RESEARCH ARTICLE

Thermal buckling behavior of laminated composite plates: a finite-element study

  • Houdayfa OUNIS ,
  • Abdelouahab TATI ,
  • Adel BENCHABANE
Expand
  • Laboratoire de Génie Energétique et Matériaux (LGEM), Université de Biskra, B.P. 145, Biskra 07000, Algeria

Received date: 09 Oct 2013

Accepted date: 05 Dec 2013

Published date: 05 Mar 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, the thermal buckling behavior of composite laminated plates under a uniform temperature distribution is studied. A finite element of four nodes and 32 degrees of freedom (DOF), previously developed for the bending and mechanical buckling of laminated composite plates, is extended to investigate the thermal buckling behavior of laminated composite plates. Based upon the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical implementation of the present finite element allowed the comparison of the numerical obtained results with results obtained from the literature: 1) with element of the same order, 2) the first order shear deformation theory, 3) the high order shear deformation theory and 4) the three-dimensional solution. It was found that the obtained results were very close to the reference results and the proposed element offers a good convergence speed. Furthermore, a parametrical study was also conducted to investigate the effect of the anisotropy of composite materials on the critical buckling temperature of laminated plates. The study showed that: 1) the critical buckling temperature generally decreases with the increasing of the modulus ratio EL/ET and thermal expansion ratio αT/αL, and 2) the boundary conditions and the orientation angles significantly affect the critical buckling temperature of laminated plates.

Cite this article

Houdayfa OUNIS , Abdelouahab TATI , Adel BENCHABANE . Thermal buckling behavior of laminated composite plates: a finite-element study[J]. Frontiers of Mechanical Engineering, 2014 , 9(1) : 41 -49 . DOI: 10.1007/s11465-014-0284-z

1
GillS, GuptaM, SatsangiP S. Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastics composite. Frontiers of Mechanical Engineering, 2013, 8(2): 187-200

DOI

2
ThorntonE A. Thermal Structures for Aerospace Applications. Reston, VA: AIAA, 1996

3
JonesR M. Buckling of Bars, Plates, and Shells. Blacksburg Virginia: Bull Ridge Publishing, 2006

4
TatiA, AbibsiA. Un element fini pour la flexion et le flambage des plaques minces stratifiees en materiaux composites. Revue Des Composites Et Des Materiaux Avances, 2007, 17(3): 279-296

DOI

5
ZhangY X, YangC H. Recent developments in finite element analysis for laminated composite plates. Composite Structures, 2009, 88(1): 147-157

DOI

6
ChenW J, LinP D, ChenL W. Thermal buckling behavior of thick composite laminated plates under nonuniform temperature distribution. Computers & Structures, 1991, 41(4): 637-645

DOI

7
ChenW J, LinP D, ChenL W. Thermal buckling behaviour of composite laminated plates with a circular hole. Composite Structures, 1991, 18(4): 379-397

DOI

8
HuangN N, TauchertT R. Thermal buckling of clamped symmetric laminated plates. Thin-walled Structures, 1992, 13(4): 259-273

DOI

9
NoorA K, PetersJ M. Thermomechanical buckling of multilayered composite plates. Journal of Engineering Mechanics, 1992, 118(2): 351-366

DOI

10
NoorA K, PetersJ M. Finite element buckling and postbuckling solutions for multilayered composite panels. Finite Elements in Analysis and Design, 1994, 15(4): 343-367

DOI

11
NoorA K, StarnesJ H, PetersJ M. Thermomechanical buckling of multilayered composite panels with cutouts. AIAA Journal, 1994, 32(7): 1507-1519

DOI

12
NoorA K, StarnesJ H Jr, PetersJ M. Thermomechanical buckling and postbuckling of multilayered composite panels. Composite Structures, 1993, 23(3): 233-251

DOI

13
ChandrashekharaK. Thermal buckling of laminated plates using a shear flexible finite element. Finite Elements in Analysis and Design, 1992, 12(1): 51-61

DOI

14
PrabhuM R, DhanarajR. Thermal buckling of laminated composite plates. Computers & Structures, 1994, 53(5): 1193-1204

DOI

15
LeeY S, LeeY W, YangM S, ParkB S. Optimal design of thick laminated composite plates for maximum thermal buckling load. Journal of Thermal Stresses, 1999, 22(3): 259-273

DOI

16
TopalU, UzmanÜ. Thermal buckling load optimization of laminated composite plates. Thin-walled Structures, 2008, 46(6): 667-675

DOI

17
TopalU, UzmanÜ. Thermal buckling load optimization of laminated skew plates. Materials & Design, 2009, 30(7): 2569-2575

DOI

18
WalkerM, ReissT, AdaliS, VerijenkoV E. Optimal design of symmetrically laminated plates for maximum buckling temperature. Journal of Thermal Stresses, 1997, 20(1): 21-33

DOI

19
KantT, BabuC S. Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models. Composite Structures, 2000, 49(1): 77-85

DOI

20
SinghaM K, RamachandraL, BandyopadhyayJ. Stability and strength of composite skew plates under thermomechanical loads. AIAA Journal, 2001, 39(8): 1618-1623

