MEMS-based thermoelectric infrared sensors: A review
MEMS-based thermoelectric infrared sensors: A review
In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation microstructures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.
thermoelectric infrared sensor / CMOS-MEMS / thermopile / micromachining / wafer-level package
[1] |
Rogalski A. Infrared Detectors. New York: Gordon and Breach Science Publishers, 2000
|
[2] |
Graf A, Arndt M, Sauer M,
CrossRef
ADS
Google scholar
|
[3] |
Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal performance of CMOS compatible IR thermoelectric sensors. Journal of Microelectromechanical Systems, 2000, 9(1): 38–46
CrossRef
ADS
Google scholar
|
[4] |
Du C H, Lee C. Characterization of thermopile based on complementary metal-oxide-semiconductor (CMOS) materials and post CMOS micromachining. Japanese Journal of Applied Physics, Part 1, Regular Papers & Short Notes, 2002, 41(6B): 4340–4345
CrossRef
ADS
Google scholar
|
[5] |
Xu D, Xiong B, Wang Y. Modeling of front-etched micromachined thermopile IR detector by CMOS technology. Journal of Microelectromechanical Systems, 2010, 19(6): 1331–1340
CrossRef
ADS
Google scholar
|
[6] |
Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal design and noise considerations of CMOS compatible IR thermoelectric sensors. Sensor and Actuators A: Physical, 1998, 71(1–2): 107–115
CrossRef
ADS
Google scholar
|
[7] |
Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal performance of CMOS compatible IR thermoelectric sensors. Journal of Microelectromechanical Systems, 2000, 9(1): 38–46
CrossRef
ADS
Google scholar
|
[8] |
Völklein F, Baltes H. Optimization tool for the performance parameters of thermoelectric microsensors. Sensors and Actuators A: Physical, 1993, 36(1): 65–71
CrossRef
ADS
Google scholar
|
[9] |
Kozlov A G. Optimization of thin-film thermoelectric radiation sensor with separate disposition of absorbing layer and comb thermoelectric transducer. Sensors and Actuators A: Physical, 2000, 84(3): 259–269
CrossRef
ADS
Google scholar
|
[10] |
Kozlov A G. Analytical modelling of steady-state temperature distribution in thermal microsensors using Fourier method: Part 1. Theory. Sensors and Actuators A: Physical, 2002, 101(3): 283–298
CrossRef
ADS
Google scholar
|
[11] |
Kozlov A G. Analytical modelling of steady-state temperature distribution in thermal microsensors using Fourier method: Part 2. Practical application. Sensors and Actuators A: Physical, 2002, 101(3): 299–310
CrossRef
ADS
Google scholar
|
[12] |
Kozlov A G.Frequency response model for thermal radiation microsensors. Measurement Science and Technology, 2009, 20(4): 045204
CrossRef
ADS
Google scholar
|
[13] |
Escriba C, Campo E, Esteve D,
CrossRef
ADS
Google scholar
|
[14] |
Mattsson C G, Bertilsson K, Thungström G,
CrossRef
ADS
Google scholar
|
[15] |
Levin A. A numerical simulation tool for infrared thermopile detectors. In: Proceedings of 24th International Conference on Thermoelectrics. IEEE, 2005, 476–479
CrossRef
ADS
Google scholar
|
[16] |
Elbel T, Lenggenhager R, Baltes H. Model of thermoelectric radiation sensors made by CMOS and micromachining. Sensors and Actuators A: Physical, 1992, 35(2): 101–106
CrossRef
ADS
Google scholar
|
[17] |
