RESEARCH ARTICLE

Mechatronic design of a novel linear compliant positioning stage with large travel range and high out-of-plane payload capacity

  • Hua LIU ,
  • Xin XIE ,
  • Ruoyu TAN ,
  • Lianchao ZHANG ,
  • Dapeng FAN
Expand
  • College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China

Received date: 09 Dec 2016

Accepted date: 16 Mar 2017

Published date: 19 Jun 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Most of the XY positioning stages proposed in previous studies are mainly designed by considering only a single performance indicator of the stage. As a result, the other performance indicators are relatively weak. In this study, a 2-degree-of-freedom linear compliant positioning stage (LCPS) is developed by mechatronic design to balance the interacting performance indicators and realize the desired positioning stage. The key parameters and the coupling of the structure and actuators are completely considered in the design. The LCPS consists of four voice coil motors (VCMs), which are conformally designed for compactness, and six spatial leaf spring parallelograms. These parallelograms are serially connected for a large travel range and a high out-of-plane payload capacity. The mechatronic model is established by matrix structural analysis for structural modeling and by Kirchhoff’s law for the VCMs. The sensitivities of the key parameters are analyzed, and the design parameters are subsequently determined. The analytical model of the stage is confirmed by experiments. The stage has a travel range of 4.4 mm× 7.0 mm and a 0.16% area ratio of workspace to the outer dimension of the stage. The values of these performance indicators are greater than those of any existing stage reported in the literature. The closed-loop bandwidth is 9.5 Hz in both working directions. The stage can track a circular trajectory with a radius of 1.5 mm, with 40 mm error and a resolution of lower than 3 mm. The results of payload tests indicate that the stage has at least 20 kg out-of-plane payload capacity.

Cite this article

Hua LIU , Xin XIE , Ruoyu TAN , Lianchao ZHANG , Dapeng FAN . Mechatronic design of a novel linear compliant positioning stage with large travel range and high out-of-plane payload capacity[J]. Frontiers of Mechanical Engineering, 2017 , 12(2) : 265 -278 . DOI: 10.1007/s11465-017-0453-y

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 51135009). The authors would like to thank the reviewers for their excellent comments and suggestions.
1
Aoki K, Yanagita Y, Kuroda H, Wide-range fine pointing mechanism for free-space laser communications. Proceedings of SPIE, Free-Space Laser Communication and Active Laser Illumination III, 2004, 5160: 495–506

DOI

2
Yong Y K, Moheimani S O R, Kenton B J, Invited review article: High-speed flexure-guided nanopositioning mechanical design and control issues. Review of Scientific Instruments, 2012, 83(12): 121101

DOI

3
Kenton B J, Leang K K. Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner. IEEE/ASME Transactions on Mechatronics, 2012, 17(2): 356–369 

DOI

4
Chen H T H, Ng W, Engelstad R L. Finite element analysis of a scanning x-ray microscope micropositioning stage. Review of Scientific Instruments, 1992, 63(1): 591–594 

DOI

5
Muthuswamy J, Salas D, Okandan M. A chronic micropositioning system for neurophysiology. In: Proceedings of the Second Joint Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference. Houston: IEEE, 2002, 3: 2115–2116

DOI

6
Howell L L. Compliant Mechanisms.New York: John Wiley & Sons, Inc., 2001

7
Smith S T. Flexures: Elements of Elastic Mechanisms.Boca Raton: CRC Press, 2000

8
Teo T J, Chen I M, Yang G, A flexure-based electromagnetic linear actuator. Nanotechnology, 2008, 19(31): 315501

DOI

9
Zhu X, Xu X, Wen Z, A novel flexure-based vertical nanopositioning stage with large travel range. Review of Scientific Instruments, 2015, 86(10): 105112

DOI

10
Xu Q. Design and development of a compact flexure-based precision positioning system with centimeter range. IEEE Transactions on Industrial Electronics, 2014, 61(2): 893–903

DOI

11
Shang J, Tian Y, Li Z, A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism. Review of Scientific Instruments, 2015, 86(9): 095001

DOI

12
Kang D, Kim K, Kim D, Optimal design of high precision XY-scanner with nanometer-level resolution and millimeter-level working range. Mechatronics, 2009, 19(4): 562–570 

DOI

13
Huh J S, Kim K H, Kang D W, Performance evaluation of precision nanopositioning devices caused by uncertainties due to tolerances using function approximation moment method. Review of Scientific Instruments, 2006, 77(1): 015103

DOI

14
Gao W, Dejima S, Yanai H, A surface motor-driven planar motion stage integrated with an XYqZ surface encoder for precision positioning. Precision Engineering, 2004, 28(3): 329–337 

DOI

15
Xiao S, Li Y. Optimal design, fabrication, and control of an micropositioning stage driven by electromagnetic actuators. IEEE Transactions on Industrial Electronics, 2013, 60(10): 4613–4626

DOI

16
Przemieniecki J S. Theory of Matrix Structural Analysis.New York: McGraw-Hill, 1968

17
Furlani E P. Permanent Magnet and Electromechanical Devices.San Diego: Academic Press, 2001

18
Kim H, Kim J, Ahn D, Development of a nanoprecision 3-DOF vertical positioning system with a flexure hinge. IEEE Transactions on Nanotechnology, 2013, 12(2): 234–245

DOI

19
Xu Q. New flexure parallel-kinematic micropositioning system with large workspace. IEEE Transactions on Robotics, 2012, 28(2): 478–491

DOI

Outlines

/