RESEARCH ARTICLE

Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications

  • J. AGUIRREBEITIA ,
  • R. AVILÉS ,
  • I. FERNÁNDEZ ,
  • M. ABASOLO
Expand
  • Department of Mechanical engineering, ETSI-BILBAO, Vizcaya 48013, Spain

Received date: 19 Nov 2012

Accepted date: 20 Dec 2012

Published date: 05 Mar 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper presents the kinematical features of an inversion of the double linked fourbar for morphing wing purposes. The structure of the mechanism is obtained using structural synthesis concepts, from an initial conceptual schematic. Then, kinematic characteristics as instant center of rotation, lock positions, dead point positions and uncertainty positions are derived for this mechanism in order to face the last step, the dimensional synthesis; in this sense, two kinds of dimensional synthesis are arranged to guide the wing along two positions, and to fulfill with the second one some aerodynamic and minimum actuation energy related issues.

Cite this article

J. AGUIRREBEITIA , R. AVILÉS , I. FERNÁNDEZ , M. ABASOLO . Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications[J]. Frontiers of Mechanical Engineering, 2013 , 8(1) : 17 -32 . DOI: 10.1007/s11465-013-0364-5

Acknowledgements

The authors wish to acknowledge the financial support received from the Department of Research and Universities of the Basque Government and the Ministry of Science and Innovation of Spain, trough the research project reference DPI2009-07900 “Methods for the Analysis and Design of Variable Geometry Trusses in Morphing Aircraft Applications”.
1
Rodriguez A. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007

2
Sofla A Y N, Meguid S A, Tan K T, Yeo W K. Shape morphing of aircraft wing: Status and challenges. Materials & Design, 2010, 31(3): 1284-1292

DOI

3
Berton B.Shape Memory Alloys Application: Trailing Edge Shape Control. NATO OTAN RTO-MP-AVT-141, 2006

4
Yu Y, Li X, Zhang W, Leng J. Investigation on adaptive wing structure based on shape memory polymer composite hinge. International conference on smart materials and nanotechnology in engineering, China. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2007, 6423: 64231D-5, 64231D-7

DOI

5
Wang D P, Bartley-Cho J D, Martin C A, Hallam B. Development of high-rate, large deflection, hingeless trailing edge control surface for the smart wing wind tunnel model. Smart structures and materials 2001: Industrial and commercial applications of smart structures technologies. In: Proceedings of SPIE, 2001

6
Vos R, Barrett R, de Breuker R, Tiso P. Post-buckled precompressed elements: A new class of control actuators for morphing wing UAVs. Smart Materials and Structures, 2007, 16(3): 919-926

DOI

7
Lim S M, Lee S, Park H C, Yoon K J, Goo N S. Design and demonstration of a biomimetic wing section using a lightweight piezo-composite actuator (LIPCA). Smart Materials and Structures, 2005, 14(4): 496-503

DOI

8
Paradies R, Ciresa P. Active wing design with integrated flight control using piezoelectric macro fiber composites. Smart Materials and Structures, 2009, 18(3): 035010

DOI

9
Mattioni F, Weaver P M, Potter K D, Friswell M I. The application of thermally induced multistable composites to morphing aircraft structures. Industrial and commercial applications of smart structures technologies. Proceedings of the Society for Photo-Instrumentation Engineers, 2008, 6930: 693012-1, 693012-11

DOI

10
Diaconu C G, Weaver P M, Mattioni F. Concepts for morphing airfoil sections using bi-stable laminated composite structures. Thin-walled Structures, 2008, 46(6): 689-701

DOI

11
Ding H, Zhao J, Huang Z. Unified structural synthesis of planar simple and multiple joint kinematic chains. Mechanism and Machine Theory, 2010, 45(4): 555-568

DOI

12
Sunkari R P, Schmidt L C. Structural synthesis of planar kinematic chains by adapting a Mckay-type algorithm. Mechanism and Machine Theory, 2006, 41(9): 1021-1030

DOI

13
Butcher E A, Hartman C. Efficient enumeration and hierarchical classification of planar simple-jointed kinematic chains: application to 12- and 14-bar single degree-of-freedom chains. Mechanism and Machine Theory, 2005, 40(9): 1030-1050

DOI

14
Yang T L. Topological characteristics and automatic generation of structural analysis and synthesis of plane mechanisms, Part I: Theory. American Society of Mechanical Engineers, Design Engineering Division, 1988

15
Manolescu N I. A method based on Baranov trusses and using graph theory to find the set of planar jointed kinematic chains and mechanisms. Mechanism and Machine Theory, 1973, 8(1): 3-22

DOI

16
Hsieh W H. Kinematic synthesis of cam-controlled planetary gear trains. Mechanism and Machine Theory, 2009, 44(5): 873-895

DOI

17
Kim J U, Kwak B M. Application of edge permutation group to structural synthesis of epicyclic gear trains. Mechanism and Machine Theory, 1990, 25(5): 563-574

DOI

18
Fernandez de Bustos I, Agirrebeitia J, Avilés R, Ajuria G. Aguirrebeitia, J., Avilés, R., Ajuria, G. Second order analysis of the mobility of kinematic loops via acceleration compatibility analysis. Mechanism and Machine Theory, 2009, 44(10): 1923-1937

DOI

19
Dijscksman E A. Motion Geometry of Mechanisms. Cambridge: Cambridge University Press, 1976

20
Hernandez A. Cinematica de Mecanismos. Analisis y diseño. Editorial Síntesis. 2004

21
Hunt K H. Kinematic Geometry of Mechanisms. Oxford: Clarendon Press, 1978

22
Shigley J E, Uicker J J. Theory of Machines and Mechanisms, USA: McGraw Hill, 1980

23
Avilés R, Ajuria M B, García de Jalón J. A fairly general method for the optimum synthesis of mechanisms. Mechanism and Machine Theory, 1985, 20(4): 321-328

DOI

24
Vallejo J, Avilés R, Hernández A, Amezua E. Nonlinear optimization of planar linkages for kinematic syntheses. Mechanism and Machine Theory, 1995, 30(4): 501-518

DOI

25
Avilés R, Vallejo J, Ajuria G, Agirrebeitia J. Second-order methods for the optimum synthesis of multibody systems. Structural and Multidisciplinary Optimization, 2000, 19(3): 192-203

DOI

26
Avilés R, Vallejo J, Fernandez de Bustos I, Agirrebeitia J, Ajuria G. Optimum synthesis of planar linkages using a strain-energy error function under geometric constraints. Mechanism and Machine Theory, 2010, 45(1): 65-79

DOI

27
Holland J H. Adaptation in Natural and Artificial Systems. Cambridge: The MIT Press, 1994

28
Avilés R. Introducción a los algoritmos genéticos con aplicaciones en ingeniería mecánica. Escuela Técnica Superior de Ingenieros de Bilbao, Spain, 1996

29
Fernández de Bustos I, Agirrebeitia J, Avilés R, Angulo C. Kinematical synthesis of 1-DOF mechanisms using finite elements and genetic algorithms. Finite Elements in Analysis and Design, 2005, 41(15): 1441-1463

DOI

30
Lasdon L S, Waren A D, Jain A, Ratner M. Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Transactions on Mathematical Software, 1978, 4(1): 34-50

DOI

Outlines

/