%A Wei LIU, Hongzhong QI, Xintian LIU, Yansong WANG %T Evaluation of regenerative braking based on single-pedal control for electric vehicles %0 Journal Article %D 2020 %J Front. Mech. Eng. %J Frontiers of Mechanical Engineering %@ 2095-0233 %R 10.1007/s11465-019-0546-x %P 166-179 %V 15 %N 1 %U {https://journal.hep.com.cn/fme/EN/10.1007/s11465-019-0546-x %8 2020-03-15 %X

More than 25% of vehicle kinetic energy can be recycled under urban driving cycles. A single-pedal control strategy for regenerative braking is proposed to further enhance energy efficiency. Acceleration and deceleration are controlled by a single pedal, which alleviates driving intensity and prompts energy recovery. Regenerative braking is theoretically analyzed based on the construction of the single-pedal system, vehicle braking dynamics, and energy conservation law. The single-pedal control strategy is developed by considering daily driving conditions, and a single-pedal simulation model is established. Typical driving cycles are simulated to verify the effectiveness of the single-pedal control strategy. A dynamometer test is conducted to confirm the validity of the simulation model. Results show that using the single-pedal control strategy for electric vehicles can effectively improve the energy recovery rate and extend the driving range under the premise of ensuring safety while braking. The study lays a technical foundation for the optimization of regenerative braking systems and development of single-pedal control systems, which are conducive to the promotion and popularization of electric vehicles.