geosciences. John Wiley & Sons.

DOI

12
Cawood, A.J., Bond, C.E., Howell, J.A., Butler, R.W.H., Totake, Y., 2017. LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models. J. Struct. Geol. 98, 67–82.

DOI

13
Cheng, G., Zeng, X., Duan, L., Lu, X., Sun, H., Jiang, T., Li, Y., 2016. Spatial difference analysis for accessibility to high level hospitals based on travel time in Shenzhen, China. Habitat Int. 53, 485–494.

DOI

14
Clar, C., Löschner, L., Nordbeck, R., Fischer, T., Thaler, T., 2020. Population dynamics and natural hazard risk management: conceptual and practical linkages for the case of Austrian policy making. Nat. Hazards 105 (2), 1765–1796.

DOI

15
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: nsga-II. IEEE Trans. Evol. Comput. 6, 182–197.

DOI

16
di Gregorio, L.T., Soares, C.A.P., 2017. Post-disaster housing recovery guidelines for development countries based on experiences in the American continent. Int. J. Disaster Risk Reduc. 24, 340–347.

DOI

17
Dong, M., Chen, B.M., Cai, G., Peng, K., 2012. Development of a real-time onboard and ground station software system for a UAV Helicopter. J. Aero. Comput. Inf. Commun. 4, 933–955.

DOI

18
ECMWF, 2017. Advancing global NWP through international collaboration [WWW Document].

19
Erdelj, M., Król, M., Natalizio, E., 2017. Wireless Sensor Networks and Multi-UAV systems for natural disaster management. Comput. Network. 124, 72–86.

DOI

20
Euler, L., 1741. The solution of a problem relating to the geometry of position. Commentarii academiae scientiarum Petropolitanae 7, 1–10.

21
European Committee of the Regions, 2016. The Impact of Demographic Change on European Regions. Publications Office of the EU.

22
Evaluating Fire Station Locations, 2020. Emergency reporting [WWW Document].

23
Freeman, L.C., 1977. A set of measures of centrality based on betweenness. Sociometry 40, 41.

DOI

24
Glantz, E.J., Ritter, F.E., Gilbreath, D., Stager, S.J., Anton, A., Emani, R., 2020. UAV use in disaster management. In: 17th Annual International Conference on Information Systems for Crisis Response and Management, ISCRAM 2020. Information Systems for Crisis Response and Management, ISCRAM, pp. 914–921.

25
Gramazio, F., Kohler, M., Langenberg, S., 2019. Fabricate 2014: Negotiating Design & Making. Fabricate 2014.

26
Gu, X., Yu, Y., Li, J., Li, Y., Alamdari, M.M., 2016. Semi-active storey isolation system employing MRE isolator with parameter identification based on NSGA-II with DCD. Earthq. Struct. 11, 1101–1121.

DOI

27
Habib, M.S., Lee, Y.H., Memon, M.S., 2016. Mathematical Models in Humanitarian Supply Chain Management: A Systematic Literature Review. Mathematical Problems in Engineering, 2016.

DOI

28
Hershberger, J., Suri, S., 2001. Vickrey prices and shortest paths: what is an edge worth?. In: Annual Symposium on Foundations of Computer Science – Proceedings, pp. 252–259.

DOI

29
Hicks, C.M., Kiss, A., Bandiera, G.W., Denny, C.J., 2012. Crisis Resources for Emergency Workers (CREW II): results of a pilot study and simulation-based crisis resource management course for emergency medicine residents. Can. J. Emerg. Med. 14, 354–362.

DOI

30
Huang, B., Liu, N., Chandramouli, M., 2006. A GIS supported Ant algorithm for the linear feature covering problem with distance constraints. Decis. Support Syst. 42, 1063–1075.

DOI

31
Huang, Y., Yin, Z., Chu, H., 2019. Suitability assessment of emergency shelters based on gis: a case study in urban function optimization area of shanghai. In: IOP Conference Series: Earth and Environmental Science, p. 12039.

DOI

32
IRNA, 2017. Irna. https://www.irna.ir/.

33
Isma’il, M., Saanyol, I.O., 2013. Application of remote sensing (RS) and geographic information systems (GIS) in flood vulnerability mapping: case study of river kaduna. Int. J. Geomatics Geosci. 3, 618–627.

34
Jacobs, M.B., Harville, E.W., 2015. Long-term mental health among low-income, minority women following exposure to multiple natural disasters in early and late adolescence compared to adulthood. Child Youth Care Forum 44 (4), 511–525, 2015.

DOI

35
Jaganmohan, M., 2021. Number of Deaths from Natural Disaster Events Globally from 2000 to 2020 [WWW Document].

36
Jodaki, H., TaleZari, Z., Malek Hosseini, A., 2012. Locating of emergency relief centers in the occurrence of earthquakes using geographic information system in district 22 of tehran municipality. Dis. Prev. Manag. Knowl. (quarterly) 2, 108–120.

37
Karoonsoontawong, A., Waller, S.T., 2006. Dynamic Continuous Network Design Problem. Linear Bilevel Programming and Metaheuristic Approaches, pp. 104–117, 1964.

DOI

38
Kilci, F., Kara, B.Y., Bozkaya, B., 2015. Locating temporary shelter areas after an earthquake: a case for Turkey. Eur. J. Oper. Res. 243, 323–332.

DOI

39
Kongsomsaksakul, S., Student, G., Yang, C., Chen, A., 2005. Shelter location-allocation model for flood evacuation planning. J. E Asia Soc. Transport. Stud. 6, 4237–4252.

40
Lewis, G., 2007. Evaluating the use of a low-cost unmanned aerial vehicle platform in acquiring digital imagery for emergency response. Lect. Notes Geoinform. Cartogr. 117–133.

DOI

41
Li, A.C.Y., Nozick, L., Xu, N., Davidson, R., 2012. Shelter location and transportation planning under hurricane conditions. Transport. Res. E Logist. Transport. Rev. 48, 715–729.

DOI

42
Lieberman, A.F., Knorr, K., 2007. The impact of trauma: a developmental framework for infancy and early childhood. Pediatr. Ann. 36, 209–215.

DOI

43
Lin, H., Huang, H., Lv, Y., Du, X., Yi, W., 2016. Micro-UAV based remote sensing method for monitoring landslides in Three Gorges Reservoir, China. In: Int. Geosc. Remote Sens. Symp. (IGARSS) 2016-November, pp. 4944–4947.

DOI

44
Liu, N., Huang, B., Chandramouli, M., 2006. Optimal siting of fire stations using GIS and ANT algorithm. J. Comput. Civ. Eng. 20, 361–369.

DOI

45
Liu, Y., Lai, X., Chang, G.L., 2006. Two-level integrated optimization system for planning of emergency evacuation. J. Transport. Eng. 132, 800–807.

DOI

46
Lopez-Fuentes, L., van de Weijer, J., González-Hidalgo, M., Skinnemoen, H., Bagdanov, A.D., 2017. Review on computer vision techniques in emergency situations. Multimed. Tool. Appl. 77 (13), 17069–17107, 2017.

DOI

47
Lu, C.-H., Ni, C.-F., Chang, C.-P., Yen, J.-Y., Chuang, R.Y., 2018. Coherence difference analysis of sentinel-1 SAR interferogram to identify earthquake-induced disasters in urban areas. Rem. Sens. 10.

DOI

48
Maharjan, R., Hanaoka, S., 2018. A multi-actor multi-objective optimization approach for locating temporary logistics hubs during disaster response. J. Humanit. Logist. Supply Chain Manag. 8, 2–21.

DOI

49
Manfreda, S., McCabe, M.F., Miller, P.E., Lucas, R., Madrigal, V.P., Mallinis, G., Dor, E. ben, Helman, D., Estes, L., Ciraolo, G., Müllerová, J.,, Tauro, F., de Lima, M.I., de Lima, J.L.M.P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, Z., Vico, G., Toth, B., 2018. On the use of unmanned aerial systems for environmental monitoring. Rem. Sens. 10, 641, 2018.

DOI

50
Mitchell, C.M., Esnard, A.-M., Sapat, A., 2012. Hurricane events, population displacement, and sheltering provision in the United States. Nat. Hazards Rev. 13, 150–161.

DOI

51
Na, H.S., Banerjee, A., 2015. A disaster evacuation network model for transporting multiple priority evacuees. IIE Trans. 47 (11), 1287–1299.

DOI

52
Nakanishi, H., Inoue, K., 2005. A study on intelligent aero-robot for disaster response. Prog. Safety Sci. Technol. 4, 1730–1734.

53
Namju Lee, N., Hyun Woo, J., 2020. Numeric network analysis [WWW document].

54
Needham, M., Hodler, A.E., 2019. Graph Algorithms: Practical Examples in Apache Spark and Neo4j. O’Reilly Media, Inc.

55
Ng, M.W., Park, J., Waller, S.T., 2010. A hybrid bilevel model for the optimal shelter assignment in emergency evacuations. Comput. Aided Civ. Infrastruct. Eng. 25, 547–556.