Lahiji G R, Wise K D. A monolithic thermopile detector fabricated using integrated-circuit technology. In: Proceedings of 1980 International Electron Devices Meeting. IEEE, 1980, 26: 676–679
CrossRef
ADS
Google scholar
|
[18] |
Roncaglia A, Ferri M. Thermoelectric materials in MEMS and NEMS: A review. Science of Advanced Materials, 2011, 3(3): 401–419
CrossRef
ADS
Google scholar
|
[19] |
Liao C N,Chen C, Tu K N. Thermoelectric characterization of Si thin films in silicon-on-insulator wafers. Journal of Applied Physics, 1999, 86(6): 3204–3208
CrossRef
ADS
Google scholar
|
[20] |
Haenschke F, Kessler E, Dillner U,
CrossRef
ADS
Google scholar
|
[21] |
Lindeberg M, Yousef H, Rödjegård H,
CrossRef
ADS
Google scholar
|
[22] |
Kasalynas I, Adam A J L, Klaassen T O,
CrossRef
ADS
Google scholar
|
[23] |
Müller M, Budde W, Gottfried-Gottfried R,
CrossRef
ADS
Google scholar
|
[24] |
Sarro P M, Yashiro H, Herwaarden A W,
CrossRef
ADS
Google scholar
|
[25] |
Fonollosa J, Carmona M, Santander J,
CrossRef
ADS
Google scholar
|
[26] |
Fonollosa J, Halford B, Fonseca L,
CrossRef
ADS
Google scholar
|
[27] |
Fonollosa J, Rubio R, Hartwig S,
CrossRef
ADS
Google scholar
|
[28] |
Schaufelbuhl A, Schneeberger N, Munch U,
CrossRef
ADS
Google scholar
|
[29] |
von Arx M, Paul O, Baltes H. Test structures to measure the heat capacity of CMOS layer sandwiches. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(2): 217–224
CrossRef
ADS
Google scholar
|
[30] |
Baltes H, Paul O, Brand O. Micromachined thermally based CMOS microsensors. Proceedings of the IEEE, 1998, 86(8): 1660–1678
|
[31] |
Lenggenhager R, Baltes H, Peer J,
CrossRef
ADS
Google scholar
|
[32] |
Eriguchi K, Ono K. Quantitative and comparative characterizations of plasma process-induced damage in advanced metal-oxide-semiconductor devices. Journal of Physics D: Applied Physics, 2008, 41(2): 024002
CrossRef
ADS
Google scholar
|
[33] |
Li T, Liu Y, Zhou P,
CrossRef
ADS
Google scholar
|
[34] |
Xu D, Xiong B, Wang Y.Design, fabrication and characterization of front-etched micromachined thermopile for IR detection. Journal of Micromechanics and Microengineering, 2010, 20(11): 115004
CrossRef
ADS
Google scholar
|
[35] |
Xu D, Xiong B, Wu G,
CrossRef
ADS
Google scholar
|
[36] |
Xu D, Xiong B, Wang Y,
CrossRef
ADS
Google scholar
|
[37] |
Xu D, Xiong B, Wu G,
CrossRef
ADS
Google scholar
|
[38] |
Roncaglia A, Mancarella F, Cardinali G C. CMOS-compatible fabrication of thermopiles with high sensitivity in the 3–5 μm atmospheric window. Sensors and Actuators B: Chemical, 2007, 125(1): 214–223
CrossRef
ADS
Google scholar
|
[39] |
Hirota M, Nakajima Y, Saito M,
CrossRef
ADS
Google scholar
|
[40] |
Chen X, Tang J, Xu G,
CrossRef
ADS
Google scholar
|
[41] |
Chen X, Xu G, Luo L. Development of seed layer deposition and fast copper electroplating into deep microvias for three-dimension integration. Micro & Nano Letters, 2013, 8(8): 191–192
CrossRef
ADS
Google scholar
|
[42] |
Chen X, Yan P, Tang J,
CrossRef
ADS
Google scholar
|
[43] |
Xu D, Jing E, Xiong B,
CrossRef
ADS
Google scholar
|
[44] |
Xu D, Xiong B, Wang Y. Micromachined thermopile IR detector module with high performance. IEEE Photonics Technology Letters, 2011, 23(3): 149–151
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |