RESEARCH ARTICLE

Flexible micro flow sensor for micro aerial vehicles

  • Rong ZHU ,
  • Ruiyi QUE ,
  • Peng LIU
Expand
  • State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China

Received date: 26 Oct 2016

Accepted date: 19 Dec 2016

Published date: 31 Oct 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

Cite this article

Rong ZHU , Ruiyi QUE , Peng LIU . Flexible micro flow sensor for micro aerial vehicles[J]. Frontiers of Mechanical Engineering, 2017 , 12(4) : 539 -545 . DOI: 10.1007/s11465-017-0427-0

Acknowledgements

This work was financially supported by the National High-Tech R&D Program (863 Program) of China (Grant No. 2006AA04Z257).
1
Van Putten A F P, Middelhoek S. Integrated silicon anemometer. Electronics Letters, 1974, 10(21): 425–426

DOI

2
Chen J, Fan Z, Zou J,  Two-dimensional micromachined flow sensor array for fluid mechanics studies. Journal of Aerospace Engineering, 2003, 16(2): 85–97

DOI

3
Van Baar J J, Wiegerink R J, Lammerink T S J,  Micromachined structures for the thermal measurements of fluid and flow parameters. Journal of Micromechanics and Microengineering, 2001, 11(4): 311–318 

DOI

4
Liu C, Huang J, Zhu Z,  A micromachined flow shear-stress sensor based on thermal transfer principles. Journal of Microelectromechanical Systems, 1999, 8(1): 90–99 

DOI

5
Liu P, Zhu R, Que R. A flexible flow sensor system and its characteristics for fluid mechanics measurements. Sensors (Basel), 2009, 9(12): 9533–9543 

DOI

6
Xu Y, Jiang F, Newbern S,  Flexible shear-stress sensor skin and its application to unmanned aerial vehicle. Sensors and Actuators A: Physical, 2003, 105(3): 321–329 

DOI

7
Buder U, Petz R, Kittel M,  AeroMEMS polyimide based wall double hot-wire sensors for flow separation detection. Sensors and Actuators A: Physical, 2008, 142(1): 130–137 

DOI

8
Lian Y, Shyy W, Viieru D,  Membrane wing aerodynamics for micro air vehicles. Progress in Aerospace Sciences, 2003, 39(6–7): 425–465 

DOI

9
Fang Z. Aircraft Flight Dynamics and Automatic Flight Control. Beijing: National Defense Industry Press, 1999 (in Chinese)

10
Hagen F W, Seidel H. Deutsche airbus flight test of Rosemount smart probe for distributed air data systems. IEEE Aerospace and Electric Systems Magazine, 1994, 9(4): 7–14 

DOI

11
Callegari S, Talamelli A, Zagnoni M,  Aircraft angle of attack and air speed detection by redundant strip pressure sensors. In: Proceedings of IEEE Sensors. Vienna, 2004, 24–27

12
Callegari S, Zagnoni M, Golfarelli A,  Experiments on aircraft flight parameter detection by on-skin sensors. Sensors and Actuators A: Physical, 2006, 130–131: 155–165

DOI

13
Whitmore S A. Development of a pneumatic high-angle-of-attack flush airdata sensing (HI-FADS) system. SAE Technical Paper 912142. 1991

14
Que R, Zhu R. A two-dimensional flow sensor with integrated micro thermal sensing elements and BP neural network. Sensors (Basel), 2014, 14(1): 564–574 

DOI

15
Que R, Zhu R. A compact flexible thermal flow sensor for detecting two-dimensional flow vector. IEEE Sensors Journal, 2015, 15(3): 1931–1936

DOI

16
Zhu R, Liu P, Liu X,  A low-cost flexible hot-film sensor system for flow sensing and its application to aircraft. In: Proceedings of IEEE 22nd International Conference on Micro Electro Mechanical Systems. Sorrento, 2009, 527–530

17
Que R, Zhu R. Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification. Sensors, 2012, 12(8): 10920–10929 

DOI

18
Bruun H H. Hot-wire Anemometry Principles and Signal Analysis. New York: Oxford University Press, 1995

19
Que R, Zhu R, Wei Q,  Temperature compensation for thermal anemometers using temperature sensors independent of flow sensors. Measurement Science & Technology, 2011, 22(8): 085404

DOI

20
Xu Y, Tai Y, Huang A,  IC-integrated flexible shear-stress sensor skin. Journal of Microelectromechanical Systems, 2003, 12(5): 740–747 

DOI

21
Choisnet J, Collot L, Hanson N. Method for determining aerodynamic parameters and method for detecting failure of a probe used for determining aerodynamic parameters. US Patent, 7051586, 2006-05-30

22
Zhang F, Zhu R, Liu P,  A novel micro air vehicle with flexible wing integrating with on-board electronic devices. In: Proceedings of 2008 IEEE International Conferences on Robotics, Automation and Mechatronics. IEEE, 2008, 252–257

DOI

23
Zhang F, Zhu R, Zhou Z. Experiment research on aerodynamics of flexible wing MAV. Acta Aeronautica et Astronautica Sinica, 2008, 30(6): 1440–1446 (in Chinese)

24
Fei H, Zhu R, Zhou Z,  Aircraft flight parameters detection based on neural network using multiple hot-film flow speed sensors. Smart Materials and Structures, 2007, 16(4): 1239–1245

DOI

25
Clifford L. Neural Networks: Theoretical Foundations and Analysis. New York: IEEE, 1992

Outlines

/