DOI

56
Paul, N.R., Lunday, B.J., Nurre, S.G., 2017. A multiobjective, maximal conditional covering location problem applied to the relocation of hierarchical emergency response facilities. Omega 66, 147–158.

DOI

57
Peacock, W.G., Dash, N., Zhang, Y., Zandt, S. van, 2018. Post-disaster Sheltering, Temporary Housing and Permanent Housing Recovery, pp. 569–594.

DOI

58
Pecchia, L., Bath, P.A., Pendleton, N., Bracale, M., 2011. Analytic Hierarchy Process (AHP) for examining healthcare professionals’ assessments of risk factors: the relative importance of risk factors for falls in community-dwelling older people. Methods Inf. Med. 50, 435–444.

DOI

59
Pérez-Galarce, F., Canales, L.J., Vergara, C., Candia-Véjar, A., 2017. An optimization model for the location of disaster refuges. Soc. Econ. Plann. Sci. 59, 56–66.

DOI

60
Pollack, A.A., Weiss, B., Trung, L.T., 2016. Mental health, life functioning and risk factors among people exposed to frequent natural disasters and chronic poverty in Vietnam. BJPsych Open 2, 221–232.

DOI

61
Pollefeys, M., van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R., 2004. Visual modeling with a hand-held camera. Int. J. Comput. Vis. 59 (3), 207–232.

DOI

62
Quarantelli, E., 1982. Sheltering and Housing after Major Community Disasters: Case Studies and General Observations.

63
Randall, M., Kordrostami, T., Makki, M., 2020. The Taikoo Shing Superblock: Addressing Urban Stresses through Sequential Evolutionary Simulations, vol. 1, pp. 415–424.

DOI

64
Rao, P.J., Rao, K.N., Kubo, S., 2019. Proceedings of International Conference on Remote Sensing.

DOI

65
Rodríguez-Espíndola, O., Albores, P., Brewster, C., 2016. GIS and optimisation: potential benefits for emergency facility location in humanitarian logistics. Geosciences 6, 18.

DOI

66
Saadatseresht, M., Mansourian, A., Taleai, M., 2009. Evacuation planning using multiobjective evolutionary optimization approach. Eur. J. Oper. Res. 198, 305–314.

DOI

67
Sabri, N.A.M., Basari, A.S.H., Husin, B., Samah, K.A.F.A., 2015. The utilisation of dijkstra’s algorithm to assist evacuation route in higher and close building. J. Comput. Sci. 11, 330–336.

DOI

68
Saidpour, S., Kashefidust, D., 2018. Urban shelters localization with passive defense approach-case study: saqqez city. Sci.- Res. Quart. Geograph. Data (SEPEHR) 26, 129–144.

69
Sandvik, K.B., Lohne, K., 2014. The rise of the humanitarian drone: giving content to an emerging concept. Millennium 43 (1), 145–164.

DOI

70
Sauer, A., Kraft, P., Rennhak, C., 2016. Humanitarian Supply Chain Performance Management: Development and Evaluation of a Comprehensive Performance Measurement Framework Based on the Balanced Scorecard. Munich Business School, German.

71
Schmidt, K., Aumann, I., Hollander, I., Damm, K., von der Schulenburg, J.M.G., 2015. Applying the Analytic Hierarchy Process in healthcare research: a systematic literature review and evaluation of reporting. BMC Med. Inf. Decis. Making 15, 1–27.

DOI

72
Shavarani, S.M., 2019. Multi-level facility location-allocation problem for post-disaster humanitarian relief distribution: a case study. J. Humanit. Logist. Supply Chain Manag. 9, 70–81.

DOI

73
Sheu, J.B., Pan, C., 2014. A method for designing centralized emergency supply network to respond to large-scale natural disasters. Transp. Res. Part B Methodol. 67, 284–305.

DOI

74
Snavely, N., Seitz, S.M., Szeliski, R., 2008. Modeling the world from internet photo collections. Int. J. Comput. Vis. 80 (2), 189–210.

DOI

75
Sphere Association, 2018. The Sphere Handbook: Humanitarian Charter and Minimum Standards in Humanitarian Response, fourth ed. United Nations High Commissioner for Refugees. hortrun Press, United Kingdom., Geneva, Switzerland.

76
Stepanov, A., Smith, J.M.G., 2009. Multi-objective evacuation routing in transportation networks. Eur. J. Oper. Res. 198, 435–446.

DOI

77
Sukmaningsih, D.W., Suparta, W., Trisetyarso, A., Abbas, B.S., Kang, C.H., 2019. Proposing smart disaster management in urban area. Stud. Comput. Intell. 830, 3–16.