DOI

21
KabirH R H, AskarH, ChaudhuriR A. Thermal buckling response of shear flexible laminated anisotropic plates using a three-node isoparametric element. Composite Structures, 2003, 59(2): 173-187

DOI

22
ŞahinÖ S. Thermal buckling of hybrid angle-ply laminated composite plates with a hole. Composites Science and Technology, 2005, 65(11-12): 1780-1790

23
AvciA, KayaS, DaghanB. Thermal buckling of rectangular laminated plates with a hole. Journal of Reinforced Plastics and Composites, 2005, 24(3): 259-272

DOI

24
ChangJ S. FEM analysis of buckling and thermal buckling of antisymmetric angle-ply laminates according to transverse shear and normal deformable high order displacement theory. Computers & Structures, 1990, 37(6): 925-946

DOI

25
ChangJ S, ShiaoF J. Thermal buckling analysis of isotropic and composite plates with a hole. Journal of Thermal Stresses, 1990, 13(3): 315-332

DOI

26
BabuC S, KantT. Refined higher order finite element models for thermal buckling of laminated composite and sandwich plates. Journal of Thermal Stresses, 2000, 23(2): 111-130

DOI

27
WuZ, ChenW. Thermomechanical buckling of laminated composite and sandwich plates using global–local higher order theory. International Journal of Mechanical Sciences, 2007, 49(6): 712-721

DOI

28
LalA, SinghB N, KumarR. Effects of random system properties on the thermal buckling analysis of laminated composite plates. Computers & Structures, 2009, 87(17-18): 1119-1128

DOI

29
ShiauL C, KuoS Y, ChenC Y. Thermal buckling behavior of composite laminated plates. Composite Structures, 2010, 92(2): 508-514

DOI

30
ThangaratnamK R, Palaninathan, RamachandranJ.Thermal buckling of composite laminated plates. Computers & Structures, 1989, 32(5): 1117-1124

DOI

31
ChenL W, ChenL Y. Thermal buckling analysis of composite laminated plates by the finite-element method. Journal of Thermal Stresses, 1989, 12(1): 41-56

DOI

32
ChenL W, ChenL Y. Thermal buckling behavior of laminated composite plates with temperature-dependent properties. Composite Structures, 1989, 13(4): 275-287

DOI

33
ChenL W, ChenL Y. Thermal buckling analysis of laminated cylindrical plates by the finite element method. Computers & Structures, 1990, 34(1): 71-78

DOI

34
TopalU, UzmanÜ. Effect of rectangular/circular cutouts on thermal buckling load optimization of angle-ply laminated thin plates. Science and Engineering of Composite Materials, 2010, 17(2): 93-110

35
LeeJ. Thermally induced buckling of laminated composites by a layerwise theory. Computers & Structures, 1997, 65(6): 917-922

DOI

36
ShariyatM. Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory. Thin-walled Structures, 2007, 45(4): 439-452

DOI

37
KumarS, SinghB. Thermal buckling analysis of sma fiber-reinforced composite plates using layerwise model. Journal of Aerospace Engineering, 2009, 22(4): 342-353

DOI

38
NaliP, CarreraE. Accurate buckling analysis of composite layered plates with combined thermal and mechanical loadings. Journal of Thermal Stresses, 2013, 36(1): 1-18

DOI

39
ShiY, LeeR Y Y, MeiC. Thermal postbuckling of composite plates using the finite element modal coordinate method. Journal of Thermal Stresses, 1999, 22(6): 595-614

DOI

40
ZhaoX, LeeY Y, LiewK M. Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures, 2009, 90(2): 161-171

DOI

41
MatsunagaH. Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Composite Structures, 2005, 68(4): 439-454

DOI

42
NoorA, BurtonW. Three-dimensional solutions for thermal buckling of multilayered anisotropic plates. Journal of Engineering Mechanics, 1992, 118(4): 683-701

DOI

43
DhattG, TouzotG.Une présentation de la méthode des éléments finis. France: Maloine, 1981

44
WhitneyJ M, AshtonJ E. Effect of environment on the elastic response of layered composite plates. AIAA Journal, 1971, 9(9): 1708-1713

DOI

45
ChenL W, ChenL Y. Thermal buckling of laminated composite plates. Journal of Thermal Stresses, 1987, 10(4): 345-356

DOI

46
ChenW C, LiuW H. Thermal buckling of antisymmetric angle-ply laminated plates— an analytical levy-type solution. Journal of Thermal Stresses, 1993, 16(4): 401-419

DOI

47
ChenL W, BrunelleE J, ChenL Y. Thermal buckling of initially stressed thick plates. Journal of Mechanical Design, 1982, 104(3): 557-564

DOI

48
JonesR M. Thermal buckling of uniformly heated unidirectional and symmetric cross-ply laminated fiber-reinforced composite uniaxial in-plane restrained simply supported rectangular plates. Composites. Part A, Applied Science and Manufacturing, 2005, 36(10): 1355-1367

DOI

Outlines

/