DOI

78
Suzuki, T., Miyoshi, D., Meguro, J.I., Amano, Y., Hashizume, T., Sato, K., Takiguchi, J.I., 2008. Real-time hazard map generation using small unmanned aerial vehicle. In: Proceedings of the SICE Annual Conference, pp. 443–446.

79
Tamima, U., Chouinard, L., 2016. Development of evacuation models for moderate seismic zones: a case study of Montreal. Int. J. Disaster Risk Reduc. 16, 167–179.

DOI

80
Tanzi, T., Apvrille, L., Dugelay, J.L., Roudier, Y., 2014. UAVs for humanitarian missions: autonomy and reliability. In: Proceedings of the 4th IEEE Global Humanitarian Technology Conference, GHTC, pp. 271–278, 2014.

DOI

81
Tayal, A., Singh, S.P., 2017. Formulating multi-objective stochastic dynamic facility layout problem for disaster relief. Ann. Oper. Res. 283 (1), 837–863.

DOI

82
Timperio, G., Panchal, G.B., Samvedi, A., Goh, M., de Souza, R., 2017. Decision support framework for location selection and disaster relief network design. J. Humanit. Logist. Supply Chain Manag. 7, 222–245.

DOI

83
UN, 2018. United nation- department of economic and social Affairs.

84
UNITAR, 2017. Damaged Structure and Related Density Map in Sarpol-E-Zahab. Kermanshah, Iran [WWW Document], URL. https://unitar.org/maps/map/2732.

85
UNITAR, 2017a. Shelter and People Gathering Sites in Sarpol-E-Zahab. Kermanshah, Iran [WWW Document]. United Nations Institute for Training and Research.

86
Vargas-Florez, J., Palomino, G., Flores, A., Valdivia, G., Saito, C., Arteaga, D., Díaz, D., 2019. Identifying potential landslide location using Unmanned Aerial Vehicles (UAVs). In: Geospatial Technologies and Geographic Information Science for Crisis Management (GIS Proceedings of the 16th ISCRAM Conference, pp. 450–461.

87
Vollgger, S.A., Cruden, A.R., 2016. Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia. J. Struct. Geol. 85, 168–187.

DOI

88
Wassermann, S., Faust, K., 1994. Social Network Analysis: Methods and Applications (Structural Analysis in the Social Sciences). In: Social Network Analysis: Methods and Applications, first ed. Cambridge University Press.

89
Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M., 2012. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314.

DOI

90
Whang, S.-H., Kim, D.-H., Kang, M.-S., Cho, K., Park, S., Son, W.-H., 2007. Development of a Flying Robot System for Visual Inspection of Bridges. Ishmii-Int Soc Structural Health Monitoring Intelligent Infrastructure: Winnipeg (MB, Canada).

91
Widener, M.J., Horner, M.W., 2011. A hierarchical approach to modeling hurricane disaster relief goods distribution. J. Transport Geogr. 19, 821–828.

DOI

92
Wilson, D.T., Hawe, G.I., Coates, G., Crouch, R.S., 2013. A multi-objective combinatorial model of casualty processing in major incident response. Eur. J. Oper. Res. 230, 643–655.

DOI

93
Xu, W., Okada, N., Takeuchi, Y., Kajitani, Y., 2007. A diagnosis model for disaster shelter planning from the viewpoint of local people-case study of nagata ward in kobe city, hyogo prefecture, Japan. 京都大学防災研究所年報. B 50, 233–239.

94
Zhang, J., Wang, R., Pan, L., 2009. The system of lifetime prediction for VFD based on VB and MATLAB. 2009 international conference on artificial intelligence and computational intelligence. AICI 4, 59–62.

DOI

95
Zhang, J., Dong, Z., Chen, T., 2020. Multi-objective optimal allocation of water resources based on the NSGA-2 algorithm while considering intergenerational equity: a case study of the middle and upper reaches of huaihe river basin, China. Int. J. Environ. Res. Publ. Health 17, 9289.

DOI

96
Zhao, X., Xu, W., Ma, Y., Hu, F., 2015. Scenario-based multi-objective optimum allocation model for earthquake emergency shelters using a modified particle swarm optimization algorithm: a case study in chaoyang district, beijing, China. PLoS One 10, e0144455.

DOI

97
Zheng, Z., Xia, H., Ambinakudige, S., Qin, Y., Li, Y., Xie, Z., Zhang, L., Gu, H., 2019. Spatial accessibility to hospitals based on web mapping API: an empirical study in kaifeng, China. Sustainability 11, 1160.

DOI

Outlines

/